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ABSTRACT 

The electrohydrodynamic surface wave propagating through a horizontal 
interface between two- dielectrics can be amplified by introducing a horizontal 
periodic electric field. For certain values of the frequency of the field the system is set 
into a state of resonance. An expression for the dependence of such subharmonics 
on the various parameters of the system is obtained. Detailed studies for limiting 
cases of small and large modulation are introduced. 

0377-9211/83/020103-09$01.00 
© 1983 by the University of Petroleum and Minerals 

The Arabian Journalfor Science and Engineering, Volume 8, Number 2. 103 

http:0377-9211/83/020103-09$01.00


--

Abou El Magd A. Mohamed and N. K. Nayyar 

I. INTRODUCTION 

The theory of parametric excitation is associated 
with systems in which the parameters which define the 
natural frequencies when constant vary with time in a 
periodic manner. The behavior of such systems is 
described by an equation of the Hill or Mathieu type. 
It is well known [l-4J that the stability of such 
solutions may be described by means of the 
characteristic curves of the Mathieu functions which 
admit regions of resonance instability. It turns out 
that the resonance (instability) situation occurs if the 
natural frequency of a normally stable system is 
approximately an integral multiple of the frequency at 
which one of the parameters of the system varies 
periodically with time. 

Such phenomena of excitation were first observed in 
fluid mechanics by Faraday [5J in the case of waves at 
an interface near a vibrating elastic surface. Recently 
Benjamin and Ursell [6J applied the theory of 
Mathieu equations to the problem of excitation of 
surface waves in a container which is partially filled 
with a fluid and which oscillates vertically. Kelley's 
investigation [7J concerned the stability of an interface 
between two fluids of different densities which flow 
parallel to each other in a periodic manner. He de­
duced that when the differences in the mean speed are 
below the steady, critical speed for instability but are 
large compared with the amplitude of the fluctuations, 
parametric amplification of waves at the interface 
occurs and the interface exhibits a resonance of a 
subharmonic nature. 

Montgomery and Harding [8J and Vahala and 
Montgomery [9J have shown that Alfven waves in a 
plasma can be parametrically excited if a d.c. magnetic 
field impressed on a plasma is given a small low­
frequency modulation. Crowley [10J, Reynolds [llJ, 
Yih [12J, and Mohamed and Nayyar [3J have studied 
experimentally and theoretically the excitation of sur­
face waves of a capillary liquid jets and conducting 
fluids stressed by a time-dependent electric field. In 
electrohydrodynamics it is known [13, 14J that if the 
electric field parallel to the interface between two 
dielectric media satisfies certain conditions, there exists 
a possibility of having electrohydrodynamic surface 
waves at the interface of the two dielectric media. In 
this paper we shall study the excitation of such electro­
hydrodynamic surface waves propagating along the 
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interface between two semi-infinite dielectric liquids by 
superimposing a tangential time-dependent electric 
field on the already existing tangential electrostatic 
field. Thus one can generate the necessary subhar­
monics required for the parametric excitations of the 
electrohydrodynamic surface waves. For certain values 
of the frequency of the superimposed time-dependent 
electric field the system is set in a state of resonance 
and an expression giving the dependence of such sub­
harmonics in terms of the various parameters of the 
system is obtained. The limiting cases when the 
strength of the superimposed electric field is small or 
large relative to the electrostatic field are examined in 
detail. On the other hand, the above model is con­
sidered as the electrohydrodynamic analog to the 
hydrodynamic periodic flow introduced by Kelley to 
amplify surface waves. 

2. FORMULATION OF THE PROBLEM 

The system discussed here consists of two semi­
infinite homogeneous dielectric fluids of densities Pu 
and PI and dielectric constants Gu and GI (Figure 1). 
The two fluids are separated by a horizontal interface 
z =0 and the subscripts or superscripts u and 1 refer to 
quantities in the upper fluid and lower fluid respec­
tively. It is known that if a tangential constant electric 
field E acting in the x direction is applied to the 
system, the field has a stabilizing effect on the system 
when subjected to a small disturbance [llJ. For an 
electric field intensity exceeding a critical value, 
electrohydrodynamic surface waves propagate through 
the interface. The critical value of the electric field will 
be evaluated in the coming analysis (Section 3). No 
volume changes are present in the bulk of the fluids. 
Also, because of the continuity of the tangential 
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Figure 1. Skelch of the System under Consideration 
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electric field, no surface changes are present at the 
interface in the equilibrium state and will therefore 
vanish during the perturbations [15]. In order to 
produce parametric excitations in the electrohydro­
dynamic surface waves, we superimpose a modulated 
electric field Ecos wt in the x direction on the already 
existing constant field E. 

