# AN UPPER BOUND ON THE FIBONACCI NUMBER OF A MAXIMAL OUTERPLANAR GRAPH 

A. F. Alameddine<br>Department of Mathematical Sciences, University of Petroleum and Minerals, Dhahran, Saudi Arabia


#### Abstract



إن عدد فيبوناتشي ف() لغخطط بسيط خ هو عدد الغططات الجزئية الكاملة لـكلة الخططط خ . نجلد في   رؤوس خارجية لا يقل عددها عن ثلاثة ، ونـ هو العدد النوني في متتالية فيبوناتشي


#### Abstract

The Fibonacci number $f(G)$ of a simple graph $G$ is the number of complete subgraphs of the complement graph of $G$. An upper bound on $f$ is established for all maximal outerplanar graphs and this bound is proved to be the best possible. In particular, it is shown that $f(G) \leq F_{n}+1$, where $G$ is a maximal outerplanar graph of order $n \geq 3$ and $F_{n}$ is the $n$th number in the Fibonacci sequence.


## AN UPPER BOUND ON THE FIBONACCI NUMBER OF A MAXIMAL OUTERPLANAR GRAPH

## 1. INTRODUCTION

The Fibonacci numbers $F_{n}$ are defined by

$$
F_{0}=F_{1}=1, F_{n}=F_{n-1}+F_{n-2}(n \geq 2)
$$

and the Lucas numbers by

$$
L_{0}=2, L_{1}=1, L_{n}=L_{n-1}+L_{n-2}(n \geq 2) .
$$

In this paper we consider only finite undirected graphs without loops or multiple edges. Such graphs are said to be simple. The Fibonacci number $f(X)$ of a simple graph $X$ with vertex set $V$ and edge set $E$ can be regarded [4] as the total number of subsets $S$ of $V$ such that no two vertices of $S$ are adjacent. This is the same as the number of complete (induced) subgraphs of the complement graph of $X$. This includes the empty graph also. The following Lemmas are helpful [2-4].

## Lemma 1

The Fibonacci number $f\left(P_{n}\right)$ of a path $P_{n}$ is $F_{n+1}$.

## Lemma 2

The Fibonacci number $f\left(C_{n}\right)$ of a cycle $C_{n}$ is $L_{n}$

## Lemma 3

Let $X_{1}=\left(V, E_{1}\right)$ and $X_{2}=\left(V, E_{2}\right)$ be two graphs with $E_{1} \subseteq E_{2}$, then $f\left(X_{2}\right) \leq f\left(X_{1}\right)$.

## Lemma 4

Let $X=(V, E)$ be a graph and $y_{1}, y_{2}, \ldots, y_{s}$ vertices not contained in $V$. Then $Y=\left(V_{1}, E_{1}\right)$ denotes the graph with

$$
\begin{gathered}
V_{1}=V \cup\left\{y_{1}, \ldots, y_{s}\right\} \text { and } \\
E_{1}=E \cup\left\{\left\{y_{i}, v_{j}\right\} 1 \leq i \leq s, v_{j} \in V\right\} .
\end{gathered}
$$

Prodinger and Tichy [4] have shown by a simple induction argument that $f(Y)=f(X)+2^{s}-1$.

## Lemma 5

A fan on $k$ vertices, denoted by $N_{k}$, is the graph obtained from path $P_{k-1}=2,3, \ldots, k$ by making 1 adjacent to every vertex of $P_{k-1}$. By Lemmas 1 and 4 above we see that $f\left(N_{k}\right)=F_{k}+1$.

## Lemma 6

If $X$ is a tree on $n$ vertices, then $f(X) \leq 2^{n-1}+1$.

## Lemma 7

If $X$ and $Y$ are disjoint graphs, then $f(X \cup Y)$ $=f(X) \cdot f(Y)$.

We propose in this paper to find an upper bound for $f(g)$ where $G$ is a maximal outerplanar graph. Because maximal outerplanar graphs have a 'tree-like' structure of adjacencies, it is natural that their Fibonacci numbers be investigated as a follow-up to Lemma 6 above.

