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ABSTRACT 

Non-linear convection in a porous medium of porosity close to unity with 
convective acceleration and viscous force is studied using power integral, spectral 
analysis and numerical techniques. Several similarities and qualitative differences 
between the analytical techniques are brought out. In the numerical technique, the 
codes ODE, RKF45, and RKF48 are used to integrate the system of differential 
equations for the Galerkin coefficients. It is found that certain representations and 
too high Rayleigh numbers produce chaotic solutions. It is also shown that 
permeability influences the cell pattern and inhibits the onset of convection. This 
effect is analogous to the effect of a magnetic field on convection in magne to 
hydrodynamics, previously treated by the author. 
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NON-LINEAR CONVECTION IN A POROUS MEDIUM 

WITH CONVECTIVE ACCELERATION 


AND VISCOUS FORCE 


1. INTRODUCTION 

The main object of this paper is to discuss the merit-s 
and demerits of the use of different techniques in 
applicable mathematics for the study of free convec­
tion in a special type of coarse porous medium of 
porosity close to unity (for example, a porous medium 
made of fibrous materials or the mushy zone in a 
rapidly freezing material regarded as a porous material 
of varying permeability). This study has generated 
considerable interest in recent years because of its 
importance in many branches of science and engineer­
ing, particularly in petroleum engineering, to remove 
small particles contained in gases: one of the simple 
and useful methods of removal will be by means of a 
fibrous porous medium, that is, a filter. It is al~o of 
interest in the nuclear industry, particularly in the 
evaluation of heat removal from a hypothetical ac­
cident in a nuclear reactor and to provide effective 
insulation. Here, the main purpose is to reduce heat 
transfer by means of open-pore insulators, such as 
glass fibers or rock fibrous material. In formulating 
this problem, we regard the special type of porous 
medium as an assemblage of sparse distribution of 
small identical spherical particles of radius dp and 
number density Pp fixed in space. Since the porosity, 
cp = 1-1:n:d~pp, of the medium is close to unity, we 
choose dp such that d~pp~O while dppp=finite when 
Pp~ 00. In this type of porous medium, the macro­
scopic velocity is not always small and hence the 
inertial force may not be negligible. Further, the dis­
tortion of velocity gives rise to shear stresses which in 
turn give rise to a viscous force. Therefore, the study of 
convection in such a special type of coarse porous 
medium needs the generalized Darcy law which incor­
porates both inertial and viscous forces in addition to 
the usual Darcy resistance. We hope that if offers a 
quantitative theory for the details of the transition 
(rom the conduction regime to convection and a con­
venient means for demonstrating experimentally the 
non-linear effects such as the preferred cell pattern, 
heat transport, and so on. 

Free convection in a porous medium heated from 
below has been extensively studied [1] using a linear 
pressure-velocity relation called Darcy's Law [2], 

k 
q= --(Vp-pg), (1)

J1, 

where q is the mean filter velocity vector, Vp the 
pressure gradient, k the permeability of the medium, J1, 
the viscosity and p the density of the fluid, and g is the 
acceleration due to gravity. This is usually called 
Rayleigh-Darcy (RD) convection which is analogous 
to Rayleigh-Benard convection. The Hele-Shaw 
[3] cell model with two parallel plates separated 
by a distance d in which the mean velocity vector 
[4] is 

d2 

q= --(Vp-pg)
12J1, 

(2) 

enables experimentalists to simulate the flow through 
a porous medium [5]. This hydraulic analogy of the 
Hele-Shaw cell model is rigorous for isothermal flow 

when an equivalent permeability k = ~; is defined. It 

has been suggested that convection in Hele-Shaw cells 
could be characterized by a single, properly defined 
Rayleigh number [6,7] 

exgATdk
RL=--­ (3)

VK* 

called the filtration or Lapwood [7] Rayleigh number, 
where K* is the average thermal diffusivity, ex the 
coefficient of thermal expansion, A T the temperature 
difference, v the kinematic viscosity, k the permeability 
of the medium, and d the width of the porous layer. 
Katto and Masuoka [8] and Elder [9,10] have given 
a detailed theoretical analysis of various flows (which 
they also observed experimentally) using the average 

thermal diffusivity K* = (K*) , where K* is the effective 
pe f 

thermal conductivity of the saturated medium and 
(pe)f is the thermal capacity of the fluid. K* is a 
complex function of the solid and liquid thermal 
conductivities, as well as of some parameters such as 
the texture of the porous medium. A model to de­
termine K* is given in [8,11]. Hartline and Lister 
[12,13] carried out careful experiments to measure the 
critical Rayleigh number and the flow velocity of 
thermal convection in Hele-Shaw cells under super-

Krcp* + (1- cp*)K~
critical conditions using K* 

(pe)f 
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where Kt and K: are the thermal conductivity of the separated corresponding to large permeability where 
fluid and solid, respectively, and tp* = djh, where h is 

the Darcy friction rq becomes comparable to and 
the width of the cells. 

