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ABSTRACT 

A non-orthogonal curvilinear coordinate system is used to formulate the 
boundary-value problem associated with the sound field induced by the motion of a 
monopole point source in a gas-filled general twisted tube with a slowly varying 
circular section. A solution scheme is presented for two cases of tube geometry. 
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ON THE SOUND FIELD DUE TO A MOVING 
SOURCE IN A GAS-FILLED GENERAL TWISTED 

TUBE WITH A SLOWLY VARYING 
CIRCULAR SECTION 

1. INTRODUCTION 

The sound field induced by a monopole point source moving in an infinite inviscid compressible fluid is well 
known [lJ in the literature of linear acoustics. Problems associated with sound sources moving in the vicinity of 
solid boundaries have also been investigated. However, no formulation to date includes the effects of curvature, 
torsion, and section variation on the motion induced by a sound source in a gas-filled general twisted tube. 

It is the purpose of this paper to use the non-orthogonal curvilinear coordinate system [2J to formulate the 
boundary-value problem associated with the sound field induced by a monopole point source moving in an 
infinitely long general twisted tube with slowly varying circular section which is filled with an in viscid compressible 
fluid. A solution scheme is presented which involves expansions in terms of two and three small parameters for the 
two cases of tube geometry considered. 

2. FORMULATION OF THE PROBLEM 

We denote the interior and boundary of an infinite tube in R3 by D3 and oD3, respectively. The tube orientation 
is specified by a curve L (Figure 1) which has a prescribed unit tangent vector tl (~l) where ~l measures arc length 
along L from the origin 0 to the point 0'. The point 0' is the center of the circular section denoted by D2 uoD2 

which is normal to L and has radius a(~l). The unit tangent vector tl is given by 

COS 0 ) 
t 1 == sin 0 sin e/> , (2.1) 

( sin 0 cos e/> 

where the angles 0 and e/> are prescribed twice differentiable functions of ~l. We will also need the two unit vectors 
t2 and t3 where 

(2.2)t2 == (co~~ ),

-SlUe/> 

and 

-sinO ) 
t3== cos 0 sin e/> , (2.3) 

( cos 0 cos e/> 

respectively. The vectors t i , i = 1, 2, 3, are then mutually orthogonal. 

It has been shown [lJ that a non-orthogonal curvilinear coordinate system can be constructed for the tube. The 
coordinates are denoted by ~i, i = 1, 2, 3, where =0 on oD2 and ~2 = 00 at 0' for all values of ~1 and . The 
transformation from Cartesian coordinates Xi, i = 1, 2, 3, to the curvilinear coordinates ~i, i = 1, 2, 3, is given by 

(::) =T,(W'T2(O)-' (n+ (::t', (2.4) 
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Figure 1. Geometry of the Tube 

where 

cos ¢ 	 (2.5)TI (¢)~ (~ 0 -s~n¢) , 
sin ¢ cos ¢ 

0COSB SinB) 
T2 (8) 	 1 o , (2.6) 

0 cos ()-s~nB 
and 

(2.7) 

The point 0' is represented by the vector in (2.7) and 
v+ iu = a(~1 )e.;2 +i~3. (2.8) 

Also, O'v, O'u are the axes of a Cartesian frame of reference which coincide with the unit vectors t2 and t 3, 
respectively, and the coordinate ~3 measures the angle between 0'v and 0' P (Figure 2). 

