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ABSTRACT 

The flow of a polarizable viscous compressible fluid past a uniformly charged 
sphere rotating with constant angular velocity is studied. The equations of motion 
have been linearized by using a small parameter {3. It was found that if the axis of 
rotation has the same direction as the flow, the rotation will not affect the drag 
force, while the couple on the sphere will receive a correction of order {3. 
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1. INTRODUCTION 

It is well known that if a sphere moves through a 
viscous compressible fluid, there will be a drag force 
affecting the motion of the sphere; this has been exten­
sively treated in the literature (see [lJ for a review). 
Recently Smith [2J extended the study to the case of 
spheroids and spherical caps. If the fluid was polariz­
able and flowing past a uniformly charged sphere, 
Schappert [3J showed that there would be a correction 
term to the well-known Stokes law for the drag force 
due to the polarizability of the fluid. 

Here we study the case of a charged sphere rotating 
with constant angular velocity Q. It is found that the 
drag force does not change bt;cause of the rotation of 
the sphere when the axis of rotation has the same 
direction as the flow. On the other hand, the couple 
affecting the rotating sphere will receive a correction to 
become 

81CQR31][1 +~~~I rt I> (~~:_)2J3 ap TOO 41CI>R 2 ' 

where p, p, 1], R, and rto are the pressure, density, 
viscosity, radius of the sphere, and polarizability per 
atom respectively. These mentioned corrections arise 
because of the forces of electrostriction derived from 
the stress tensor [4]: 

E2 [ al> ] I>E~K 
Tij= -Po(p, 1)6iK~~8-; I> PaplT 6iK + 41C 

The subscript T means that the derivatives have been 
evaluated at constant temperature. 

We shall make use of the properties of the creeping 
flow; Uo the velocity of the steady flow as well as 0 will 
be considered small and of the same order 
(Qjuo 0(1». Consequently, the inertia term in the 
Navier Stokes equation will be neglected. We shall 
also neglect the gravity effect and other external forces. 
In addition, we shall assume that no temperature 
gradient exists. 

2. OUTLINE OF THE PROCEDURE 

We consider the Z-axis as the axis of rotation, which 
is, at the same time, the direction of the steady flow. 
The center of the sphere will be the origin (using 
spherical polar coordinates (r, 0, 4»). 
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The equation of continuity is 

div (pu)=O, (1) 

where u is the velocity of the fluid element. 

The equation of motion for the present case is the 
same as given by Schappert [3J: 

(2) 

where f3 is the dimensionless constant defined by 

(e)21 (3){3 = 2X(1)rtol>o 41CI>R 2 ' 

and X is defined by the equation of state 

p x(1)p· (4) 

The solution for Equations (1) and (2) should satisfy 
the boundary condition u(R)=OR sin 4>1</1' where l¢ is 
a unit vector in the direction of increasing 4>. 

The zero-order solution in u for p may be of the 
form 

pO(r) = p eP(R1r)4, r» R, (5)o

where Po is the pressure at the boundary. 

For the first-order solution in u, p enters the 
equation of continuity in its zeroth order, i.e. 

(6) 
which is 

(7) 

Introducing the transformation 

u = uoe - {3(R 1rl 
4

v(r, 0), (8) 

we have from Equation (7), 

div v=O. (9) 

v is a solenoidal vector and therefore it can be derived 
as a curl of some vector A. Since the curl of a polar 
vector is an axial vector and vice versa, then A is a 
polar vector. Accordingly we may follow Landau and 
Lifshitz's [5J suggestion for the form of A. For the 
present case we are led to the following expression for 
v: 

v{r,O) lrv(r) cosO-lo~ dd [r 2v(r) sinOJ
2r r 
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and 1r' 1o, 14> are unit vectors in the directions of axes 
of coordinates. 

v(r) and W(r) satisfy the following conditions: 

8v(r)
v(R)=-,,-lr=R=O, W(r) = 1 (11) 

or 

8v 

v(oo)= 1, 8r =0, 


It is clear that the solution for v given by Equation 
(10) satisfies Equation (9) and all the boundary con­
ditions for Equations (1) and (2). 