The investigations on convection in a porous me­
dium discussed above are concerned only with low 
speed flows. However, it is well known that the flow of 
fluid in a porous medium is curvilinear and the curva­
ture of the path gives rise to inertial acceleration. 
Further, in the special type of coarse porous medium 
discussed here, the speed of flow is not always small, so 
that inertial acceleration cannot be neglected [14-17]. 
Although Hamel [14J was the first to consider the 
inertial acceleration in the Darcy equation (1), 
Lapwood [7J gave a systematic mathematical analysis 
to study linear convection in a porous medium using 
the generalized Darcy equation 

p
Vp+pg--q (4)

k 

which we call the Lapwood-Darcy (LD) equation. 
Subsequently, many authors [18-24J have used this 
equation to study linear and non-linear convection in 
a porous medium. The inclusion of inertial accelera­
tion in the Darcy equation is usually valid for small 
values of the Prandtl number (for example, with liquid 
metals). But it poses, as pointed out by Beck [25J, the 
problem of an under-specified system of equations 
when the basic state is not quiescent. We can over­
come this difficulty by considering the F orchheimer 
[26J model where the usual inertial acceleration is 
expressed as a quadratic drag term. In that case the 
LD equation (4) takes the form 

where C b is the drag parameter [27J. This form of 
generalized Darcy equation is called the F orchheimer­
Darcy (FD) equation. 

We note that one can overcome the problem of an 
under-specified system of equations arising from the 
LD equation (4) in the case of a non-quiescent state by 
considering the viscous force pV 2q due to the dis­
tortion of velocity in addition to the inertial accelera­
tion. The analysis of flow through a porous medium 
[15-17J using the LD equation shows that the vor­
ticity emerges at the discontinuity surface of per­
meability when the fluid flows across the surface and it 
decays steadily in the flow when the permeability is 
constant. To account for this decay, we must consider 
the viscous force. Further, at the edge of the mushy 
zone next to a melt, the dendritic growths are widely 

even becomes considerably smaller than pV 2 q. The 
experiments of Stark and Volker [28J on the parallel 
plate Hele-Shaw model clearly demonstrate the exis­
tence of diffusion and convective acceleration. There­
fore, a study of convection in a porous medium of 
porosity close to unity requires the viscous force pV2q 
in the LD equation (4). Recently, many authors [29­
34J have generalized the Darcy equation, incor­
porating the inertial and viscous forces in addition to 
Darcy friction, to the form 

This reduces, for steady low Reynolds number flow, to 
the one proposed by Brinkman [35J for creeping flow 
past an individual sphere. Subsequently, many authors 
[29, 30, 36, 43J have shown that the Brinkman model 
gives, to the first approximation, results for flow through 
a porous medium made of a sparse distribution of 
spheres. Hereafter, (6) is called the Darcy-Lapwood­
Brinkman (DLB) equation. This equation is used in 
this paper to study non-linear convection. 

Recently, attention [37-41J has been focused on the 
study of convection in a porous medium using the 
DLB equation. The work in [37J is based on the 
energy method which predicts only the criterion for 
the onset of convection subject to arbitrary dis­
turbances, and is silent about the prediction of cell 
pattern and the corresponding heat transfer. The work 
in [41J deals only with two-dimensional con­
vection based on spectral analysis. Although this 
method predicts the cross-interaction of different modes, 
it is silent about the prediction of different cell pat­
terns. Further, in [41J, because of the prominence 
given to finite amplitude convection of odd parity, the 
even parity modes are excluded from the discussion of 
the linear convection problem. If the separation D of 
the vertical walls of the mode is small enough, the 
y= (1,1) mode enters first when the Rayleigh number 
R is adiabatically increased from zero, but if D is 
adiabatically increased, a stage will be reached when 
the y= (2,1) mode has a smaller Rc and then when 
convection first occurs it will be on a two cell pattern. 
By concentrating only on the odd parity modes, 
Rudraiah and Balachandra Rao [41J have ruled out 
this possibility. However, we overcome this deficiency 
in this paper. Finally, three-dimensional non-linear 
convection has not been given much attention using 
the DLB equation. This is also studied in this paper. 

The Arabian Journal for Science and Engineering, Volume 9, Number 2. 155 



N. Rudraiah 

2. FORMULATION OF THE PROBLEM 

Consider a Boussinesq fluid saturated porous layer 
occupying the space between two parallel horizontal 
planes of infinite extent separated by a distance d, 
heated uniformly from below and cooled from above. 
This means that we have a top-heavy arrangement and 
hence the equilibrium is unstable. However, the 
viscous friction and the thermal diffusion act to 
stabilize the system and create a threshold thermal 
gradient above which convection occurs and below 
which the fluid is in the quiescent state. The point at 
which the quiescent state breaks down and the motion 
starts is called the critical point and the corresponding 
temperature gradient is called the critical temperature 
gradient. This is expressed, in dimensionless form, in 
terms of the critical Rayleigh number Re' 

The D LB model with the usual approximations (see 
[21]) is introduced here to study the non-linear con­
vection. In addition to this, models are also necessary 
to account for heat transfer. The simplest model con­
siders that, at a given point, the fluid and solid phases 
are at the same temperature to form a fictitious fluid 
with a heat capacity 

(pC)* = (pC)fCP +(1- cp)(pc).s (7) 

and the effective thermal conductivity K*; in (7), (Pc)f 
and (pc).s are the heat capacities for the fluid and solid 
states, respectively. 

