SOME COMMUTATION PROPERTIES

IN THE FREE ALGEBRA

ABDULLAH H. AL-MOAJIL

خلاصة

افرض ان عبارة F عبارة عن نصف مجموعة حرة معرفة على فنة محدودة من المولدات او فنة لا نهائية من المولدات قابلة للعد ، وافرض أن A هي جبر كل الدوال ذات القيم المركبة المعرفة على F بواسطة الجمع المتعلق بالنقط أو الضرب الالتفافي .

في هذا البحث نبرهن على انه اذا كانت $f, g \in A$ حيث f كثيرة حدود متجانسة و fg = gf فانه توجد كثيرة $g = \sum_{i=0}^{\infty} b_i h^i$, $f = ah^n$ بحيث أن a, b_o, b_1, \dots مدود متجانسة $h \in A$ وعدد صحيح موجب n وأرقام مركبة ..., b_o, b_1, \dots

ومن هذه النتيجة نبرهن أيضاً انه اذا كانت f, g ∈ A و fs = gf فان fg = gf أبضاً اذا كان fⁿ = gⁿ فان f=ag حيث a عدد مركب معين يحقق العلاقة aⁿ = 1

ABSTRACT

Let F be the free semigroup on a finite or countably infinite set of generators, and let A be the algebra of all complex valued functions on F with pointwise addition and convolution multiplication.

It is shown that if f, $g \in A$, f is a homogeneous polynomial and fg = gf; then there is a homogeneous polynomial $h \in A$, a positive integer n and complex numbers a, b_0, b_1, \dots such that $f = ah^n$ and $g = \sum_{i=0}^{\infty} b_i h^i$. From this it is shown that if f,

 $g \in A$ and $f^n g = gf^n$ then fg = gf, also if $f^n = g^n$ then f = ag for some complex number a with $a^n = 1$.

INTRODUCTION

Let F be the free semigroup on some finite or countably infinite set of generators. Let A be the algebra of complex valued functions on F with pointwise addition and convolution multiplication, i.e., if $s \in F$ and f, $g \in A$, then fg is defined by

$$fg(s) = \sum_{rt=s} f(r) g(t)$$

If we let I(e) = 1 and I(s) = 0 for $s \neq e$ (Where e is the empty word in F), then it is easy to check that I is an identity for A.

Let B be the subalgebra of A consisting of all $f \in A$ with $\sum_{s \in F} |f(s| < \infty)$. Then B is a Banach algebra with

dentity where
$$|| f || = \sum_{s \in F} |f(s)|$$

The algebras A and B have been the subject of a lot of research lately, since they provide examples of extreme cases of non-commutativity. This paper is concerned with some commutation relations in A. It is a by product of the author's work with the algebra B [1]. For the interested reader we also refer him to Reference [2] for some impressive results concerning the algebra B.

TERMINOLOGY AND NOTATION.

Given $s \in F$ and a generator c of F we let $d_c(s)$ denote the number of occurences of c in the expression for s. The degree of s, d(s), is defined to be $\sum \{ d_c(s): c \text{ is a generator for } F \}$. In other words d(s) is the length of s. It is easy to see that d(st) = d(s) + d(t). Given $f \in A$ we let S_f denote the support of f, i.e., $S_f = \{s \in F: f(s) \neq 0\}$. If S_f is finite we say f is a polynomial and if d(s) = d(t) for all s, $t \in S_f$ we say f is a homogeneous polynomial. If f is a homogeneous polynomial we let d(f) = d(s) for $s \in S_f$. It is clear that in this case d(fg) = d(f) + d(g)

Given $f \in A$, let $m_1(f)$ denote the set of words of minimum degree in $S_f \setminus \{e\}$. After defining $m_1(f), ..., m_k(f)$, define $m_{k+1}(f)$ to be the set of words of minimum degree in S_f subject to the condition d(s) < d(r) for $S \in m_k(f)$ and $r \in m_{k+1}(f)$; i.e., $m_{k+1}(f)$ contains the words in S_f . which are next in length to those in $m_k(f)$. If no such words exist, let $m_{k+1}(f) = \emptyset$. Note that $m_n(f) = 0$ for some n if and only if f is a polynomial.

