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ABSTRACT 

A class of generalized Burgers' equations is considered in which the non-linearity 
is of arbitrary form whereas the dissipation is linear with small coefficient k. The 
solution is shown to develop shocks and the structure of the solution both within 
the shock and in the outer region is obtained accurately to order k by means of 
matched asymptotic expansions. It is shown that to lowest order the shock position 
can be determined by an extended version of Whitham's equal-areas rule whereas to 
order k a general explicit expression for Lighthill's 'displacement due to diffusion' is 
derived. 
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HIGHER ORDER SHOCK STRUCTURE FOR A CLASS 

OF GENERALIZED BURGERS' EQUATIONS 


1. INTRODUCTION 

We consider the following generalization of Burgers' 
equation: 

(1) 

where U = u(x, t). Burgers' equation itself corresponds 
to the case p(u) = AU, C = O. Equations of this type arise 
frequently in problems of wave propagation in the 
presence of non-linearity and dissipation. Examples of 
such problems are acoustic waves in fluids [l-4J, 
waves in weakly viscoelastic solids [5-7J, flood waves 
in rivers, and waves in traffic flow [8, 2]. 

It is well known (see, for example, [2,9J) that when 
k =0, the solution of Equation (1) for general initial 
values u(x,O) ceases to be uniquely defined for t grea
ter than some critical value tf. When t > tf the solution 
contains a discontinuity, or shock, whose position can 
be found from the usual jump conditions. When k is 
non-zero but sufficiently small, this discontinuity is 
replaced by a narrow shock layer in which the solution 
changes rapidly but smoothly from one value to an
other. When k is small, the position of the shock layer 
can again be calculated to lowest order in k from the 
jump conditions. However, there are higher order 
corrections to the shock position which require a more 
detailed investigation of the solution of (1). 

In the case of Burgers' equation itself, the exact 
solution is known [10, 11J and it is possible to derive 
such properties as the detailed structure of the solution 
inside the shock layer and the higher order terms in 
the shock position from this complete solution [1]. 
With generalizations such as Equation (1), such pro
perties can only be obtained with the aid of approxi
mation techniques. Matched asymptotic approxima
tions were first used for this purpose by Murray [12J 
with a class of equations which contains Equation (1), 
and this method has subsequently been used by a 
number of authors to investigate shock structure in 
different contexts [6, 7, 13-15]. In this paper, we shall 
show how matched asymptotic expansions can be used 
for Equation (1) to derive expressions accurate to 
order k for the solution inside the shock layer, and for 
the shock position (apart from an undetermined con
stant in the inner solution). Murray [12J derived an 
expression for this latter quantity by using a conserved 
integral, claiming that it could not be obtained by 
matching. However, this claim is not correct, as is clear 
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from other particular calculations [13-15J, and we shall 
show that higher order matching can be used success
fully for the general class of Equations (1). 

In Section 2 of the paper we derive the lowest order 
solution inside the shock layer. It is shown that in the 
special case p(u) = ,)"u, this solution is of hyperbolic 
tangent type for all values of c; this result is of course 
well known for C =0. When p(u) is non-linear, the 
structure of the shock layer is asymmetric in general. 
In Section 3 the lowest order solution outside the 
shock is obtained and matched to the inner solution. 
In the case p(u) = AU, the matching conditions lead to 
Whitham's equal-areas rule for shock fitting [16,1,2]. 
We show that the equal-areas rule can be generalized 
to arbitrary p(u) so as to provide a feasible method of 
calculating shock positions (though in general it is a 
less convenient method than Whitham's original rule). 

In the remaining sections a similar calculation is 
carried out to first order in k. In Section 4 the inner 
solution is derived accurately to order k and its 
asymptotic form at the edges of the shock layer is 
obtained. In Section 5 the outer solution is obtained to 
order k and is matched to the inner solution. An explicit 
expression is derived for the order k displacement of 
the shock position, the 'displacement of the shock due 
to diffusion' [1]. In the case p(u)=Au this expression is 
obtained in simplified form and when C =0 it agrees 
with Lighthill's classical result for Burgers' equation. 