2.1 Basic Equations 

The required equations for a representative 
elementary volume under the Boussinesq approxi­
mation [42] are: 

V'q=O (8) 

oq
-+(q'V)q= (9)ot 

(10) 

P= Po [1 a(T - To)], (11) 

02 02 02 
where 2 

V =ox2+oy2 

and q = (u, v, w) is the mean filter velocity, p the 
pressure, T the temperature, p the density, Po the 
density at the reference To, v the kinematic viscosity, 
and k the permeability. 
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3. NON-LINEAR CONVECTION USING THE 
POWER INTEGRAL TECHNIQUE 

This is an iterative technique [22] which combines 
the best features of the Galerkin technique [43] and 
Stuart's [44] shape assumption. This method is cap­
able of predicting the nature of the amplitude at a given 
value of the Rayleigh number, the energetics of the 
fluid, and the physically preferred motions for a given 
set of external parameters. The perturbations on the 
basic flow are assumed to be finite so that higher order 
terms in the stability equation have to be retained. It 
relies on a system of differential equations for each of 
the field variables. These are achieved by introducing 
parametric expansions of the motion and then equat­
ing the coefficients of each order of the parameter. 
From the zeroth order system of differential equations, 
corresponding to the linear theory, the form of one of 
the field variables is determined. Then we use Stuart's 
[44] shape assumption, which implies that the plan 
form that exists at the onset of convection (that is, 
R = RJ persists even after the onset of convection (that 
is, R > Re , non-linear theory), to determine the remain­

3 
. . bl h ag ATd . h R I' hmg vana es, were R IS t e ayelg num-

VI( 

ber. The investigation of higher order approximations 
based on the solution to the linear stability problem is 
called local non-linear stability analysis. This analysis 
is useful to study in detail the possible horizontal 
patterns of closed packed cells, which are limited to 
two-dimensional rolls, rectangles, and hexagons. 

To study the local non-linear convection, we assume 
that all the dependent variables, say f and R, vary in 
the form 

f=fof-+flf-2+ f 2f- 3 + ... 

R=Ro+f-R l +f-2R 2+· .. , (12) 

where f- is a constant parameter and R j are integral 
functions of Wi and I:. For the first order solutions to 
be complete, f- must be proportional to the amplitUde 
of the disturbance, and this amplitude must be 
infinitesimal. 

Substituting (12) into (9) and (10) and equating the 
like powers of e, we get the required equations (see 
[22]). 

3.1 Analysis for Two-Dimensional Motion with a Free 
Surface 

The first order solutions, satisfying the conditions 

d2 W 
W=-=T at 2=0 and 1 ... (13)

dz2 
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are 
2 . 

= - - sm nax cos nz,Uo a 

vo=O, (14) 

w0 = 2 cos nax sin nz 

sin nz, (15) 

2 2 
n (a +1)2 { 1 } 

Ro=~-- n2(a 2 +1)+p ' (16) 
, 

P,=kjd 2
• 

The lowest value of Ro, called the critical value (Ro)c, 
occurs at a= ac, where Q c satisfies the equation 

2a6 + (3 +-i--)a4 
- (1 +-i--) =0. (17)n P, n P, 

It is of interest to note that, in the LD model, 
Rudraiah and Srimani [22J have shown that a is 
independent of P, and takes the value unity. However, 
in the D LB model discussed here, a2 depends on P, 
and hence the permeability influences the cell pattern. 
The critical values of (Ro)c and ac are computed from 
(16) and (17) for different values of P, and the results 
are shown in Table 1. 

Table 1. Critical Values of Rand ac 

P, a2 
e (RO)e 

CJJ 
10- 2 

10- 3 

10- 4 

10- 5 

0.5 
0.5306 
0.9636 
0.9961 
0.9959 

0.65875 x 103 

0.47191 x 104 

0.40290 x 105 

0.39588 x 106 

0.39518 x 107 

From this table it is clear that in the limit of P,---+ 00 

we recover the pure viscous flow results of Malkus and 
Veronis [45J, and that for P1---+0, say P,=10- s, we 
recover the LD model results [22]. For other values of 
PI' in the range 10 - 2 - 10- 3, we get the results for the 
transition zone from the D LB model to the LD model 
[44J. From Table 1 it is also clear that, as P, decreases, 
(Ro}c and ac increase and that they reach saturated 
values for P,=10- s• 

From the first order solutions and using the method 
of iteration, we develop the higher order solutions that 
give RI =0. Further, the vanishing of all the zero 
average non-linear terms from the first order solutions 
leads to w1 =U1 = Tl =0, and hOI =h1o =LOI =LlO =0 
to satisfy (13). Therefore, from the third order equa­
tions we can write 

(18) 

(19) 

In (18), L is a certain linear differential operator 
involving the PrandtI number Pr=vjK* and the 
dimensionless heat capacity M = (pc)* j (pc )r; an 
overbar denotes the average over a horizontal plane, 
and the subscript 'm' denotes the average over a 
vertical line. Since R2 is always positive, subcritical 
solutions [22J are not possible in the present problem. 
In other words, the steady solution with finite 
amplitude is stable and the bifurcation of conduction 
into convection is super-critical rather than two sided. 