For each n > 0, let $f_n = f \setminus m_n(f)$, i.e., f_n is the restriction of f to $m_n(f)$. Thus f_n is a homogeneous polynomial.

The letter C will denote the field of complex numbers.

Commutation Properties in A.

By a homogeneous polynomial we will always mean a non-trivial one, i.e., we exclude the case f=1. The following lemma is easy to prove (by induction on k) and we leave it to the reader.

1. Lemma.

Let $f_1, ..., f_k$ be homogeneous polynomials and let $s_1, ..., s_k$ be elements of F such that $d(f_i) = d(s_i)$; i = 1, ..., k. Then $f_1 ... f_k (s_1 ... s_k) = f_1(s_1) ... f_k(s_k)$.

2. Lemma.

Let f and g be homogeneous polynomials and suppose that d(f) = d(g). If fg = gf then there exists a number α such that $f = \alpha g$.

Proof.

Let $s \in S_f$ and $t \in S_g$. Then, by lemma 1. $0 \neq f(s) g(t) = fg(st) = gf(st) = g(s) f(t)$. Hence $g(s) \neq 0 \neq f(t)$.

This says that $S_f = S_g$. Now let $s,t \in S_f = S_g$. Let $\alpha = \frac{f(s)}{g(s)}$ and $\beta = \frac{f(t)}{g(t)}$. Then β g(s) g(t)=g(s) f(t)=gf(st)=fg(st)=f(s) g(t)= α g(s) g(t).

Hence $\beta = \alpha$. Thus $\frac{f(s)}{g(s)} = \alpha$ for all $s \in S_f$ and thus $f = \alpha g$.

3. Lemma.

Let f and g be homogeneous polynomials with fg=gf. Then there exists a homogeneous polynomial $h \in A$ such that $f = \alpha h^n$ and $g = \beta h^m$ for some α , $\beta \in C$ and some positive integers n and m.

Proof.

Without loss of generality we may assume that $d(f) \ge d(g)$.

Claim 1.

There exists a non negative integer k such that for each $s \in S_f$ there exists $r_1, ..., r_k \in S_g$ and $t \in F$ with d(t) < d(g) and $s = r_1 ... r_k t$.

Proof.

Let $s \in S_f$ and let $r \in S_g$. We have $0 \neq f(s)$ g(r) = fg(sr) = gf(sr). Hence there exists $r \in S_g$ and $t_1 \in F$ such that $d(t_1r) = d(s) = d(f)$ and $r_1t_1 = s$.

Now $0 \neq f(s)$ g(r)=fg(sr)=gf(sr)=gf(r_1t_1r) = g(r_1) f(t_1r). Hence $f(t_1r) \neq 0$.

Suppose $d(t_1) \leq d(g)$, then by repeating the same argument with s replaced by t_1r , we get r_2 and t_2 such that $t_1 = r_2 t_2$ and $f(t_2 r_1 r) \neq 0$, so $s = r_1 r_2 t_2$.

Repeating the same procedure until $d(t_k) < d(g)$ we get $s=r_1...r_kt_k$.

Claim 2.

Let s and t be as in the conclusion of claim 1. Then given any $r_1, ..., r_k \in S_g$; we have $r_1...r_j$ t $r_{j+1}...r_k \in S_f$ for any j=0, ...,k. Moreover, $f(r_j ...r_k tr_1...r_{j-1}) = f(r_1...r_k t)$ for all j.

Proof.

By claim 1, there exists $r_1, ..., r_k \in S_g$ such that $s=r_1 ... r_k$ t for some t with d(t) < d(g).

We have $g(r_1) f(r_2 \dots r_k tr_1) = gf(r_1 \dots r_k tr_1)$ = $fg(r_1 \dots r_k tr_1) = f(r_1 \dots r_k t) g(r_1) = f(s) g(r_1) \neq 0.$

Repeating this argument establishes the second statement of the claim. We now show that.

(1) $r r_{j+1} \dots r_k t r_1 \dots r_{j-1} \in S_f$ for all j and all $r \in S_g$ and (2) If $r_j' \dots r_k' t r_1' \dots r_{j-1}' \in S_f$ then $r_{j-1}' \dots r_k' tr_1' \dots r_{j-2}' \in S_f$ for all $r_1', \dots, r_k' \in S_g$.