2. LOWEST ORDER SOLUTION IN 
THE SHOCK LAYER 

In this section, we are interested in the form of the 
solution of Equation (1) in the vicinity of the shock. 
Therefore, if the position of the shock is x =xs{t), we 
Introduce the stretched variable 

11=k- 1 [x xs(t)J (2) 

in place of x. Equation (1) then takes the form 

(1- CX:)U l1l1 + [p(u) + X~JUl1 = k(ur -cu'1!). (3) 

We seek the inner solution as an expansion in 
powers of k, retaining only the terms of order k: 

(4) 

Substituting (4) into (3) and comparing the coefficients 
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of the two lowest powers of k, we obtain 

(1 - cX:)UOI111 + [p(uo)+x:JUO'l = 0 (5) 

(1- cXJu1'1'1 + [p(uo)+ x:Ju1'1+ p'(UO)UO'lu1 

(6) 

We shall return to Equation (6) later in the paper, 
and in this and the following sections we shall concen
trate on the lowest approximation given by Equation 
(5). This equation may be integrated once immediately, 
to give 

(l-cxJuo'l+ P(uo)+x:~uo = A(t), (7) 

where A(t) is the constant of integration and 

P(u)= fp(u)du. (8) 

As x increases from below to above the shock layer, 
the stretched variable '1 increases from - 00 to + 00. 

Denoting by U ± the respective limits of Uo as '1-+ ± 00, 

we have from (7) that 

(9) 

The limiting values U must be matched with the 
limiting values of the outer solution above and below 
the shock, and then together with (9) we have a 
complete set of equations for x S' A, and U (see Section 
3). 

Integrating Equation (7), we obtain the following 
expression for the solution Uo in the shock layer: 

luo du 
'1 + b(t) = (1 - cx:) (10) 

UL Q(u, 

where 

Q(u, t) A - x:u - P(u) (11) 

and b(t) is the constant of integration. It is convenient 
to choose UL as some representative value of uo, for 
example, the average value (u+ + u_ )/2. Then we can 
regard '1= -b (or equivalently x=xs-kb) as being the 
central position of the shock layer. The quantity (kb) 
therefore represents a displacement in space of order k 
in the position of the shock; Lighthill has termed it the 
'displacement due to diffusion' [1]. It can only be 
determined from higher order matching (see Section 
5). 

Let us consider the shock structure given by (10) in 
the special case when p is a linear function of u, 

p(U)=AU. (12) 
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We obtain from (11) that 

Q(U,t)=tA[a2 (U+A-IX~)2J, (13) 

where 

(14) 

Therefore, from (10), the inner solution is found to be: 

= -J. -1 x's+a tanh~, (15)Uo 

where 

(16) 

The hyperbolic tangent structure is a well-known 
property of the shock layers arising from Burgers' 
equation in the case of small damping (that is, when 
p(u)=J.u and c=O). However, it is clear from (15), (16) 
that a hyperbolic tangent structure occurs for all C 

when p(u)=J.u. 

The width of the shock layer does depend on c. 
From (15) we can take I~I < 1 as a measure of the 
width, and hence from (2) and (16) we obtain the width 
in terms of physical variables to be: 

Ix - Xs + kb I< 2k(1 - cx:)/Aa. 

The shock structure when p(u) is a quadratic func
tion is given in [14J in the case c =0, and similar 
results apply in the present case. The notable feature is 
that the shock layer is no longer symmetrical about its 
center. 

Certain general conclusions can be drawn from 
Equation (10) regarding possible shock structures. If 
P(u) is an analytic function between u and u+, then 
Q(u, t) cannot vanish between these limits, otherwise 
the integral in (10) would diverge for some value of Uo 
between u±. Thus, u± are adjacent zeros of Q(u, r) and, 
from (7), u0'l has constant sign throughout the shock 
layer. Across the shock, changes monotonically Uo 
from u_ to u+, and it is not possible to have oscillatory 
shock structures for the present class of equations. 