The Nusselt number, Nu, following [22J is 

2(R Ro)]
Nu= 1+ R . (20)[ 

. RNu H(R) . 
The ratIO )' where N Uo IS the value 

RoNuo H(Ro 
of Nu at R = Ro, is plotted in Figure 1 against RjRo 
for M = 1, Pr = 8, and PI = 10 - 3 for various 
approximations, namely, R 2 , R 4 , R6, and R6 (ZANL). 
From this figure, it is clear that R6 has brought the 
heat transport back very near to the R2-curve in the 
range Ro:S;; R:S;; 2.5Ro. One can anticipate that the R6­
curve, like the R4 -curve, will diverge to the right at 
some R greater than 2.5R and the RIO-curve, like the 

s 

5 

o 
ct:: 

'" 3ct:: 

2 

I--

Vo 

.-;;

k 
.. 

" " ;' 

" 

d 
"',,' 'Rs 

'~RS(ZANL) 

~ 
~/ "R2 

#~ .. ' 
~ '( .. , . 

'R4 
--

I I 
o 2 4 6 a 10 12 

H (R) 

H (Ra) 

Figure 1. Heat Transport vs Rayleigh Number for Different 

Approximations for the Case M = 1, Pr=8, and P,= 10- 3 
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R6 -curve, may be more nearly parallel to that for R2 • 

From this figure it is also clear that neglect of zero· 
average non-linear terms increases the amplitude of 
the predicted heat transport. 

3.2 Analysis for Three-Dimensional 
Motion with a Free Surface 

The power integral technique used in Section 3.1 is 
now extended to three-dimensional motion, with the 
object of determining the preferred cell pattern. Since 
the analysis is similar, only the results are presented 
and discussed. The linear solution analogous to (14)­
(16) is Wo= -(2J2)cosnlx cosnmy sinnz, etc., where 
12 +m2 and Ro is given again by (16). 

To determine the first finite amplitude results, R2 is 
computed in a way similar to that for rolls and the 
influence of Pr is found even in the second order 
approximation itself. This R2 , as a function of Pr, PI' 
and 11m, has a triply infinite set of va·lues. The ratio 
11m cannot be chosen arbitrarily and has to be 
determined by the physics of the system. The question 
as to which of the infinite number of values of 11m is 
chosen by the fluid can be answered by considering the 
relative stability criterion [22]. 

By using this value of R 2 , the heat transport 

(WT . « 
2(R _ Ro) IS computed for diuerent values of Pr and 

P,; we find that the convective heat transport is 
maximum at 11m =0 (that is, limiting rectangles) for 
Pr =0.1. As Pr increases to 0.45 and above, the 
occurrence of maximum convective heat transport 
crosses from Ilm=O to 11m 1. By fixing Pr=O.1 and 
changing P" from 10 2 to 10- 3 

, the occurrence of 
maximum convective heat transport changes from a 
limiting rectangle to a square. In particular, we note 
that for small values of PI ( ~ 10- 4 

) the convective heat 
transport is almost independent of Pr, a property 
exhibited by rolls. We also find that the limiting 
rectangle will convect maximum heat only when 
p l-

1 ~ 102 and Pr = 0.45. In all other cases, a square 
cell will convect more heat. In Figure 2, Nu is plotted 
against the filtration Rayleigh number Rl for different 
values of 11m with Pr=1 and P,=10- 2

• We see that 
Nu increases with 11m. The results for the limiting 
rectangle can be obtained easily from the general 
rectangle and are compared with those for rolls. We 
find that the value of heat transport for the limiting 
rectangle differs markedly from that for rolls. In 
general, therefore, we conclude that rolls are preferred 

2·6~----------------------~--------------------~ 

2·4~----------------------+--~---.~----~--~~~ 

2·2 -----------­

2·0r-----------------------·r~-rt~~~-------------~ 

1·8~-----··---·--··---------------4~~-------------------

1·6~-----

1·4r-----------------~~--~--------------------~ 

1·2~--------------~~----~--------------------~ 

1.0~------------~L-L-----L-----L---------~--~~
10 40 50 100 200 SOO 1000 

PI RL 

Figure 2. Heat Transport Curve for the Case of the General Rectangle with Pr=l.O for Different Values of ljm 
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cells rather than squares and limiting rectangles 
because rolls transport more heat. However, if we 
consider only the three-dimensional motion, square 
cells are preferred to limiting rectangles. These 
conclusions are valid only when the viscosity is 
constant. 

3.3 R2 for Hexagons 

The iterative procedure used in the previous sections 
is extended here to study hexagonal plan forms [22]. 
In this case we have 

(21) 

I'll = x)a2 [Ka2 +4) 
{,,2(a2+4)+ ~Jc1 _,,2 Pr- 1(a2+ I)J 

1'12 = 3 + 1) [~(3a2 +4) x 

{,,2(3a2+ 4)+*} C2 - ,,2 Pr- 1(a2+ 1)J 
The heat transport for a hexagonal plan form is 

computed using (WT e2 (Wo To)m and we find that 
it is smaller than that due to squares and greater than 
those due to limiting rectangles. Thus, square cells are 
the physically preferred cell patterns. 