In our analysis, we assume that the quasi-static 
approximation is valid and there exists an electrostatic 
potential tP such that 

The equations of motion for an inviscid incom­
pressible fluid are given by 

dv 
Pdt -Vp+g, (1) 

with 

V.v (2) 

v, g and p are the fluid velocity, the acceleration due to 
gravity in the negative Z direction, and the pressure 
respectively. 

The potential tP satisfies the Laplace equation 

(3) 

It is readily seen that the equilibrium state solution is 

(4) 

The subscript °refers to the equilibrium state. If we 
imagine a small departure from the equilibrium state, 
the linearized equations of motion become 

GV 1 
Pat= VP1' (5) 

(6) 

(7) 

The subscript 1 refers to the perturbed quantities. 
From Equations (5) and (6) we obtain 

(8) 

We assume that the various perturbed quantItIes 
have the following space and time dependence: 

F(x,y,z,t)=f(z,t) ei(kxxH\yi. (9) 

As a result of the perturbation, the equilibrium 
plane interface between the two fluids becomes 
deformed and we assume that the equation of the 
deformed surface for the present case is given by 
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z ~, (10) 

where 

(11) 

and l' (t) is a function of time to be solved, and b is 

small. 


Making use of the dependence given by Equation 
(9) in Equations (7) and (8) we obtain the following 

differential equations: 


(D2 k2)tPl =0, (12) 

(D 2 _k2)Pl (13) 

where 

These equations admit the following type of 

solutions for tPl and PI: 


(14) 

p~=Bu(t) (15) 

and for the lower fluid 

(16) 

(17) 

where Au, AI' Bu, and B) are time-dependent 

constants of integration which are to be evaluated. by 

making use of the boundary conditions. 


The unit normal vector N to the deformed interface 

between the two fluids is given by 


(18) 

where 

F z ~. 

Thus, from Equations (11) and (18), we obtain 

N =e -ib~)(t)fk e +k e }ei(kxx+kyY) (19)Z I lxx YY , 

where (ex,ey,e z ) are the unit vectors along the x, y, 

and z axes respectively. 


Equation (19) along with the continuity of the 

electric potential and the normal component of the 

electric displacement at the interface lead to the 

following relations: 


_ ikxy(t) (eu -ed f - ~ (20)
A 0 A I - k ---~ l E+ E cos wt}.

eu+c) 


Again the continuity of normal component of 
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velocity at the interface along with its compatibility 
with the assumed surface deformation given by 
Equation (11) lead to 

B Pu d
2

y (21)
u k 

(22) 

Finally the continuity of the normal component of 
the stress tensor at the interface z = ~ implies that 

(23) 

where T is the surface tension. 

Note that 

opU,) I
=p~')(O)+ a; z=o+p~'I(~) 

-pu')g~+p~,I(O. (24) 

Substituting from Equations (14)-(17) and (24) into 
Equation (23) we obtain for the first-order problem the 
following differential equation for ,'( t): 

k 
[k2 T -g(pu pdJ

+PI 

(e" -elr {E' +2E£ cos wI 
+B) 

+£2 cos2wt}y =0. 	 (25) 

Equation (25) is the well-known Hill's differential 
equation. The nature of the solution of this differential 
equation will govern the fluctuations of the amplitude 
of the disturbed interface, and it will therefore 
determine the parametric excitation of the electro­
hydrodynamic surface waves. 