It is apparent that the solution for p is independent 
of 4>, hence we can write 

(13) 

Substituting from Equations (10) and (13) into (2), we 
obtain for the r-component: 

4R4 8pI
pi fJ( 

(14) 

for the e-component: 

1 8PI_~1]U e_P(R1r)4(4fJR4) sin 0 
r 8e 3 0 r6 

2 
sinO{d[d 2 
+~ dr dr2 (r v) 

4fJR
4 d ] 4fJR

4[d2 

----(r2v) +-- -~(r2v)
5r dr r5 dr 2 

+ 2v 4(JK' :r (r 2 v)J}~uo =0, (15) 

and for the 4>-component: 

2 R4
d 2 d (4fJ )C.i7r W) dr ~~" W 

R44fJ { d 2+2W-~- - (r W) 
r 5 dr 

4 
4fJR }+ W =0, (16) 
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It is clear that the dependence of pion eis cos e. If we 
write 

(17) 

and 

r x (18) 

Equations (14) and (15) reduce to Schappert's 
equations, namely 

1 d 2 d Ur ) 4" ° + - (X -". - -- (u + uo) = (19)[ X 2 dX dX Xj \ r 

A ] 

, 

and 


~ 4 

P(X) -3 f3X 5 Ur(X) 

(Ur+U O) =, ( )2 "J ° 20A 

where 


U = e -P/x4
V(X), (21)
r 

_ ,,;x4 1 dv(X)e p, (22)
2X dX 

and 

v(X) (1-2+~~~_)
2X 2X3 

2 66/70 1/14 3/35 9/5) (23)
+f3( -X4 + + +--X+X3 ' 


Equation (16) reduces to 


2 

-d 2 (X2W) - 2W+ 4fJ{dd(X - 3 W)
dX X 

+X-5d~(X2W)}=0. (24) 

To find the solution for W we notice that the zero­

order solution in fJ for Equation (24) gives W 1/X 3

, 


so it can be written in the form 


W(X) 1 +f3(-~.+~). (25)
X3 X 7 

B can be calculated by substituting into Equation (24) 

and linearizing in f3. A can be obtained from the 
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boundary condition (11), hence we obtain 

W(X)=~3 +1{~7-;3 ). (26) 

It should be noted that the boundary condition (12) 
is automatically satisfied. 

3. DRAG AND TORQUE 

Now we proceed to calculate the couple Q on the 
sphere. We note that the velocity components Un ue 
and their derivatives vanish on the sphere; it follows 
that the only component of the stress tensor which 
contributes to Q is F rljJ , 

uljJ 	 (27)8UIjJ)
11

( 
--+- ,

r 	 8r 

F rljJl x"" 1 110. sin O( - 3 - 8f3), (28) 

Q= L~ sin OP,.(lnR 2 sin 8)d8, (29) 

hence 

(31)Q 8n~!lR3{1+~:; Ta0 60 (4n:R Zn. 
It is clear that the moment has increased because of 

polarizability by 

8p32 3 (e)2
-nJ],I1R '" T iloeo 4 R2 ' 3 op ne 

since the hydrodynamic moment is 8rco.11R2. It should 
be noted that the above approximation is valid only 
when f3 is small. Schappert calculated f3 for the helium 
atom (f3 ~ 2.3), by the formula 

1piloeo ( e )2
f3 ~2 Mc2 4neoR2 , 

where C the velocity of sound. This value of f3 will 
introduce a remarkable change to the value of Q. 

From Equations (19) and (20), the drag force is still 
that calculated by Schappert, 

F=6nRUo	 (32)+31sao6o ;;{In:Ri )} 

in which F has decreased by the polarizability effect. 
The drag force decreases owing to the electrostriction, 
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though the stress components Frr and Fro increase. 
Schappert explains the decrease in the drag force that 
the body force overcompensates for the increase of the 
stress components. The only stress component that 
contributes to the torque Q is F rljJ which is decreased 
by electrostriction. A similar mechanism is therefore 
responsible for the increase of the torque due to the 
electrostriction. 

If the axis of rotation of the sphere is not in the 
same direction of the flow, the suggested form of the 
velocity u: 

u uoe-P(RM
4 {1,L"(r) cos 0 1';r ~~(r2V'(r) sin II) 

+l.e/l!l/"UW'(r)!l x r}, 	 (33) 

the term 0. x r will contribute to the O-component of the 
velocity; consequently Equations (19) and (20) will be 
modified and the drag force will be in general different 
from that given by Equations (32). 

If Uo 0, the solution of u given by Equation (10) 
satisfies the equation 

div u 0, 	 (34) 

which means that the motion has been reduced to that 
of an incompressible fluid and the correction given by 
(13) will be meaningless. 
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