This will establish the claim.

Let $r \in S_g$. Then

 $0 \neq g(r) f(r_{j+1}...r_k tr_i ...r_j) = gf(r r_{j+1}...r_k tr_1 ...r_j) = fg(r r_{j+1}...r_k tr_1...r_j) = f(r r_{j+1}...r_k tr_1...r_{j-1}) g(r_j)$ which proves (1).

Let $f(r_{j}' \dots r_{k}' tr_{1}' \dots r_{j-1}') \neq 0.$

Then $0 \neq g(r_{j-1}) f(r_{j}' \dots r_{k}' t r_{1}' \dots r_{j-1}') =$ = $gf(r_{j-1}'r_{j}' \dots r_{k}' t r_{1} \dots r_{j-1}') =$ = $fg(r_{j-1}' r_{j}' \dots r_{k}' t r_{1}' \dots r_{j-1}') =$ = $f(r_{j-1}' \dots r_{k}' t r_{1}' \dots r_{j-2}') g(r_{j-1}').$ This finishes the proof of the claim

Claim 3.

Let $T_1 = \{ t: d(t) < d(g) \text{ and there exists}$ $r_1, \dots, r_k \in S_g \text{ such that } r_1 \dots r_k t \in S_f \}.$ Then given $t \in T_1$ and $r_1, \dots, r_k; r_1', \dots, r_k' \in S_g$

we have
$$\frac{f(\mathbf{r}_1 \dots \mathbf{r}_k t)}{g(\mathbf{r}_1) \dots g(\mathbf{r}_k)} = \frac{f(\mathbf{r}_1' \dots \mathbf{r}_k' t)}{g(\mathbf{r}_1') \dots g(\mathbf{r}_k')}$$

Hence the map $t \rightarrow \frac{f(\mathbf{r}_1 \dots \mathbf{r}_k t)}{g(\mathbf{r}_1) \dots g(\mathbf{r}_k)}$ is a well defined

function of T_1 into C.

Proof.

 $\begin{array}{l} g(r_{1}') \dots g(r_{k}') \ f(r_{1} \dots r_{k} \ t) = \\ = g^{k}(r_{1}' \dots r_{k}') \ f(t \ r_{1} \dots r_{k}') = g^{k}f \ (r_{1}' \dots r_{1}' \ t \ r_{1} \dots r_{k}) = \\ = fg^{k} \ (r_{1}' \dots r_{k}' \ t \ r_{1} \dots r_{k}) = f(r_{1}' \dots f_{k}' t) \ g(r_{1}) \dots g(r_{k}). \end{array}$

Claim 4.

Given $t \in T_1$ and $r \in S_g$ there exists $t' \in T_1$ and $r' \in S_g$ such that tr = r't'.

Proof.

Choose any $r_1, \ldots, r_k \in S_g$. Then $r_2, \ldots, r_k rt \in S_f$ and hence $0 \neq g(r_1) f(r_2 \ldots r_k rt) = gf(r_1 \ldots r_k rt) = fg(r_1 \ldots r_k rt)$. Hence there exists $r' \in S_g$ and $t' \in F$ such that d(t') = d(t) and rt = t'r'.

But $r_1 \dots r_k t' \in S_f$, thus $t' \in T_1$.

Claim 5.

Choose
$$r_1...r_k \in S_g$$
 and let $h_i(t) = \frac{f(r_1...r_kt)}{g(r_1)...g(r_k)}$

for $t \in T_1$. Let $h_1(s) = 0$ for $s \in T_1$. Then $f = g^k h_1 = h_1 g^k$, $gh_1 = h_1 g$ and $fh_1 = h_1 f$. (Note that h_1 is independent of the choice of $r_1 \dots r_k$ by claim 3.)

Proof.

It is obvious that $f = g^k h_1 = h_1 g^k$. Now, by claim 4, $S_{gh_1} = S_{h_1g}$.

Let $tr \in S_{h_1g}$ with $t \in S_{h_1}$ and $r \in S_g$. Then, by claim4, there exists $r' \in S_g$ and $t' \in S_{h_1}$ such that tr = r't'.