3. 	ELECTROHYDRODYNAMIC SURFACE 
WAVES 

If we exclude the modulated field Ecos wt for a 
while and consider only the original field E we obtain 
from Equation (24), as E~O, the following differential 
equation: 

(25a) 
where 

-B)2 k; £,2 
(26) 

Bu+ B) Pu+Pl 
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Equation (26) is the dispersion relation for the 
present case. The solution of Equation (25a) is 
y(t)=const. e±iat and therefore the system is stable if (J 

is real. In other words, the stability implies that 

(27) 

It is seen that the electric field IS stabilizing. 
Moreover, for values of E'?::.E*, where 

the system is stable and electrohydrodynamic surface 
waves propagate through the interface. We note that 
when kx=O (i.e. the component of the wave vector 
parallel to the electric field is zero), Equation (26) 
shows that the tangential electric field has no effect on 
the Rayleigh-Taylor instability. 

This is the electrohydrodynamic analogy to the 
Kruskal-Schwarzschild Rayleigh-Taylor instability 
for a plasma supported against gravity by a uniform 
magnetic field [16J. 

In what follows we shall examine the possibility of 
amplifying the electrohydrodynamic surface waves by 
superimposing the modulated field Ecos wt. 

4. WAVE EXCITATIONS 

The Hill's differential equation (25) can be written in 
the following standard form: 

where 

! =1wt , 	 (30) 

(31 ) 

(32) 

(33) 

It can be shown [2J that the solutions of Equation 
(29) can be represented as 
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X! 

2iY(1')=eJlT I C2re " (34) 
r= -Xl 

where C 2r are constant coefficients and J1 satisfies the 
relation 

sin 2 tJ1n =A(O) sin 2 tnj00 (35) 

A(O) is an infinite determinant depending on 00 , O2 , 

and 04 ; for small values of O2 and 04 it takes the form 

02t 1 10 2 04
2 

]A(O)~ 1+nc~rW~4y 0 1 0 + 22 __(j~ (36)
0 0 

It is apparent from Equation (34) that the time 
dependence of the perturbation will depend on the 
nature of the parameter J1(whether real or complex). 
Because the Hill's determinant is infinite, the analysis 
for finding out the nature of fl is quite complicated. 

The Hill's differential equation can also be written in 
the following equivalent form: 

d 2 y
dt 2 +[a 2q",(1')]Y=O, (37) 

where q is defined such that I'" (1') I:r:: = 1 and a is the 
same as eo defined by Equation (31). It can be 
shown [2] that the (a,q) plane may be divided into 
stable and unstable regions for positive values of a in a 
manner similar to the characteristic curves of the 
Mathieu functions in the (a,q) plane. Figure 2 shows 

a 

40 
36 ----
35 

_fIII'-"'-'''''' 

Stable 
30 

-10 

35 

Figure 2. The Different Regions of Stability and Instability 

of the Characteristic Curves of the Mathieu Functions 


y" +(a-2q cos 2wt)y=O 


the regions in the (a,q) plane in which the values of a 
and q yield imaginary values for fl. These regions are 
the stable regions. On the other hand, if J1 is real the 
solution for y will tend to 00 as t -+ 00. The unstable 
regions correspond to real values of fl. The boundary 
curves are the characteristic curves of the Mathieu 
functions. Thus, in general, instability occurs even 
though cr 2 > O. Moreover, for negative values of a the 
solution of Equation (37) is unstable. Further, it may 
be remarked that a is negative if and only if cr 2 is 
negative and it follows therefore that a system which is 
unstable in the presence of a steady electrostatic field 
cannot be stabilized by superimposing on it an 
alternating electric field. 

It can be shown [1] that for a small value of q, the 
solution of a differential equation of the type 
represented by Equation (37) corresponds to a state of 
chief resonance if a 1. The overtone resonances occur 
when a = n 2 (n = 2,3,4, ... ). Thus parametric excita­
tions of the electrohydrodynamic waves take place 
when the frequency of the modulated field equals a 
fractional part of the natural frequency of the system. 
It is clear that the different values of n correspond to 
the different regions of instabilities in the (a,q) plane. 
The condition for parametric resonance can now be 
expressed as 

Equation (38) gives the dependence of OJ on E, E and 
the other parameters of the system for parametric 
excitation of electrohydrodynamic surface waves. 

In the following sections we shall study in detail 
some limiting cases. 