In what follows it is convenient to employ the transformation 

(2.9) 

where X'" J:r-I 

w(~ I )d~ I, w( ",.p cos B) is the rate at which the frame 0' v, 0'u rotates about L as e varies, a nd the 

dot notation represents differentiation with respect to ~ 1(or ~! 1). The angle measures the angle between 0'P and 
i( =cos Xt2 +sin xt 3 ) where the vector i does not rotate about L as ~'l varies [2]. It can readily be shown that the 
components of the covariant and contravariant metric tensors associated with the transformation given by 
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Figure 2. Circular Section of the Tube 

Equations (2.4)-(2.9) are given by 

gIl a2e2~/2 + (1- Kae~/2 sin(x + ~/3 +y))2, (2.10) 
• 2~2g12 =g21 =aae , (2.11) 

g13 =g31 =0, (2.12) 

g23 =g32 =0, (2.13) 
2 2;/2

g22=g33=a e ~ , (2.14) 

and 

11 J-2 4 4;/2
9 = a e " , (2.15) 

g12 =g21 = -J 2a3ae4~2, (2.16) 

g13 =g31 =0, (2.17) 

g23 =g32 =0, (2.18) 

g22=J 2a2e21;/2{a2e21;/2+[1 KaeI;/2sin(x+~/3+y)]2}, (2.19) 

g33 =J 2a2e21;/2[1 Kael;/2 sin(x + ~/3 +y)]2, (2.20) 

where J:=a2e21;/2[1_KaeI;/2 sin(x+~/3+y)] is the Jacobian of the transformation given by Equations (2.4) through 
(2:9), K(~tl) is the curvature of L, and the angle y is defined by {} = Kcos y and 4> sin e= Ksin y. 

For a monopole point source moving parallel to L along the curve ~/2 ~~2, ~/3 = ~~ with uniform velocity U, the 
velocity potential 'P associated with the fluid motion induced in the tube is governed by the equation 

~ a ( ij a'P) 1 a2'P - Ut)b(~/2-
(2.21)J Jg a~/j J 

In Equation (2.21), q(t) is a prescribed function of time t, b represents the Dirac delta function, and the constant cis 
the speed of sound in the gas. 
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The boundary condition associated with Equation (2.21) is 

(2.22) 

Using the expressions for J and giJ, i,j 1,2,3, together with the relation y= -1:-(1)3, where 1:(~'1) is the torsion of 
L, we find that Equations (2.21) and (2.22) can be written in the form 

(2.23) 

and 

(a'2e2~12+b21) a'l' . 2~12 a'l' 
aae a~!l =0 on aD 3 , (2.24) 

where b
1 

= 1- Kae~12 sin /3, b2= Ksin /3 - K1: cos /3, and /3 = X+ y + ~'3, This completes the formulation of the problem. 

3. SOLUTION SCHEME 

Let Q= maxa '(;1«1) maxKQ, and 1]1 ~!l/Q. We can write KQ (;1/1{1]1), where/1{1]1) is 0(1), Also, if 
_ 00 < .;,1 < 00 _ 00 < ~, 1 < 

1:Q is 0(1) for oo<~'l <00, we can write1:Q=/2{1]I), where/2{1]1) is 0(1), Since the tube section is slowly varying 
we can write a = Q(l + (;3/3(1]1» where 0< (;3 < 1 and 13{1] 1 

) is 0(1). If we set 1]2, 1]~ = ~'2, ~~2; 1]3, 1]~ ~'3, ~~3; t= Ut/Q, 
q(i)=q(t)/UQ2, 'I' = UQ'i', and c=c/U then Equations (2.23) and (2.24) can be written (after conveniently dropping 
the bars on 1, q, q:;, and c) in the form 

'1',11 +V2'1' 1 'I'.1l-q(t)e-2t/20(1]I_t)O(1]2_1]~)O(1]3 1]~) 

+M 2('1') 
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+', '31J3e"[3SP'¥.11 +3s~V''I' - 2M, (l13I)spe"'1'.12 

+3[f2 cp-M1(lfll)spJ'P.1-Ml(lf31){[Ml(lf3.11)-Ml(lfll)Jsp 

"'f/2'P (9s p
+ f 2cpJ e ,2+ M 2 'P)-7'P·tt 

H, 'U,I~e"~sp '1'.11 + Mr(l13I)spe"''I'." - 4M, (f 1 31)s~e'" '1'.12 

+ 3[f2Cp- M 1 (lfli)SpJ'P. 1 + 2M 1 (I f3 j){sfJ[M1(I f~ \)- M 1(lf3,11) 