We have
$$h_1 g(tr) = h_1(t) g(r) = \frac{f(r_1 \dots r_{k-1} rt) g(r)}{g(r_1) \dots g(r_{k-1}) g(r)}$$

$$= \frac{f(r_1 \dots r_{k-1} r t)}{g(r_1) \dots g(r_{k-1})} = \frac{f(r_1 \dots r_{k-1} t' r')}{g(r_1) \dots g(r_{k-1})}$$

$$= \frac{f(r_1 \dots r_{k-1} t' r') g(r')}{g(r_1) \dots g(r_{k-1}) g(r')}$$

$$= h_1(t') g(r') = g(r') h_1(t') = gh_1(r't') = gh_1(tr).$$
Hence $h_1 g = g h_1$
We also have $h_1f(t'r_1 \dots r_k t) = h_1(t') f(r_1 \dots r_k t) =$

$$= \frac{f(r_1 \dots r_k t')}{g(r_1) \dots g(r)} f(r_1 \dots r_k t) = \frac{f(r_1 \dots r_k t)}{g(r_1) \dots g(r_k)} f(r_1 \dots r_k t')$$

$$= h_1(t) f(r_1 \dots r_k t') = f(t'r_1 \dots r_k)h_1(t) = fh_1(t'r_1 \dots r_k t)$$
Hence $h_1 f = f h_1$. This establishes the claim.

Claim 6.

There exists a homogeneous polynomial $h \in A$ such that $g = \alpha h^n$ and $f = \beta h^m$ for some $\alpha, \beta \in C$ and some positive integers n and m.

Proof.

If $T_1 = \{1\}$ then $s \in S_f$ if and only if $s = r_1 \dots r_k$ for some $r_1 \dots r_k \in S_g$. Hence $S_f = S_g^k$, and since $f g^k = g^k$ fit follows by lemma 2 that $f = \alpha g^k$ for some $\alpha \in C$ If $T_1 \neq \{1\}$, then replacing (f,g) by (g,h_1) in the previous claims we obtain a set T_2 and $h_2 \in A$ such that $S_{h_2} = T_2$, $d(h_2) > d(h_1)$, $g = h_1^{k_1} h_2$ for some positive integer k_1 and h_2 commutes with h_1 and g.

If $T_2 \neq \{1\}$ repeat the same argument to obtain T_3 and h^3 This process will stop at the n-th stage when $T_{n+1} = \{1\}$. Let $h = h_n$. Then it is easy to verify that h satisfies the conclusion of the claim. This finishes the proof.

Lemma 4.

Let f and $g \in A$ be homogeneous polynomials. Suppose that $f^n = g^n$ for some positive integers n and m. Then fg=gf.

Proof.

We may assume that $d(f) \ge d(g)$. Given $s \in S_f$ we have $s^n \in Sg^m = (S_g)^m$. Hence there exists r, $r' \in S_g$ and $u, u' \in F$ such that s = ru = u'r.

Claim 1.

If $ur \in S_f$ then $r'u \in S_f$ for all $r' \in S_g$, where $r' \in S_g$.

Proof.

We have
$$0 \neq g(\mathbf{r}') f(\mathbf{ur})^{\mathbf{n}} = gf^{\mathbf{n}}(\mathbf{r}'(\mathbf{u} \mathbf{r})^{\mathbf{n}}) = f^{\mathbf{n}} g(\mathbf{r}'(\mathbf{ur})^{\mathbf{n}})$$

= fⁿ(r' u(r u)ⁿ⁻¹) g(r) = f(r' u) f(u r)ⁿ⁻¹ g(r). Hence r' u \in S_f.

Claim 2.

If $u r \in S_f$ with $r \in S_g$ then f(u r) = f(r u).

Proof.