4. NON-LINEAR CONVECTION USING 
THE SPECTRAL METHOD 

The power integral technique discussed in Section 3 
to study the non-linear convection in a porous 
medium is based on a local non-linear analysis. In this 
analysis, to take care of secular and resonant terms, an 
orthogonalization process was built in. This results in 
the consideration of only even modes of interaction 
and remains silent about the cross-interaction of the 
terms of different modes. The spectral method, 
discussed in this section, overcomes this difficulty. We 
just explain the method briefly and try to cover some 
new results which were not dealt with in [41]. 

Introducing the stream function tf;, such that 

otf; otf; 
U= v =-;-,oZ ux 

Equations (8}-(10) take the form 

1) 2 oT 1 
( 

V2 -- V tf;+-=-B (22)
P, ox Pr 

(23) 

where T is a dimensionless temperature distribution, 

o( tf; ,V2 tf; ) o( tf;, T)


and B=~(.-- and H -~-(-- are the momentum 
u x, z) u x,z) 

and thermal advection lacobians. We note that, in all 

the dimensionless parameters, n appears because of 

our choice of the length scale, namely, din. The 

present P, is n 2 times the P, used in Section 3. Since 

we assume stress free boundaries, we have 


(24) 

We consider the spectral representation 

(25) 

T= I T'ICy, C y iexp{i(lax+nz)}, (26) 

where a is the horizontal wave number of the first 

mode, L means summation over all integral lattice 

points in the 1, n-plane, and y is a vector with 

components (1, n). The representations (25) and (26) 

transform (22) and (23) into the spectral domain with 

the orthogonal property: 


(27) 

where S is the surface 0:::;; x:::;; 2nla, - n < z < n, dS is 

the elementary area divided by the total area 4n 2 Ia of 

the region, and st and ct are the complex conjugates 

of Sp and Cp. Equations (12) and (13), using (15) and 

(16), become 


(28) 

IX; laR tf; y= - aH y 

(IX; +IX; IP,)tf; y = aiTy - ;r By for 1"# 0 (29) 

where 

B y = - II (11 n2-12 nd IX ;tf;YItf;Y2 (30) 
)'1 
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and the pairs Y1 +Y2 satisfy the selection rule 

Y=Yl +Y2' that is, 1=[1 +12' n="1 +n2. 

4.1 	 Modal Rayleigh Number 

Elimination of Ty in (29) leads to 

1 !X 2 

(R R)"'y=i Hy +al2~r By, 

where 

is called the modal Rayleigh number for a given mode 
Y= (/,n). R is a continuous function of a2 and, in fact, 
is a hyperbolic profile. The critical R y, denoted by 
(RY)e' and the critical wave number ae are given by 

(Ry)e-_32n12 
[3n 2 - PI1 +"/(n 2 + I/P,)(gn2 + IIP I ) x 

[3n2+ 11P, +(n2+ 11PI)(9n 2 + 11PI)J 

2 1 [ 2ae = 4[2 (n + liP') 

+J(n2 + IIP,)(9n2 + liP,)]. 

These are true for any mode consistent with 
selection rule [41]. The minimum critical Ry and ae 

(32) 

(33) 

(34) 

(35) 

(36) 

the 
are 

obtained for the fundamental mode (1,1) in the form 

[3-~, +J(1+},)(9+},)] (37) 

a:=~ -1- ~, + J(1+ ~,)(9+ ~J1 (38) 

These are computed for different values of P, and the 
results are shown in Tabie 2. 

Table 2. Critical Modal Rayleigh Numbers and 

Wave Numbers for the Fundamental Mode 


Pz ac (Rll )c (Rll)cPz 

00 0.5 6.75 x 10° 
10- 2 0.9303 4.824 x 101 4.761219 
10- 3 0.9905 4.133 x 10 2 4.078581 
10-4 0.9990 4.061 x 103 4.007891 
10- 5 0.9996 4.054 x 104 4.000789 
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We note that when P,-+ 00, the results coincide with 
[46J for viscous flow; for PI 10- 5 they tend to the 
LD model [22]. Note that their Re differs from our Re 
by a factor 11:

4 because of our choice of the length 
scale. For small values of PI( < 10 - 3), the values of 
(R II)jP, and ae tend toward those given by Lapwood 
[7]. 

The variation of Ry against a 2
, for different modes y, 

is computed and the results are shown in Figure 3. 
This figure depicts the interaction of different modes 
for different values of P" 