. 2 9sp ]+ M 1(I f II)J - f 2cp}e'f/ 'P,2 -7 'P", 

+', 'UJle" [SP['I'.11 +Mr(1f3I)e"''1'.22 

- 2M 1 (I f31)e'f/2'P,12J + [f2 Cp - M 1(I fl I)SfJJ'P.l 

The Arabian Journal for Science and Engineering, Volume 9, Number 2. 130 

http:Mr(1f3I)e"''1'.22
http:SP['I'.11
http:l13I)spe"'1'.12
http:31J3e"[3SP'�.11


J. C. Murray 

(3.1 ) 

and 

\{I,2 = 2e I f I et 
/ 
2 

Sp \{I, 2+e3f 3 M I (If31)e,,2 \{I, I 

£i fi e2 ,,2 S~ \{I,2 +2£1 83fl f 3 et 
/ 

2
Sp \{I,2 +e~f~M 1(I f 31)e t / 

2
[\{I, 1 

- M 1 (I f 3!)e,,2 \{I,2J ­ 2£i £3 fi f 3 e2,,2 s~ \{I,2 

2 2f2f2 2,,2 2 \lJ aD-£1£3 1 3e Sp T,2 on 3' (3.2) 

where cp,sp=cos/3; sin/3,()'1 a( )/01]1; ()'j=e- 112 a( )/01]j, j 
M l () (In( )),1' M 2( )=e-,,2(sp( ),2+ Cp( ),3)' and (),t o( )/ot. 

3, 

For sufficiently small values of £1' £3' we will seek the solution of (3.1) and (3.2) in the form 

00 

\{I = I Gil £~ \{Ii~), i+ k = 11. 
n=O 

The system of boundary-value problems for \{liZ), 1120 is 

(3.3) 

1 (0)
\{IOO,tt (3.4) 

together with 

(3.5) 

\{I(n) +V2\{1(n)_~\{I(n) _$(n-l)
ik, 11 ik C2 ik, tI - ik , 

ki + 11, 11 2 1, (3.6) 

w here <I>~~ - 1) and xl~ - I) are given by 

(3.7) 

mIn-I) f t/2[ tTl(n 1) +3 n2\1J(n 1)+[f
'Vik = Ie Sp T i-lk.ll SpY Ti-lk 2Cp 
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f 2 [UJ(n-2) +M2(lf I) 2q2uJ(n-2) 2M (If I) 112\TJ(n-2)
- 3 T ik - 2,11 1 3 e T ik - 2.22 - 1 3 e T ik - 2, 12 

q2 1 l.JI(n-2) ]+ M 1(I f 31)[2M 1(I f 3 D- M 1 (I f 3,1 DJ e l.JIlZ - ~~ 2 ik-2,lt 

'12 [3 UJ(n-2) 3 v2uJ(n-2) 2M (If I) '12\TJ(n-2)+ f 1 f 3 e SpTi-lk-l,ll + Sp Ti-1k 1- 1 3 spe Ti-lk-1,12 

2f2f 2'12 [3 v2 \TJ(n-3) +2M (\TJ(n-3) ) 6sp m(n-3)
3 e1 Sp Sp Ti-2k 1 2 Ti-2k-1 -7Ti-2k-l,tt 

f 2
3 e112[3 UJ(n -3) + M2(1 f I) 2'12uJ(n 3)+ f 1 Sp T i-lk-2,11 1 3 spe Tj-1k-2,22 

9sp m(n - 3) ] 
-7 Tj-lk-2,tt 

+ f 3f 3'12 2 [3 v2 \TJ(n-4) + 3M (UJ(n-4) ) 5sp m(n-4) ]
13e Sp Sp Ti-3k-l 2 Ti-3k-1 -7Ti-3k-l,tt 