Fix $\overline{u} \ \overline{r} \in S_f$ where $\overline{r} \in S_g$. Let $s \in S_f$ be arbitrary. Let s = u r where $r \in S_g$. Then $f(r \ \overline{u}) \ f(\overline{r} \ \overline{u})^{n-1} = f^n(r \ \overline{u} \ (\overline{r} \ \overline{u})^{n-1}) = g^m(r \ \overline{u}(\overline{r} \ \overline{u})^{n-1}) =$ $= g(r) \ g^{m-1}((\overline{u} \ \overline{r})^{n-1} \ \overline{u}) = g^{m-1}((\overline{u} \ \overline{r})^{n-1} \ \overline{u}) \ g(r) =$ $= g^m((\overline{u} \ \overline{r})^{n-1} \ \overline{u} \ r) = f^n((\overline{u} \ \overline{r})^{n-1} \ \overline{u} \ r) = f(\overline{u} \ \overline{r})^{n-1} \ f(\overline{u} \ r).$ Hence

 $\frac{f(\bar{u}\ r)}{f(r\ \bar{u})}\ = \left(\!\frac{f(\bar{r}\ \bar{u})}{f(\bar{u}\ \bar{r})}\!\right)^{n-1}$

Now $f(ru) f(r u)^{n-1} = f^n (ru (r u)^{n-1}) = f^n (u(ru)^{n-1} r)$ (by going through g^m)

$$= f^{n}(u r (u r)^{n-1}) = f(u r) f(u r)^{n-1}$$

Hence
$$\frac{f(\mathbf{r} \ \mathbf{u})}{f(\mathbf{u} \ \mathbf{r})} = \left(\frac{f(\overline{\mathbf{u}} \ \mathbf{r})}{f(\mathbf{r} \ \overline{\mathbf{u}})}\right)^{n-1} = \left(\frac{f(\overline{\mathbf{r}} \ \overline{\mathbf{u}})}{f(\overline{\mathbf{u}} \ \overline{\mathbf{r}})}\right)^{(n-1)^2} = \alpha$$

Let $U = \{ u \in F : ru \in S_f \text{ for some } r \in S_g \}$. Then $S_f = \{ ru : r \in S_f u \in U \} = \{ ur : r \in S_f u \in U \}$

$$Inen S_{f} = \{ ru : r \in S_{g}, u \in O \} = \{ ur : r \in S_{g}, u \in O \}$$

Hence
$$\sum_{u \in U} f(u,r) = \sum_{g \in F} f(s) = \sum_{u \in U} f(r,u).$$

 $r \in S_g$ $r \in S_g$

Thus $\alpha = 1$, establishing the claim.

Claim 3.

f g = g f.

Proof.

Let $s \in S_f$ and $r \in S_g$. Then there exists $s_1 \in S_f$ and $r_1 \in S_g$ such that $s r = r_1 s_1$, and hence there exists $u \in F$ such that $s = r_1 u$, so $ur = s_1$ since $r_1 ur = r_1 s_1$. Thus we have $f(u r_1)^n g(r) = f(r_1 u)^n g(r) = g^{m+1} ((r_1 u)^n r) =$ $= g(r_1) g^m (u(r_1 u)^{n-1} r) = g(r_1) f^n ((u r_1)^{n-1} u r) =$ $= g(r_1) f(u r_1)^{n-1} f(u r)$. Hence $f(u r_1) g(r) = g(r_1) f(u r)$. Thus $fg(sr) = fg(r_1 ur) =$ $= f(r_1 u) g(r) = f(u r_1) g(r) = g(r_1) f(u r) = g(r_1) f(s_1) =$ $= g f(r_1 s_1) = g f(s r)$. Hence f g = g f. This finishes the proof.

5. Lemma.

Let f and g be homogeneous polynomials in A. If $fg^k = g^k$ f for some positive integer k, then there exists $\alpha \in C$ and positive integers m and n such that $f^m = \alpha g^n$

Proof.

Let $h_1 = f^{k d(g)}$ and let $h_2 = g^{k d(f)}$.

Then $h_1 h_2 = h_2 h_1$ and $d(h_1) = k d(g) d(f) = d(h_2)$. Hence by Lemma2 there exists $\alpha \in C$ such that $h_1 = \alpha h_2$. Hence $f^{k d(g)} = g^{k d(f)}$.

The following theorem summarizes the results in the previous lemmas.

6. Theorem.

Let f and g be homogeneous polynomials in A. Then the following statements are equivalent.