Rudraiah and Balachandra Rao [41J have 
introduced exp{i(lax +nz)} instead of the apparently 
more natural exp{i(bx + nz)}. The reason for this 
complication is the implied presence of side walls that 
limit b to integral multiples of a basic minimum b( = a, 
say). Thus b= la, where a is fixed and 1= 1,2,3 .... It 
is clearest to refer calculations such as (Ry)e to b. For 
'each value of n, the curve (Ry)c is as indicated in 
Figure 4 for different values of PI' If the side walls are 
nearer to each other, the smallest value of b=a lies to 
the right of the minimum be of (Ry)c' so that, if (Ry)e is 
increased adiabatically from zero, critical conditions 
are reached first at b = a, corresponding to the onset of 
one convection cell that fills the box. If the side walls 
are far from each other the smallest value of b( = a) lies 
to the left of be; indeed, for a large 'box', considered 
here, it may be so far to the left that a, 2a, 3a all lie to 
the left of bc' Now, as (R)c is increased adiabatically 
from zero, critical conditions are reached first for some 
integral multiple, fa say, of the basic periodicity, 
corresponding to the onset of convective motion with 
many cells in the box depending on the value of I. 
Physically this implies that the larger the box, the 
smaller the a, and that more cells can be fitted into the 
box. In the limit of an infinitely large box (a-+O), the 
spacing of modes in the figure tends to zero, and we 
recover a full stability curve. In a physical system, 
however, there are only 1cells and, for odd I, there is 
one more cell turning in one direction than in the 
other. Because of the prominence given to the study of 
finite amplitude convection of odd parity, the even 
parity modes Y= (2,1), (4, 1) . .. are excluded 
from Figure 3. In this sense, the discussion of the 
linear stability problem from Figure 3 in [41J is 
incomplete. Therefore, in Figure 4 we have taken the 
even parity terms. If the separation of the vertical walls 
D of the box is small enough, the Y= (1,1) mode enters 
first when R2 is adiabatically increased from zero as 
shown in Figure 4. However, if D is adiabatically 
increased, a stage will be reached when the Y= (2, 1) 
mode has a smaller (Ry)e as shown in Figure 4. In that 
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case when convection first occurs it will be as a two 
cell pattern. By considering odd parity modes in 
Figure 3, they [41] have ruled out this possibility. We 
note that since the finite amplitude solution is based 
on the linear stability problem, it can describe the 
stability of the system only in the range in which the 
fluid is not unstable to other disturbances. Therefore, 
one has to consider either odd parity or even parity 
modes. In this paper, to study finite amplitude 
convection we consider only odd parity modes. 

4.2 Method of Solution of the Spectral Equation 

The contribution of the non-linear advection terms 
for the onset of convection is considered in this 
section. For this, we expand l/Iy in (33) in the form 

Here, 
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Figure 4. Modal Rayleigh Number vs a2 for Even Modes 

and r is the order or magnitude of an element t/I y' being 
the lowest power of L\. in the expansion. For example, 
since t/lll is, by definition, a first order element we can 
expand it in the form 

t/lll = t/llllL\. + t/l1l3L\.3 +... . (40) 

Then (33), using (39) and equating the coefficients of 
L\.r, takes the form 

The spectral coefficients t/llll' t/l1l3' t/l133' t/l224' and 
t/l244 evaluated at a = ac for different values of P, and 
Pr are shown in Table 3. The table confirms the 
following. 

(i) 	 The values of t/ll11 and t/l113' both of which 
contribute to t/lll' decrease with decreasing P, but 
are independent of Pr. A comparison of these 
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with those of the LD model [22J reveals that t/llli 
differs from that of the LD model whereas t/l113 
has the same qualitative behavior in the two 
models. 

(ii) 	 t/l133' which contributes to the y={1,3) mode, also 
decreases with decreasing P, and is also 
independent of Pr. 

(iii) 	t/l224 and t/l244 decrease numerically with decreasing 
P, and increasing Pro 

(iv) 	 In general, the effect of PI is to decrease the 
spectral elements for a given Pr, thus damping the 
convective system. 

4.3 Spectral Representation of the Heat Transport 

The Nusselt number in this case takes the form 

(42) 

where y = (0, n) and ny ranges over positive and 
negative integers. We expand the spectral element in 
(42) in powers of the parameter L\. in the form 

1'02 = 1'022 L\.2 + T024 L\.4 + 1'026 L\.6+ ... 

l'04 = 1'044 L\.4+ 1'046 L\.6+ ... , 
where l'Onp is a constant, being the coefficient of L\.P in 
the power series expansion of the mean temperature 
spectral element TOn' Since Ti' appear in even powers 
of L\., it is more convenient to use a new parameter e 
defined by 

Rll 

so that R = (l +e)R ll . 

Now, 

where 

Then 

Nu=ao+a2.e +a4e2+... , 
ao = 1, a2 -41'022' 

a4= -a2-4Rll(T024 +21'044)' 

_ 1 _ a2 

T022 = -2" T024 = -16A' 

a2(a 4 + lOa 2 +41 )
1'044= 16 {a 2+1)2A 

10 2 4
A=91+-+2(15+1/PI )a +3a . 

PI 

Nd O) = a = 1, NU(2) = a +a2e,o o 
2Nu(4 )=ao +a2e +a4e . 
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Table 3. Values of Spectral Coefficients for Different Values of PI and PI' 

PI Pr IjJ 111 IjJ 113 IjJ 133 1jJ224 IjJ 244 

and 
(ae) 

10- 2 0.025 3.791 x 10- 1 2.581 X 10- 3 1.722 X 10- 4 7.700 X 10-4 -7.058 x 10-- '5 

(0.865) 0.687 3.791 x 10- 1 2.581 x 10- 3 1.722 X 10- 4 8.210 x 10- '5 -4.558 X 10- 6 