+f f 3 112[ [UJ(n-4) + M2(lf I) 2'12uJ(n-4)
1 3 e Sp T j-lk-3,1l 1 3 e Ti-lk-3,22 

l.JI<n-4) ) 18sp m(n- 4)+ 2M2 ( j-2k-2 -~ Ti-2k-2,rr-
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(3.8) 

and 
(n 1) 112 Hl(n 1) f M (I f I) 112 Hl(n -1)Xik 2fIe Sp I i-lk,2+ 3 1 3 e Iik-l,1 

f 2 2112 2 Hl(n 2) +2f f 112 Hl(n - 2) 
- Ie Sp I i -2k,2 1 3 e Sp Ii-lk 1,2 

M (I f l)e ll2 'P~n - 2) ]1 3 Ik - 2,2 

-2f2f e 2112 s2 'P(n-3) _f2f2e2112s2'P(n-4) (3.9)1 3 P j-2k 1,2 1 3 P i-2k-2,2 

with 'P~':12' il +i2 =m, and all derivatives of 'P~t:12 identically zero when il <0 or i2 <0. 

Equations (3.4) and (3.5) can be considered as the equations in the cylindrical coordinate system (1]1,1]2,1]3) with 
ll2 ll2scaling factors 1, e , e which govern the motion due to a monopole point source moving in a gas-filled infinitely 

long straight tube with uniform circular section. The solution of this boundary-value problem can be obtained by 
standard methods when the function q(t) is prescribed. The effects of tube curvature, torsion, and section variation 
are exhibited in the system of boundary-value problems given by (3.6) and (3.7). For n ~ 1, each of these boundary­
value problems governs the motion induced by a source function <I>l~ -1) and a prescribed boundary velocity X)~ 1) 

in a gas-filled infinitely long straight tube with uniform circular section. Again, these can be solved by standard 
methods. 

If in addition the torsion of the tube is small, IrIQ«1 for -OO<~'I<OO, we can write rQ=c2f2(1]I), where 
8 2 maxlr IQ« 1 and f2(1] 1 

) is again 0(1). Equations (2.23) and (2.24) now take a form which can be obtained from 
(3.1) and (3.2) by replacing f2 throughout by 8 2 f2' 

In this case we seek a solution of the form 

i+j+k=n. (3.10) 

The system of boundary-value problems for 'PljL n ~O, is 

2 1 (0) 2 2'P~oJo 11 +V' 'P~oJo 'POOO,tt = q(t)e 211 b(1]1 - t)b(1]2 -1]0)b(1]3 1]~), (3.11) 

(3.12) 

together with 

'P(n) + n2lTl(n) 1 (n) _ (n-l)
ijk,ll v I ijk 'Pijk,tt-<I>ijk' i+j+k=n, n~l, (3.13) 

lTl(n) - (n-l) ;:)D " k- > 1 
I ijk, 2 - Xijk on u 3' l +J + - n, n - . (3.14) 
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We obtain <Il~jk-1) in terms of 'Ps by the following prescription: in (3.8) replace <Il}Z-l) by <Il~jk-1) and replace each 
'P(a) by'P(a? except that iff occurs in the coefficient of'P(a) replace it by 'P(a.-1) To obtain X~~-l) replace X~n-1) by

py Pn' 2 py p}-1y' 'l}k lk 

X~~ -1) and each 'P(a) by 'P(a~ in (39)uk py PlY •• 
The method of solution of the resulting boundary-value problems is formally the same as in the case -rQ = 0(1). 

In [3] we have discussed the Dirichlet boundary value problems associated with a general twisted tube with 
uniform cross-section. There we obtained the Green functions associated with the following four problems: 

(i) tube of finite length, 
(ii) closed tube of finite length, 

(iii) semi-infinite tube, 
(iv) infinite tube. 

Perhaps the ideas contained there could be extended in our present case. Furthermore, special forms of q(t) in 
Equation (2.21) such as that for the harmonic motion of a pulsating sphere (q = qo cos rot) could be treated (see, for 
example, [1]). 
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