- (a) fg = gf.
- (b) $f g^k = g^k f$ for some positive integer k.
- (c) $f^m = \alpha g^n$ for some $\alpha \in C$ and some positive integers m and n.
- (d) There exists h ∈ A such that f = α h^m and g = βhⁿ for some α, β∈C and some positive integers m and n.

Proof.

(a) \implies (b) : trivial (b) \implies (c) : by Lemma 5 (c) \implies (a) : by Lemma 4 (a) \implies (d) : by Lemma 3 (d) \implies (a) : trivial.

7. Corollary.

If f, g, and h are homogeneous polynomials such that f h = h f and g h = hg, then f g = g f.

Proof.

By theorem 6, $f^n = ah^m$ for some n, m > 0 and $a \in C$. Hence $f^n g = g f^n$ and thus f g = g f by (b) of theorem 6

8. Corollary.

If f, $g \in A$ with f a homogeneous polynomial and f g = g f, then there is a homogeneous polynomial h such that $f = a h^n$ and $g = \sum_{i=0}^{\infty} b_i h^i$ for some n > 0 and complex numbers a, b_0 , b_1 , ...

Proof.

Note that for every positive integer m, we have

 $f g_m = (f g)_m = (g f)_m = g_m f$. Hence by corollary 7, the elements f, g_1 , g_2 , ... are pairwise commutative.

Let B be a maximal commutative subalgebra containing f (such subalgebra exists by Zorn's lemma). Then $g_m \in B$ for all m > 0.

Choose $h \in B$ to be a homogeneous polynomial of minimal degree. Then there exists $k \in A$ such that $f = ak^n$ and $h = k^m$. By corollary 7, $gk_m = g_mk$ for all m>0. Hence, $k \in B$ by maximality of B and thus $\mathbf{k} = \mathbf{h}$ by minimality of $\mathbf{d}(\mathbf{h})$.

Repeat the above argument with g_m in place of f, to get $g_m = c_m h^{k_m}$ for some $k_m \ge 0$ and $c_m \in C$. Therefore $f = a h^n$ and $g = \sum_{i=0}^{\infty} g_i = \sum_{i=0}^{\infty} c_i h^{k_i}$.

9. Lemma.

A has no zero divisors.

Proof.

Suppose $f \neq 0 \neq g$. Let $s \in m_1(f)$ and $t \in m_1(g)$. Then $f g(s t) = f(s) g(t) \neq 0.$

10. Theorem.

Let f, $g \in A$ with $f^n g = g f^n$ for some positive integer n. Then fg = gf.

Proof

We have $f^{n}(fg-gf)=(fg-gf)f^{n}$. Therefore, $f_1^{n}(fg-f)_1 = (f^{n}(fg-gf))_1 = ((fg-gf)f^{n})_1$ $=(fg-gf)_1f_1^n$ (1)

From the fact that $f^n g = gf^n$, we get,

$$\sum_{k=0}^{n-1} f^{n-k-1} (fg-gf)f^{k} = 0.$$

Hence $0 = \left[\sum_{k=0}^{n-1} f_{k-1}^{n-k-1} (fg-gf)_{f}f^{k}\right]_{1} = \sum_{k=0}^{n-1} f_{1}^{n-k-1} (fg-gf)_{1}f_{1}^{k} = n f_{1}^{n-1} (fg-gf)_{1}; by (1).$

Hence, by lemma 9, $f_1=0$, or $(fg-gf)_1=0$ and therefore f=0 or fg=gf.

11. Theorem.

n

k

If f, $g \in A$ with $f^n = g^n$ for some positive integer n. Then f=a g for some $a \in C$ such that $a^n=1$. (This result shows uniqueness, in some sense, of n-th roots, when they exist).

Proof.

If $f^n = g^n$, then fg = gf by theorem 10, and the result follows by factoring out fngn and applying lemma 9.

BIBLIOGRAPHY

- (1) A.H. Al-Moajil, "Nilpotency and quasinilpotency in Banach Algebras," Ph. D. dissertation, University of Oregon, 1973.
- (2) B.A. Barnes and J. Duncan, "The Banach Algebra 1 (s)." Journal of Function Analysis, 18 (1975), 96-113.

Reference Code for AJSE Information Retrieval : QA 1175 MO1. Paper received April 5, 1975.