## 2. MAXIMAL OUTERPLANAR GRAPHS

A planar graph $G$ is one that can be drawn in the plane so that no two edges intersect. We will refer to the regions defined by a planar graphs as its faces, the unbounded region being called the exterior face. $G$ is outerplanar if it can be drawn in the plane so that no two edges intersect, and all of its vertices lie on the same face, which will be assumed to be the exterior face. A maximal outerplanar graph $G$ is an outerplanar graph for which $G+(u, v)$ is not outerplanar for any pair $u, v$ of vertices of $G$ such that edge $(u, v)$ is not already in $G$.

A maximal outerplanar graph is a graph that is isomorphic to a triangulation of a polygon and every such graph is Hamiltonian. All maximal outerplanar graphs can be constructed according to the following recursive rule [5]: (i) the triangle, $K_{3}$, is maximal outerplanar, and (ii) a maximal outerplanar graph with $n+1$ vertices can be obtained from some maximal outerplanar graph $M$ with $n$ vertices ( $n \geq 3$ ), by adding a new vertex adjacent to two consecutive vertices on the Hamiltonian cycle of $M$. We also observe that any two nonadjacent vertices in a maximal outerplanar graph are separated by a pair of adjacent vertices. Moreover, these graphs satisfy the following lemma [3, p. 107].

## Lemma 8

A maximal outerplanar graph has at least two vertices of degree 2.

All maximal outerplanar graphs of order 7 are shown in Figure 1.


Figure 1. Fibonacci Numbers of Maximal Outerplanar Graphs of Order 7

Now, we state and prove the main result.

## Theorem

The Fibonacci number $f(G)$ of a maximal outerplanar graph $G$ of order $n \geq 3$ is bounded above by $F_{n}+1$. Moreover, this upper bound is the best possible.

## Proof

By Lemma 5, the Fibonacci number of the fan $N_{k}$ together with the fact that $N_{k}$ is maximal outerplanar settles the second part of the theorem, that is, the upper bound is attained. Now let $G$ be a maximal outerplanar graph of order $n$. We complete the proof by induction on $n$. By Lemma 8 , there exists a vertex $v$ of degree 2 in $G$. We consider two families of subsets of $V(G)$. Each subset in the first family contains $v$, whereas $v$ is not in any subset in the second family. Let $u$ and $w$ be the neighbors of $v$ in $G$. Deleting $u$ and $w$ we obtain the outerplanar graph $G_{u, w}$ of order $n-2$
with the isolated vertex $v$. Since $G$ is a triangulation of a polygon, $G_{u, w}$ contains a path $P_{n-3}$ of length $n-3$. By Lemma $1, f\left(P_{n-3}\right)=F_{n-2}$ and since $v$ is a member of every subset of $V(G), f\left(P_{n-3} \cup\{v\}\right)=f\left(P_{n-3}\right)$. Now by Lemma 3 above it follows that $f\left(G_{u, w}\right) \leq F_{n-2}$.

Next, we consider those admissible subsets of $V(G)$ not containing $v$. Let $G_{v}$ be the remaining graph of order $n-1$ after deleting $v$. $G_{v}$ is maximal outerplanar and the hypothesis of the theorem is satisfied. By induction $f\left(G_{v}\right) \leq F_{n-1}+1$. Combining the above results, we have

$$
f(G)=f\left(G_{u, w}\right)+f\left(G_{v}\right) \leq F_{n-2}+F_{n-1}+1=F_{n}+1 .
$$

We raise a few related but unsolved problems.
Question 1. Find a lower bound on $f$.
Question 2. Give a structural characterization of these graphs for which the lower bound holds.

Question 3. Discover a parallel theorem if $G$ is maximal planar.

## ACKNOWLEDGMENT

The author wishes to thank the University of Petroleum and Minerals for financial support during his Sabbatical year at the University of Waterloo.

## REFERENCES

[1] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications. New York: Elsevier, 1976.
[2] L. Comtet, Advanced Combinatorics. Dordrecht, Holland: Reidel, 1974.
[3] F. Harary, Graph Theory, Reading, Mass.: AddisonWesley, 1969.
[4] H. Prodinger and R. F. Tichy, 'Fibonacci Numbers of Graphs', The Fibonacci Quarterly, 20 (1982), pp. 16-21.
[5] A. Proskurowski, 'Centers of Maximal Outerplanar Graphs', Journal of Graph Theory, 4 (1980), pp. 75-9.

Paper Received 11 October 1982; Revised 6 February 1983.

