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ABSTRACT 

We consider the scalar integro-differential equation 

x' = A(t)x +Lqt, s)x(sjds, 

where A and C are continuous, and give necessary and sufficient conditions for 
the stability of the equation without A(t) being necessarily bounded. 
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1. INTRODUCTION 

We consider the integro-differential equation 

x' = A(t)x +I C(t, s)x(s)ds, (1.1) 

where A(t) and C(t, s) are real-valued functions 
continuous for 0 ~ t < 00 and 0 ~ s ~ t < 00, respectively. 

Many stability results in differential and integral 
equations have been obtained by constructing 
Liapunov functionals. Such functionals for (1.1) require 
that A(t) be negative. In order to avoid this restrictive 
condition, one chooses a continuous function G(t, s) 
with 

oG(t, s)/ot =C(t, s) (1.2) 

so that (1.1) takes the form 

X' =Q(t)x +dtd f.'0 G(t, s)x(s)ds, (1.3) 

where 

Q(t) A(t)-G(t, t). (1.4) 

We intend to study stability of solutions of (1.1) via 
the construction of Liapunov functionals for (1.3). This 
approach turns out to be very fruitful and has led to 
several interesting results. In [1J, we obtained the 
following characterization of stability of the zero 
solution of (1.1). 

Theorem 1. Let G(t, s) and Q(t) be defined by (1.2) 
and (1.4). Suppose there are constants Q1' Q2' J, and 
R with R < 2 such that 

(i) 0<Q 1 ~ IQ(t)1 ~Q2' 

(ii) I IG(t, s)lds';;} <l, 

and 

(iii) I IG(t, s)lds+ rIG(u, t)lduS; RQ l/Q 2 

for 0 ~ t < 00. Furthermore, suppose there is a 
continuous function h: [0, (0)--+ [0, (0) with 
IG(t, s)1 ~ h(t - s) and h(u)--+O as u--+ 00. Then the zero 
solution of (1.1) is stable if and only if Q(t) < O. 
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It was shown in [IJ that Theorem 1 includes a result 
of Brauer [2J when A( t) =A = constant and 
C(t,s)=C(t-s). However, we quickly observe that 

when C(t,s) C(t-s), G(t,t)=G(O) and hence, by (1.4), 
condition (i) of Theorem 1 requires that A(t) be 
bounded. It is therefore desirable to relax the 
boundedness condition on Q(t) so that (1.1) may be 
stable while A(t) is unbounded. The purpose of this 
paper is then to give a new characterization of stability 
of (1.1) under milder conditions on A(t) and C(t, s) 
than that of Theorem 1. 

To define a solution of (1.1) we require a to;;:::O and 
a continuous initial function </J: [0, to] --+ R. Then a 
solution of (1.1) is a continuous function x: [0,(0)--+ R, 
denoted by x(t,to,</J) or simply x(t), which satisfies 
(1.1) for t~to and such that x(t,to,</J)=</J(t) for 
O~t~to' Under the above hypothesis, (1.1) has a 
unique solution. Details on existence, uniqueness, and 
continuation of solutions are to be found in Driver [3]. 

The following definitions are natural extensions of 
stability definitions for ordinary differential equations. 
They have been used in integro-differential equations 
as well as in delay-differential equations; see Driver [3J 
and Miller [4J. 

Definition 1. The solution x =0 of (1.1) is stable if 
for every 8>0 and every to ~O, there is a b=b(8, to»O 
such that 1</J(t)l<b on [0, toJ implies Ix(t,t o,</J)1<8 
for t~to' 

Definition 2. The solution x=O of (1.1) is uniformly 
stable if it is stable and the b in the definition of 
stability is independent of to' 

Definition 3. The solution x =0 of (1.1) is asympto­
tically stable if it is stable and for every to ~ 0 there 
is a b=b(to»O such that 1</J(t)l<b on [O,toJ implies 
x(t,to,</J)--+O as t--+oo. 

Definition 4. The solution x =0 of (1.1) is uniformly 
asymptotically stable if it is uniformly stable, the b in 
the definition of asymptotic stability is independent of 
to, and for each '1 > 0 there is a T = T('1) > 0 such that 
1</J(t)l<b on [O,toJ implies Ix(t,t o,</J)I<'1 for 
t;;:::to+T. 