In general, Q will have simple zeros at u+, and u 

always approaches u ± exponentially as '1-+ ±00. If we 
define 

(17) 

where 

q±=Qu(u±,t)= x:-p(u±), (18) 

then the asymptotic behavior of the solution is 

u u± ",exp[ -c ±'1 +const.J as '1-+ ± 00. (19) 

In general, c + i= c _, so the two tails have different 
lengths. 
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Finally we observe from (10) that the sole effect of 
including the term in Equation (1) on the shock UXI 

structure (in lowest order) is to rescale the spatial 
variable by a factor (1- exJ. 

In the case of a steady shock (generalized Taylor 
shock) propagating with constant speed between uni
form asymptotic states, the solution given by (10) is 
exact to all orders, with b(r)=O. With non-uniform 
outer states, this is not the case. 

3. THE OUTER SOLUTION AND 
SHOCK FITTING 

The solution outside the shock is obtained by seek
ing the solution of Equation (1) as a straightforward 
power series in k: 

U =uo(x, r)+ku 1(x, r)+ .... 

Substituting and comparing powers of k, we obtain the 
equations 

UOr - p(uo)uox = 0 

Ult - p(UO)u 1x - p'(UO)uoxu1= UOxx +euOXt ' (20) 

Again, the second of these equations will be reserved 
for later discussion. The solution of the first is 

Uo = ¢(fJ), (21) 

where fJ is a characteristic variable defined by: 

fJ = x + rp[¢(fJ)] == x + rt/J(fJ) (22) 

in which t/J(fJ) = p[¢(fJ)]. 

The function ¢ is determined by the initial values of 
U since when r = 0 we have x = fJ and hence 
¢(fJ) Uo(fJ, 0). For a general point (x, r), (22) then 
provides an implicit equation for fJ and hence allows 

to be found from (21).Uo 

In general, (22) determines a unique value of fJ for 
all x only when r is less than some critical value. This 
critical value ofr is given by rr=[t/J'(fJm)]-l, where fJm 
is the value of fJ at which t/J'(fJ) has its greatest positive 
value. For r;::: r r, a shock must be included in the 
solution. The point at which the shock forms is given 
by r=rr, x rrt/l(fJm). 

A typical configuration involving the presence of a 
shock is illustrated in Figure 1. At a point x=xs(r) on 
the shock path there arrive two characteristics with 
characteristic coordinates fJ ±, one to the right and one 
to the left of the shock. 

~--~----------------~------------4 X 

Figure 1. Two Characteristics Converging on the Shock 
Path 

Then, from (22), we have 

fJ ±= Xs + rt/J(fJ ±). (23) 

Furthermore, the signals ¢(fJ ±) arriving at the shock 
must agree with the limits u ± of the inner solution 
obtained from (9): 

(24) 

Eliminating A from the two equations (9), and using 
(24), we obtain 

x:[¢(fJ+)-¢(fJ-)] = {P[¢(fJ+)] -P[¢(fJ-)]}. (25) 

We note that (25) is equivalent to the usual jump 
condition which can be obtained directly from Equa
tion (1) in the limit k--1-0. Equations (23) and (25) 
provide three equations from which fJ and Xs can be 
determined. 

In the special case of Burgers' equation, it is well 
known that these three equations lead to a geometrical 
construction, called the equal-areas rule, which allows 
the shock position to be found at any time [16, 1,2]. It 
turns out that an equal-areas rule can also be given for 
an arbitrary function p, although when p is non-linear 
the rule becomes less convenient as a practical tooL In 
order to develop the generalized rule, we first consider 
the graphs of the functions y = t/J(fJ) and y r - 1 (fJ x )s
in the yfJ-plane (see Figure 2). 

From (23), the points A, B, where these graphs 
intersect, have fJ = fJ ±. The second graph is a straight 
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y 

y Vi( (3) 

=p[~(ti)] 

--+-~L-------~--~------~~----------~------~6 
a 

Figure 2. First Stage of the Equal-Areas Construction 

line of slope T 1 which meets the f3-axis at XS' At the 
instant of formation of the shock, T =Tf' the chord AB 
becomes the t~.ngent to the curve at its point of 
inflection. The slope of the tangent is Tf 1 , and it meets 
the f3-axis at the position of formation Xf' For this 
limi ting case, f3 - = f3 + . 