5. CASES OF SMALL MODULATION 

We consider here the case when the strength of the 
modulated electric field E is small compared with the 
electrostatic field, i.e. E« The terms of order E2 

can be neglected from Equation (25) and the resulting 
equation becomes 

2 + 2£ Ecos WI} } =0. (39) 

The Arabian Journal for Science and Engineering, Volume 8, Number 2. 107 



Abou El Magd A. Mohamed and N. K. Nayyar 

If we denote 

[2
at 4k( + ) k T -g{pu pd
Pu PI 

(40) 

q'= (41) 

Equation (35) can be written as 

d2 y

dt 2 +(a' 2q'cos2r)y=0, (42) 


where T is defined by Equation (30). 

The parametric excitation of electrohydrodynamic 
surface waves occurs near the cusp points in the 
unstable regions of the characteristic curves of the 
Mathieu functions in the (a',q') plane. The boundary 
curves of the first region of instability in the (a', q') 
plane are given by [2J, 

, 1,2 1 ,4
a'l (q') 1 q -sq + q + ... , (43)64 

and 

(44) 

where a'l (q') and a~(q') are the equations defining the 
two boundary curves of the first region of instability in 
the (a',q') plane. For small values of q Equations (43) 
and (44) can be written as 

a' 1±q', (45) 

which is equivalent to 

4 

k; (C:u -c:d 2 £E]+ . (46) 
- k(C:u+c:d 

Equation (46) gives the range required for (0 in 
terms of £ and E to maintain the system at a state of 
chief resonance. 

For values of E such that these boundaries are 
surpassed one solution of Equation (42) will grow 
exponentially with time. Clearly for very small values 
of £, the instability condition (46) becomes 

(02 k [k2(c: -8)2£2 ]2
4=Pu +PI x k (C: +1c:1) +k T +g(pu PI) . (47)u 

T he Arabian Journal for Science and Engineering, Volume 8, Number 2. 

Hence, given (0 and one can find a corresponding 
k to give the subharmonic response. Therefore the 
interface is always unstable under the present case. 
Letting k in Equation (47) we find that (02 is cubic 
in k. Thus, for a given (0, Equation (47) will have 
either one real root for k or three real roots. The 
differentiation of Equation (47) with respect to k when 
replacing kx by k yields. 

1 d(02 1 [ 2 
-dk = 3k T+g(Pu-pd

4 Pu+PI 

2k 
(48) 

It is seen from Equation (44) that (02 attains its 
maximum or minimum value if k satisfies the equa­
tion 

It follows therefore that, for values of E satisfying 
the inequality 

> (50) 

(51 ) 

there will be three real values for k satisfying equation 
(47) for a given (0. The growth rate would then 
determine which wavenumber will predominate. It is 
clear that the inequality (50) is trivially satisfied for 
Pu > PI' On the other hand, if £2 <£**2 one can 
easily show that (02 increases monotonically with k 
and therefore Equation (47), for a given value of (0, 
admits one positive root for k. Also from Equation 
(47) we see that the resonance frequency (0 for a given 
wavenumber k will decrease with the decrease of £. 

It is known [2J that the solution of the Mathieu 
differential equation (42) can also be represented by 
the series given by Equation (34). The parameter J1 
appears in the series is now defined by the following 
Equation [2J: 

~(O) sin2 Ia t s 1. 

For small values of q', It approaches the value J at 
and the series given by Equation (34) can be approxi­
mated as 

(52) 
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Near a = 1, the solution of the Mathieu equation can 
therefore be represented by 

or 

(53) 

If q * w denote the growth rate, then from 
Equation (44) 

k 2 (e -el )2
q* u (54)

W(pu+PI)(eu+ 

where w is given by Equation (47). From Equation 
(43) we see that the growth rate is greater for distur­
bances with higher wavenumbers. Therefore, for the 
case E> E** when for a given w, three values of the 
wavenumber k are possible, the disturbance corres­
ponding to the smallest wavelength will predominate. 

It is interesting to note that the growth rate per 
cycle of oscillation (q* Iw), namely 

q* k(eu ed 2 EE 

w 


(55) 

has a maximum for all values of E, when 
k 2 g (pu - PI)IT, i.e. for the disturbances with the 
minimum phase velocity in the absence of any electric 
field. 