When a function is written without its argument, it 
is understood that the argument is t. 
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2. STABILITY 

Let ex(t) be a real-valued function continuous on 
[0, (0). For each SE[O, (0), we let H(t,s) denote the 
solution of the differential equation 

aH(t, s)/at ­ a(t)H(t, s) C(t, s) (2.1) 

satisfying 

H(s, s)= A(s) - exes) (2.2) 

with O::;;s::;;t. We then write (1.1) as 

x' = ~(t)x-~(t)1H(t, s)x(s)ds 

+dt 
d Jor

t 

H(t, s)x(s)ds (2.3) 

and consider the functional equation 

V(t, x(·)) = Ix LH(t, S)X(S)dsl +v JI/1I~(S)' 

-l' 1~(u)IIH(u, s)ldu }X(S)ldS, (2.4) 

where v and fl are arbitrary constants. 

The derivative of V(t, x(·)) along a solution 

x(t)=x(t, to' cP) of (2.3) satisfies 

V;'.3)(t'XO)=~(t+-LH(t,S)X(S)dSI 

+vfll ex(t ) II x I 

v J~ la(t)11 H(t, slllx(s)1 ds. (2.5) 

Theorem 2. Let H(t, s) be defined by (2.1) and (2.2), 
and suppose that for some ex( t)::;; °there is a constant 
J such that 

(i) IIH(t,S)ldSo>J<l 

and 

(ii) r1~(u)IIH (u, t)ldu 0> 1~(t)l· 
Then the zero solution of (1.1) is stable. 

Proof. Since ex(t)::;;O, then it follows from (2.5) that 

V;,.3)(t,XO)O> 1~(t){IXI LIH(t,s)llx(s)lds ] + 

W. E. Mahfoud 

+ vfll ex(t) II x I 

-vla(t)1 LIH(t,slllx(s)lds. 

Thus, 

V ~ 2.3) (t, x(·)) ::;; (vfl 1) Iex( t) II x I 

+(1 v)I~(t)1 LIH(t, s)llx(s)lds. (2.6) 

By taking V=fl=l, we have V~2.3) (t,x('))::;;O and hence 

V(t, xO) o>V(t o, q{)) 14>(to) - rH(to, s) 4>(S)dS I 

+ r [I ~(s)l-r la(u)IIH (u, s)ldu }4>(S)lds 

0> I4>(to)I+ LO IH (t 0' slll 4>(s) I ds 

+ f[,a(sl'-r la(u)llH(u,slldu }4>(S)ldS 

for all t 2 to' 

If 14>(t)1 <b for O::;;t::;;t o, then by (i) and the above 
inequality we have 

def 
Vet, x('))::;;b[l +J +R(to)] = bN 

where 

R(to)= r[la(s)l-r 1~(u)11 H(u, slldu}s. (2.7) 

On the other hand, (2.4) and (ii) imply that 

V(t, x(·));o, IX(t) H (t, SlX(S)dSIL 

?: Ixi IIH(t,sl"X(Sl'ds. 

Thus 

Ix(tll o>~N + l IH(t,S)"X(Sl'dS (2.8) 

for all t 2to- Now, for any 8>0 and to 20, we choose b 
so that 0<b<min{8,8(1-J)/N}. As IcP(t)l<b<8, 
then either Ix(t)1 < 8 for all t 2 to or there is a tl > to 
such that Ix(t1)1 max Ix(t)l. In the latter case we have 

by (2.8), 

Ix(tIII o>~N+11 IH(tl' sll I x(sl Ids 0> ~N+oj <f., 

a contradiction. Thus, x =0 is stable and this com­
pletes the proof. 
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If we take et(t)=O in Theorem 2, we obtain the 
following result. 

Corollary 1. Let H(t, s) satisfy 8H(t, s)/8t =C(t, s) 
and H(s, s) = A(s). If there is a constant J such that 

I IH(t,s)lds:s:J <1, 

then the zero solution of (1.1) is stable. 

Remark. By the use of the function H(t, s) as defined 
by (2.1) and (2.2) the conditions of Theorem 2 on the 
kernel C(t, s) become much weaker than the conditions 
of Theorem 1. This can be seen from the following 
example. 

Example. For A(t)= -t and C(t,s)= -3/(t-s 
+ 1)4 +(t + l)/(t - s+ 1)3, 'we choose et(t) = - t -1 so that 
H(t,s)=1/(t-s+l)3 satisfies (2.1) and (2.2). Further­
more. 

f: IH(t,s)lds=1[\-(t+ W2] <1 
and r loe(u)IIH(u,t)ldu= r (u+ l)(u-t+ 1) 3 du 

t 
1 +2~let(t)l. 

Thus, all the conditions of Theorem 2 are satisfied and 
hence the zero solution of (1.1) is stable. However, 
Theorem 1 fails to apply as G(t, s), defined by (1.2), is 
of the form 

G(t, S)=(l-S+ 1)-3 -(t-s+ 1)- t 

s-it -s+ 1)-2 +h(s) 

which is not integrable for any choice of h(s). 