When p is a linear function of u, it can be shown 
that the chord in Figure 2 cuts off equal areas above 
and below the curve y = 1/1(/3). In the general case, this 
is not true. However, a similar result is found to hold if 
we map the graphs of Figure 2 onto the zf3-plane 
where y= p{z). The chord AB becomes a curve whose 
equation is f3 Tp{Z) while the curve in Figure 2 
now has the equation z = l/>{f3) (see Figure 3). 

The two curves again intersect at f3 = f3 ± and the 
curve AB meets the f3 axis at xs[provided that p{O)=O 
which can always be arranged by suitable re-writing of 
the original equation]. 

Denoting by A{T) the difference between the two 
shaded areas in Figure 3, we have that 

where p - 1 denotes the inverse function of p. Therefore, 

= _ rp
+ ~z df3,

Jp- OT 

f3- X s)where z = p - 1 -7:_ and we have used (23). Hence,(

p
dA = r + 1 [f3- X s+ X:Jdf3d7: Jp - p'{z) 7: 2 7: 

r[P(Z) +xJdz 

=[P{z)+x:z]! 

Since z changes from l/>{f3-) to l/>{f3+) between A and 

B, we conclude from (25) that dA/dT = O. Hence 

A{7:)=const. But since A(7:c) is clearly equal to zero, it 

follows that A{T)=O for all T;;?:7: r• 


This equal-areas rule provides a quite feasible prac

tical method of plotting the shock position at any time 

7:, although for a non-linear function p, the rule is 

obviously less convenient than the familiar one for 

Burgers' equation. 


4. SECOND ORDER SOLUTION IN 

THE SHOCK LAYER 


We shall now return to Equation (6) and investigate 

the second order inner solution U1 • Integrating this 

equation once, we get 


(l-cx;)ur, + [P(Uo)+ xJur fuo,d;, CUo, + qr). 
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z 

~r-~--------~----------------------~---------'~ 
tf 

Figure 3. Final Stage of the Equal-Areas Construction 

In view of Equation (5), the integrating factor for this obtain after some manipulation the final solution 
equation is UOt/' and it can be written in the form 

(l-cx I 
s)uo11 01]o(uU 

1
'1) fuor d1] -CUOr +C(r). (26) 

O 

In order to make use of the solution (10) it will be UO fU 
+ cx~ Q(u) - 2 (u - UI)Q(u' )-1 du' dusimpler to regard Uo and r as the independent vari f 

UL UL
ables and 1] = 1] (uo,r). Then, using standard transfor
mation formulas, we can rewrite (26) in the following 
form: 

fu (u-ul)(AI_X~UI)Q(U') 2du' du 
UL+C1], +C(r)1]uo' (27) 

From (10) and (11) we obtain that 

1]u o = (1 - cx:)Q(Uo)-1 , 

fuo f.uuo -c Q(U)-1 (AI-x~ul)Q(ul)-2du'du
-(l-cxJ (A' U)Q (u) - 2 du, UL ULf 

UL 

f
UOwhere the r-dependence has been suppressed through

+C(r) Q(u)-2du+E(r). (29)out 3.nd 
UL 

For given p(u), the solution can be explicitly u1 

Substituting these expressions into (27), using the same evaluated from (29). When p(u) = AU, Uo is given by (15), 
lower limit UL for all the integrals for convenience, we (16) (this corresponds to the choice U L = -')~ 1 x:). 
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With the same notation, we obtain that 

AU1 b'[tanh2 ~ -CaI,,(l-CX:)-1 ~ sech2 ~] 

+ (qA)-2 x~ (l-cx'J[tanh2 ~ - 2~ tanh ~ - ~ 2 sech2 ~] 

+C(a),)-l X~[2~ +tanh ~ -~ sech' ~ 

- 2(tanh ~ + ~ sech2 ~) In cosh ~ 

+2sech' ~ f etanh ~ d~] 