8.0 3.791 x 10 1 2.581 x 10- 3 1.722 x 10- 5 5.835 X 10- 5 -2.279 X 10- 6 

3.791 X 10- 1 2.581 X 10- 3 1.722 X 10- 5 5.612 x 10-:; -2.065 X 10- 6 

0.025 3.569 x 10- 1 4.488 x 10- 4 3.278 x 10-'5 2.413 x 10- '5 3.273 X 10- 6 

(0.981) 0.687 3.569 x 10- 1 4.488 X 10- 4 3.328 x 10- 5 2.510 X 10- 6 -2.110 x 10­
8.0 5.569 X 10- 1 4.488 X 10- 4 3.278 x 10- '5 1.764 X 10- 6 2.053 X 10- 7 

00 3.569 X 10- 1 4.488 X 10- 4 3.278 X 10- 5 1.694 X 10- 6 -9.538 X 10- 8 

10- 4 0.025 3.539 x 10- 1 4.861 x 10- '5 3.596 X 10- 6 3.524 X 10- 8 -4.127 X 10- 11 

(0.998) 0.687 3.539 x lO-1 4.861 x 10- '5 3.596 X 10- 6 3.653 X 10- 9 -2.66 X 10- 12 

8.0 3.539 X lO-1 4.861 x lO- '5 3.596 X 10- 6 2.563 X lO-9 1.327 X 10- 12 

00 3.539 X lO-1 4.861 x lO- '5 3.596 x lO-6 2.460 x lO-9 - 1.202 x 10 - 12 

The variation of Nu with a 2 is shown in Figure 5. We flow results are also shown. We see that, in the D LB 
see that the heat transport is less than that in the LD model discussed here, the maximum value of NU(2) 

model. The second order Nu is given by varies with PI' whereas in the LD model and in pure 
viscous flow it is independent of PI because a isc 

independent of PI' We also see that for small values of 
PI the results of the D LB model tend to those of the 
LD model whereas for large values of PI they tend to 

Figure 5 presents Nu computed for R = L6R and pure viscous flow. This proves that the results of the c 

2Rc and for different values of PI' In this figure, for the D LB model are more general and the other two cases 
sake of comparison, the LD model and pure viscous can be obtained with a proper limiting process. 

4r-------~~------~-----------------------------+--------~ 

o - Darcy case 

- - - V iscous case 

3~--~~~~------~---------4---------+---------+--------~ 

2 3 5 6 

8 2 

Figure 5. Variation of Nul 2
) with a2 for R=1.6Re,2Rc 
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5. NUMERICAL MODEL USING THE 
GALERKIN TECHNIQUE 

The non-linear convection discussed in the previous. 
sections based on analytical procedures is restricted to 
finite amplitudes. In other words, the results are valid 
only for restricted values of R - Re' 

We develop in this section, following Friedrich and 
Rudraiah [24,47J, a numerical model based on the 
Galerkin technique to discuss large amplitude 
convection in a coarse porous layer of finite thickness, 
but of infinite horizontal extent. We consider only 
two-dimensional motion. In the Galerkin technique 
used here, the stream function and temperature are 
developed in the form: 

M IV 

tjJ = L L amn sin mnaex sin nnz 
m=1n=1 

M IV (44) 
T = L L bmn cos mnacx sin nnz 

m=1n=1 

which satisfy the conditions (24) and symmetry 
conditions 

a2 tjJ aT 
ax2 =0, ax =0 on x =0, n/a (n = 1,2, ... ). (45) 

These conditions are all verified by the trial function 
(44). In the Galerkin technique, the residual is formed 
by means of the trial functions and we integrate over 
the whole volume. From (8) to (11), the set of ordinary 
differential equations for the amplitudes amn and bmn of 
the harmonic components is derived under the 
assumption of two-dimensional motion: 

Pr2 2 2 2 PrRap b
Prn (p a +q )apq - ( 2 2 2) pq

n p a +q 

n2a p-lq-l 

+ 4(p2a2+q2),n~ln~1 (mq-np)[(p m)2a 
2 

+ (q n) 2 Jamn a p - m, q- n 
M IV 

+ 	 L L (mq-np)[(p-m)2a 2+(q n)2 
m=p+l n=q+l 

- (m 2 a 2+n2)Jan_p,n-qamn 

M q-1 


2+ 	 L L [p(n-q)+mqJ [m 2a 
m=p+1 n=1 

+ (q - n)2 Jam- p,nam,q-n 
M IV 

+ 	 L L [q(m-p)+npJ [(m_p)2a2+n2 
m=p+l n=q+l 

+ 	 L
M 

L
N 

(np-mq) X 

m=p+l n=1 


p-l IV


+L L [p(q n) mqJ X 

m==1 n= q +1 


p-1 IV


+L L (np mq) X 

m=1 n=q+l 


[{p - m)2 a 2+(n - q)2 Jamn ap-m,n-q 

(l~p~M, l~q~N), (46) 

db 
---I!!l.= -n 2(p2 a2+q2)b -napadt 	 pq pq 

1 ) 2 p-lq-l
+ ( 1 - -(\0 n aLL (np

2 4 m=On=1 

+L
M 

L 
N 

(np-mq)amnbm-p,n-q 
m=p n=q+l 

M IV 

+ L L [p(q - n) - mqJam-p,nbm,n-q
m=p+1 n=q+l 

+L
M 

L 
N 

[p(q-n)-mqJam,n-qbm p,n 
m=p n=q+l 

M IV 

+ L L (np-mq)am-p,n-qbmn
m=p+l n=q+1 
p-1 N

+L L [p(n-q)+mqJap-m,nbm,n-q
m=O n=q+l 

p-l N


+L L (mq-np)qp-m,n-qbmn

m=O n=q+l 

M N 

+ L L [q(m-p)+npJam,q-nbm-p,n 
m= 1 n= 1 


M q-l 

+ L L (mq np)am-p,q-nbmn

m=p+l n=1 

(O~p~M,I~q~N). (47) 

We truncate the sums and calculate the systems with 
a maximum number of modes k = M +N not larger 
than 12. The non-linear terms in (46) have not been 
written explicitly for want of space but are included in 
the computation. 