Theorem 3. Let H(t, s) be defined by (2.1) and (2.2) 
and suppose there is a continuous function 
h:[O,ooJ~[O,ooJ such that IH(t,s)1 ~h(t-s) with 
h(u)~O as u~oo. Furthermore, suppose there are 
positive constants a, J, and p< 1 and a function et(t) 
such that 

(i) let(t)1 ;;:::a, 

(tt) I IH(t,s)lds:S;J <1, 

and 

(iii) r 1a(ulllH(u, t)ldu:S; J.! 1a( t) I· 

Then the zero solution of (1.1) is stable if and only if 
et(t) < O. 

Proof. We need only prove the converse. Suppose 
that et( t) > O. Then, by (2.5), we have 

V;2.31(t,X(.»;"oe(t{IX 1- I IH(t,s)llx(s)lds ] 

+vJ.!a(t)lxl- vI a(t) 1H(t, s)llx(s)lds. 

Thus 

V~2.3) (t, x('» ;;:::(vp +1) et( t)1 x I 

-(v+ l)oe(t) I IH(t, s)llx(s)1 ds. 

Choose v = -1 to obtain 

V;2.3) (t, .x('»;;::: (1- p) a Ix I for all t;;::: to' 

From this and (2.4), we have 

IX(t)-I H(t, S)X(s)dsl ;" V(t, x(·»;" V(to, 4>0) 

+(l-p)a rr Ix(s) Ids. (2.9)
jro 

Now, for any to;;:::O and <»0 there is a continuous 
function 4>:[O,to]~R such that V(to,4>(·»>O. If 
x(t)=x(t, to, 4» is a bounded solution of (1.1), then it 
follows from (2.9) and (ii) that x(t) is in L 1 [0, (0). Since 

I 1H(t, s)11 x(s)1ds:S; I h(t - s) 1 x(sJlds (2.1 0) 

and the right-hand side is the convolution of an L 1_ 

function with a function tending to zero, then the 
right-hand side tends to zero and hence 

I IH(t, s)llx(s)lds ....O as t .... oo. 

Thus, by (2.9), x(t) is bounded away from zero for all 
sufficiently large values of t. This contradicts x(t) being in 
L 1• Thus, x(t) is unbounded and the proof is complete. 

Theorem 4. Let the conditions of Theorem 2 hold 
and suppose, in addition, that 

r [la(s)l-r loe(u)IIH(u, t)ldu}t< 00. (2.11) 

Then the zero solution of (1.1) is uniformly stable. 

Proof. It is enough to observe that R(t o) in (2.7) is 
an increasing function of to so that, by (2.11), 
R(to)~M for some positive constant M and all to;;:::O. 
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Consequently, the choice of b in the proof of 
Theorem 2 is independent of to' This completes the proof. 

Theorem 5. Let the conditions of Theorem 3 hold. 
Then solutions of (1.1) are in L1 [0,(0) if and only if 
ex(t) <0. 

Proof. Suppose ex(t)<O. Then, for v 1, it follows 
from (i) of Theorem 3 and (2.6) that V~2.3)(t, x(·)):S; 
(1l- 1)alx(t)l· 

Integration of both sides from to to t yields 

O:S;V(t, x(·)):S; V(t, ¢())+(1l- 1)a rt 

Ix(s)lds
Jto 

and hence x(t) is in L1 [0, (0). 

Suppose now that ex(t) > 0 and show that x(t) is not 
in L 1. If x(t) is in L 1

, then it follows as in the proof of 
Theorem 3 that (2.9) and (2.10) imply that x(t) is 
bounded away from zero for all sufficiently large t. 
This contradicts x(t) being in L 1. The proof is now 
complete. 

Miller [4] showed that in the convolution equation 

x' Ax+ rC(t-s)x(s)ds (2.12) 

solutions are in L 1 if and only if the zero solution is 
uniformly asymptotically stable. Obviously, when 
C(t,s)=C(l-s), the function H(t,s) defined by (2.1) 
and (2.2) reduces to H(t-s). Thus, if ex(t) = ex = constant 
and H(t) is the solution of the initial-value problem 

W. E. Malifoud 

H '(t) ­ exH(t) C(t) (2.13) 

H(O)=A-ex, (2.14) 

we obtain the following result. 

We may combine Theorem 5 and Miller's result to 
obtain the following theorem. 

Theorem 6. Let H(t) be defined by (2.13) and (2.14) 
and suppose that H(t)~O as t~oo and there is a non­
zero constant ex such that rIH(t)ldt<l. 

Then the zero solution of (2.12) is uniformly asymp­
totically stable if and only if ex < O. 
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