-c2x';(l-cx'J- 1 ~2 sech2 ~ 

+1"a'[(aIv) - 2(1_ cx:)(2~ - ~ sech2 ~ - tanh ~) 

-c(al,,)-1 (tanh2 ~ +e sech 2 ~)] 

+a- 1 C(tanh ~+~ sech 2 ~)+t(al,,)2 Esech2~. (30) 

The inner solution to order k is then given by 

U = - I" - 1 x: +a tanh ~ +ku 1 • (31) 

The solutions thus obtained involve three as yet 
undetermined constants b, C, and E. The first two of 
these can be determined by matching with the outer 
solution to order k. (Presumably E would be found by 
matching to order k 2 .)* In order to perform this match
ing we need the asymptotic behavior of the inner solu
tion as 17-~ ± 00. In the linear example, we find from 
(30) and (31) that 

x',)- ~'] 

(32) 

In the general case we must evaluate the asymptotic 
behavior of the various integrals in (29) as uo'~u + in 
order to find the behayior of U1 as 17-» ±00. Assuming 
that Q(uo) has only simple zer~s at Uo = u +' the non· 
zero asymptotic contributions to arise-only from U 1 

those terms on the right of (29) which are at least as 
singular as (uo - u) - 1 in the Iimit. U sing standard 
techniques to evaluate these leading singular terms, we 
find first of all from (10) that as Uo - I-U ± 

*This presumption is disputed by Kevorkian and Cole [15] on the 
grounds that the E term in (30) is exponentially small as ~ -+ ± 00. 

However, we note that the same is true of the contribution of b to 
the lowest order solution «15), for example) in the limit ~-+ ±00. 

R. W. Lardner 

fu ± [ 1 
+ Q(u)U 

L 

where q ± = x:- p(u i)' Then from (29) we find that 

A'-Xl/U ]u ......, __5 ± (17+ b - c) 

1 [ q~ 


1-cX'[2(' 1/ ) 1/( )]A -xs u± -xs u±-uL 

± 

-~[b'(U±-Ud+C-cX~fU du 
q ± U L Q(u) 

U' (u U )]
+(1- ') L ± L 

cXs Q(ud 

x~ ]dU, (33) 

after substituting from (28) for b l . Making use of the 
fact that A'-x':u = -q±u'±, we can write this 
asymptotic formula in the following, much neater 
form: 

(34) 

~. SECO~D ORDER SOLUTION OUTSIDE 
THE SHOCK LAYER 

V-tTe shall now return to Equation (20) and calculate 
the corresponding second term in the outer solution. 
The first term Uo in the outer region is given by (21) 
and (22). In solving for u1 in this region, it is con
venient to use the characteristic variable {3 in place of 
x. In terms of {3 and 't it is readily shown that Equation 
(20) takes the form 

D l:r (Du1)=(1 +CI/I){[¢" ¢r]v-, 

+¢:" D- 3}+C¢',I/D-', (35) 
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where ¢ = ¢(fJ), 1/1 = I/I(fJ), primes denote derivatives 
with respect to [3, and D = 1 -1:1/1'([3). This equation can 
be immediately solved for U 1 • The complementary 
function is D - 1¢ 1([3), where ¢ 1 ([3) is determined by the 
initial conditions on the total solution Uo+ ku 1 • Gen
erally it will be the case that the initial values of u are 
independent of k and the appropriate condition in 
such circumstances is that U 1 =0 when 1: =0. With this 
condition, the solution for u1 is 

(l+cl/lX¢'I/I"jl/l,2)(D 2_D-1)u1 
- [(I +cl/l)(¢'jl/l')' +c¢'JD- 1 InIDI. (36) 

This result agrees with Murray's equation (69) [12J 
except that the last term in this latter equation should 
be absent. (The error originates in the expression (65).) 

In the special case p(U)=AU, the solution given by 
(35) and (36) takes the form 

u, ~ [1 +d.q,(fJ)] t~;: [D- 2 - D-'] -eq,'(p) D-'lnlDI, 

where now D = 1-}~1:¢'([3). 