The preceding discussions in this section were 
confined only to the first region of instability (the 
natural resonance) and similar arguments can be 
applied to the other regions of instability. 

The boundary curves for the second region of insta­
bility of the characteristic curves of the Mathieu 
functions are given by [2J 

and 

763 ,4 
a~ =4 13824 q + ... 

and for the nth region (n 2 7) 

Thus for small values of q' (i.e. neglecting terms of 

order q,2 and higher-order terms) the overtone reso­

nance occurs if 


4k [+ k 2 T -g(pu - PI)
Pu PI 

2 2 - 2
k '( (eu el ) E 2 2 

. ;.:::n w , (56)
k (e +e l )u 

where n is an integer (n = 2,3,4, ... ). Equation (56) is a 

limiting case of Equation (38). 


6. THE CASE OF LARGE MODULATION 

If we assume that the electrostatic field is small 

compared to the modulated field, i.e. E« E, we can 

neglect terms involving Eo in Equation (25) and we 

finally obtain the following differential equation: 


2
d y k [+-- K 2 T-g(Pu-pd

Pu+PI 

E2 cos 2 wt 
(57)

k(eu+ed 

which can be written in the following canonical form: 

2 

d }, +(" 2" 2) 0 (58)dll a - q cos 11 Y= ... , 

where 

11 =wt, 

a" 

(59) 

q"= (60) 

The Mathieu differential equation (58) is similar to 

that discussed extensively in an earlier paper [3J in the 

sense that the term explicitly dependent upon time has 

a frequency twice that of the superimposed electric 

field. A general remark which follows immediately is 

that the subharmonic response of Equation (58) will 

actually be isochronous with respect to the modu­

lation. 


In what follows we shall be interested in studying 

the excitation mechanism corresponding to the first 

region of instability of the characteristic curves of the 

Mathieu functions in the (a", q") plane. The first 
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region of instability is bounded by the two lines: 

a" q" and a" = 1+ q", 

which are equivalent to 

(61) 

and 

2 k [2W =~	...-- k T-g(Pu-PI) 
Pu+PI 

(62)_~~~E(;~:~~tJ 

From these two equations, it is clear that instability 

(or excitation) will occur only if 

(63) 
or 

i.e. w 2 should exceed the frequency of surface waves 
propagating along the interface in the absence of any 
electric field. 

For the other regions of instability the overtone 
resonances are given by 

(64) 

n = 1,2,3,4, ... 

7. CONCLUSION 

The previous discussion emphasizes the role of 
electro hydrodynamics as a substitution of pure hydro­
dynamic motion in some physical situation. Thus, 
the introduction of an electric field E+ Ecos wt to 
surface waves propagating through the interface 
between two dielectrics is equivalent to imposing a 
parallel oscillatory flow on the fluids as introduced by 
Kelley [7]. The dual role of electrohydrodynamics and 
magnetohydrodynamics for some physical phenomena 
has been already emphasized [13]. 

The main feature of periodicity is a loss mechanism. 
In the limit as w ~O, E will be added to E in Equation 
(26) 	 and it therefore plays a stabilizing role. The 
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presence of w contributes a loss to this role and the 
result is instability. Therefore, as proved in Section 4 
the periodicity of the modulation cannot stabilize an 
otherwise unstable system. The loss mechanism is 
related to the average of Ecos wt over a cycle which is 
zero while for E only the average is E. The above 
explanation of the periodicity mechanism is supported 
by the results of Wesson [17J and Zrnik and Hend­
ricks [18J. Wesson considered the Rayleigh-Taylor 
instability where the gravitational force is destabiliz­
ing. He superimposed a dynamical periodic force in 
the same direction of gravity (F cos wt say). In the 
limit w~O the force acts as gravity and hence destabi­
lizing. The presence of w causes a loss to this 
mechanism and hence stability is achieved. He could 
also, instead of the periodic force, apply a magnetic 
modulation since the constant magnetic field is 
-destabilizing. The latter suggestion, with a slight 
modification was used by Zrnik and Hendricks who 
applied a magnetic feedback proportional to the 
surface displacement which in turn is periodic. 
Although their analysis is different from ours, their 
results achieved stabilization with magnetic feedback. 
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