5.1 Numerical Procedure 

Because of the excessive length of (46) and (47) for 
k> 3, a special FORTRAN routine has been written 
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with the purpose of generating the right-hand sides in 
a form most suitable for rapid integration. The 
analytical solutions discussed in the earlier sections 
provide a set of initial conditions for the coefficients. 
Three different integration codes are used: (i) the first 
code ODE [48] uses a modified divided difference 
form of the Adams-PECE formulas and local 
extrapolation, in order to improve absolute stability 
and accuracy. These formulas consist of an Adams­
Bashforth predictor of order k and an Adams­
Moulton correction of order k + 1. The code controls 
the local error per unit step; (ii) the second code, 
RKF45, uses Fehlberg's fourth-fifth order Runge­
Kutta method; (iii) the third code, RKF48, is an 
adaptation of the implementation of Fehlberg's 
fourth-fifth order Runge-Kutta method to more 
accurate seventh-eight order Fehlberg's formulas. All 
three codes allow for the specification of relative and 
absolute error tolerances for error tests and choose 
their own integration steps. The required critical wave 
number is found from solving the sixth order 
polynomial (17) numerically. While searching for 
steady state solutions we find that certain representa­
tions and too high Rayleigh numbers produce chaotic 
solutions. The effect of viscous force on their 
appearance is worked out. Table 4 compares the Nu 
obtained from different codes. 

Table 4. Comparison of Three Codes for P, = 10 - 3, RjRc = 6, 
and Pr=6.8 (Water) 

ODE RKF45 RKF48 

Nu 3.980122 3.980122 3.780122 
CP seconds 42.4 46.6 107.0 
Number of 
steps 5 5 5 

The three codes converge towards the same Nu, 
with the same number of integration steps, when 
successive Nu differ by less than 10- 6

• Then, a steady 
state of the solution was defined through the criterion: 

INu(t+At)-Nu(t)1 <10- 6 

In terms of the coefficients, Nu takes the form 
N 

N u = 1- 1C I nbOn' 
n=1 

Since the code ODE turned out to be most effective 
to solve such problems, it has been used during all 
further calculations. We have varied the maximum 
number of modes in Figure 6 in order to find out how 
well different k represent reality. For k = 6 and 8, 
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solutions exhibited a random behavior, whereas they 
behaved well for k = 10 and 12. An alternative way of 
producing chaotic solutions is to choose Rayleigh 
numbers larger than 6R e • Figure 7, illustrates this 
effect for a system of order 120 (k = 12) at R = lORe' 
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The streamline and isotherm patterns obtained from 
the numerical technique are in close agreement with 
the analytical results obtained in the previous sections. 
Further, we are able to recover the special cases of 
purely viscous flow and a purely densely packed 
porous medium of the LD model, both of which have 
been studied in the literature. We note that further 
extensive studies are necessary to find stable and 
unstable critical points for large representations. 

6. CONCLUSIONS 

Analytical and numerical procedures are used to 
study non-linear convection in a porous medium of 
porosity close to unity with convective acceleration 
and viscous force. The analytical procedure is based 
on the power integral technique (hereafter called PIT) 
and the spectral analysis technique (SAT). We find 
that PIT is useful to study the detailed cell pattern and 
the effect of Prandtl number on convection, but it is 
silent about the cross-interactions of the different 
modes. SAT overcomes this deficiency through the 
modal Rayleigh number. Further, SAT predicts the 
possibility of the existence of a steady solution with 
two self-excited modes in certain regions and the 
existence of convection as a two-cell pattern, which 
could not be brought out from PIT. Another 
important difference between the two techniques is the 
evaluation of the averaged temperature profile. 
Although these techniques are used in this paper under 
the assumption of small R - R e , that is, small 
temperature gradients, the SAT can also be used for 
large values of R - Rc by expanding the spectral coeffi­
cients using a suitable parameter [49J, (R - Rei R)1/2, 
say. This is not possible in PIT. The effect of 
permeability, in both the techniques, is to contract the 
cells and to inhibit"the onset of convection. This effect is 
analogous to that of a magnetic field on convection [50] 
in magnetohydrodynamics. 

The numerical techniques, ODE, RKF45, and 
RKF48, employed in this paper take care of large 
amplitudes, that is, large values of R - Re' We find that 
our analytical results are in close agreement with the 
numerical data for small values of R - Re' In 
particular, it is shown that certain representations and 
too high Rayleigh numbers produce chaotic solutions. 
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