For 1:~1:f' the outer solution U ¢([3)+ku1 must be 
matched on each side of the shock layer with the 
limiting values of the inner solution. To do this we set 
x k'1 in the outer solution and expand the result 
in powers of k. The corresponding value of [3 will be 
close to [3+ or [3-, depending on whether x>xs or 
x < Xs' From (22) and (23), to first order in k we get 

[3_[3±=D~l(X-xs)=D/ k'1, 

where D ±= 1-1:I/I'([3±). Therefore, 

Uo = ¢([3) =::: ¢ ([3 ±) + ¢' ([3 ±)D 1 k'1. (37) 

Combining (35)-(37) we get the following expression 
for the inner expansion of the outer solution: 

u - ¢([3 ±) + ¢'([3 ±)D-1 kt} + kK ±' 

where 

The corresponding outer limit of the inner solution 
is given by u-u±+ku1 , where the limiting expression 
for is given by (34), or by (32) in the special case Ul 

p(u)=AU. Matching the leading terms of the two limits 
simply reproduces (24). The terms proportional to t} 
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give the conditions 

D ± 1¢'([3±)= -q ±1U'±. 

It is not difficult to see that these conditions can be 
obtained by differentiating (24) with respect to 1:. The 
only new conditions arise from matching the terms 
proportional to k, and they are: 

u'±(b-c)+b'(u±-ud+C+(I-cxJq±lU'± 

+:,{(I-ex;) t U~:t dU}= -q±K±. (38) 

These equations are sufficient to determine the un
knowns b(1:) and C(1:). By using the conditions 

u'±=¢'([3±)d[3±jd1:, q± =

we can show that 

,U'± d{I +cp(u+) } 
q+K ++(1-cxJ-=-d '( )- In ID +I+CU+ - - q± 1: P u± - 

and therefore the matching conditions (38) take the 
simpler form 

d { f.u+ u-u+b+(I-cx:) ) du
d1: - Q(uU 

L 

The difference between these two conditions can be 
integrated immediately to give an explicit expression 
for b(1:). Since [3 + [3 - when 1: = 1: f, the constant of 
integration is zero, and the result is: 

U 

(I-CX'){f. + U-~dU-f.u- u-u_ dU} 
s UL Q(u) UL Q(u) 

_{I +cp(u+) In ID I 
p'(u+) + 

1+cp(u_) I ID I} (40)'( ) n _ .p u_ 

fUL du 
We can verify from (40) that b +(I-cx:) Q(u) is 

independent of the choice of Uu as it should be from 
(10). 

In the particular case p{u) = },U, the expression for b 
becomes 

b= ~a{(l-cx:)ln I ~: \+ct.a In ID+D_I}. 

where D±=I-}~1:¢'([3±). When c=O, this reproduces 
Lighthill's expression [IJ for th~ displacement of the 
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shock wave due to diffusion. Also in this particular 
case, the conditions (39) give the following result for C: 

·1 d { C -'-.---2-'A d1: (I-ex:) In ID +D-I 

+cAa In I~: I+cx;4ln 2} 

2 +vu 3In the particular case p(u) = J1U , e 0, the 
result (40) is in agreement with Equation (37) of [14J 
when the notation changesj3 -j~~u+ u_ and 2b~b 
are made. We see that the effects of including the eUXl 

term in the model Equation (2) of [14J are to multiply 
b by a factor (1- ex~) and to transform p'(u) into 
p'(u)(l-ex:)![1 +ep(u)]. 

Finally, we should compare the present results with 
those obtained by Murray [12]. Murray did not deter
mine the higher order inner solution as we have done 
in Section 4. He obtained an expression for b(1:) ( A(t) 
in his notation) by making use of a conserved integral, 
the result being given in his Equation (84). Because of 
the error in his outer solution, the middle term in this 
result should be absent. Also, the first term has the 
wrong sign, originating from the equation preceding 
his Equation (82). (The conserved integral approach is 
described in [13].) With these corrections, Equation 
(84) of [12J agrees with our result (40). 
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