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SOME COMMUTATION PROPERTIES

IN THE FREE ALGEBRA
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ABSTRACT

=1 M Gl o S 0 3% 2 Lo f=ag

Let F be the free semigroup on a finite or countably infinite set of generators,
and let A be the algebra of all complex valued functions on F with pointwise addition

and convolution multiplication.

It is shown that if f, g e A, fis a homogeneous polynomial and fg = gf; then
there is a homogeneous polynomial h €A, a positive integer n and complex numbers

a,bo, b,, ... such that f = ah® and g = f
1=

bhi. From this it is shown that if f,

geA aund f"g=gf" then fg=gf, also if f"=g" then f =ag for some complex number

a with a®=1.

INTRODUCTION

Let F be the free semigroup on some finite or
countably infinite set of generators. Let A be the
algebra of complex valued functions on F with point-
wise addition and convolution multiplication, i.e.,
if s € Fandf, g € A, then fg is defined by

fels) = D) gt)

n=s

If we let I(e) = 1 and I(s) = O for s = e (Where ¢
is the empty word in F), then it is easy to check that
I is an identity for A .

Let B be the subalgebra of A consisting of all f e A with
Z | f(s | <oo. Then Bis a Banach algebra with
seF

> fe |

seF

dentity where | f|| =

The algebras A and B have been the subject of
a lot of research lately, since they provide examples
of extreme cases of non-commutativity. This paper is
concerned with some commutation relations in A.
It is a by product of the author’s work with the algebra
B [1] . For the interested reader we also refer him to
Reference [2] for some impressive results concerning
the algebra B.

TERMINOLOGY AND NOTATION.

Given seF and a generator ¢ of F we let d (s)
denote the number of occurences of ¢ in the expression
for s. The degree of s, d(s), is defined to be
Z { d.(s): c is a generator for F }. -

In other words d(s) is the length of s. It is easy to
see that d(st) = d(s) + d(t).
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Given f e A we let S, denote the support of f,i.e.,
S¢= {s e F: f(s) # 0}. If S; is finite we say fis a
polynomial and if d(s) = d(t) for all s, t € S; we say
f is a homogeneous polynomial. If f is a homogeneous
polynomial we let d(f) = d(s) for s e S;. It is clear
that in this case d(fg) = d(f) + d(g)

Given f € A, let m,(f) denote the set of words of
minimum degreein S;\{e} . After defining m(f),...,
m,(f), define m, . ,(f) to be the set of words of minimum
degree in S; subject to the condition d(s) < d(r) for
Sem,(f)and rem,. (f); i.e., m, ,(f)contains the words
in S;. which are next in length to those in m(f). If no
such words exist, let m,+,(f)= . Note that m(f)=0
for some n if and only if f is a polynomial.

For each n>0, let f,=f\m,(f), ie., f, is the
restriction of f to m,(f). Thus f, is a homogeneous
polynomial.

The letter C will denote the field of complex
numbers.

Commutation Properties in A.

By a homogeneous polynomial we will always
mean a non-trivial one, i.e., we exclude the case f=1.
The following lemma is easy to prove (by induction
on k) and we leave it to the reader.

1. Lemma.

Let f}, ..., fibe homogeneous polynomials and
let s, ...,s,be elements of F such that d(f)) = d(s,);
i=1,..,k Then f . .f (s, ..5)=f(s,) ..fi(s)

2. Lemma.

Let f and g be homogeneous polynomials and
suppose that d(f ) = d(g). If fg =gfthen there exists
a number ¢ such that f = ¢ g.

Proof.

Let s € S; and t ¢ S,. Then, by lemma 1.
0 3 f(s) g()="Fg(st)=gf(st)=g(s) f(t). Hence g(s) % O
# f(t).
This says that S;= S,
Now let ste S;=S§,.
Let ¢ = f(—s) and =f(_t).
&) &(t)
Then § g(s) g(t)=g(s) f()=gf(st) =fg(st)=f(s) g(t)=
«8(s) g(t).
f(s)

Hence3 = «. Thus Iss) =g for all s ¢ S; and

thus f=ag.

3. Lemma.

Let f and g be homogeneous polynomials with fg=gf.
Then there exists a homogeneous polynomial he A such
that f = « h" and g=3 h™ for some «, 8 e Candsome
positive integers n and m.

Proof.

Without loss of generality we may assume that
d(f) > d(g).

Claim 1.

There exists a non negative integer k such that for
each s e S; there exists r,,.,r; €S, and teF with
d(t)<d(g) and s = r; .1 t.

Proof.

Let seS; and let reS;. We have 0 2f(s) g(r)="fg(sr)
= gf(sr). Hence there exists r S, and t,e F such that
d(t;r)=d(s) = d(f) and ryt;=s.

Now 0#f(s) g(r)=fg(sr)=gf(sr)=gf(rt,r) =g(r,) f(t,r).
Hence f(t,r)#0.

Suppose d(t;) < d(g), then by repeating the same
argument with s replaced by t,r, we get r, and t, such
that t,=r,t, and f(t,r,;r)#0, so s=r;r,t,.

Repeating the same procedure until d(t,) < d(g) we get
S=T,...I 1.

Claim 2.

Let s and t be as in the conclusion of claim 1. Then
given any ry,...1, €S;; we haver,...r; tr; ;... r,eS; for
any j=0, ..,k. Moreover, f(r; ..t tr,...1; ;) = f(r, .5, 1)
for all j.

Proof.

By claim 1, there exists ry,..., 1, € S, such that
s=r, ..., t for some t with d(t) < d(g).
We have g(r)) f(r,...rtr)=gf(r,...5ytry)
=fg(ry... rtry) =f(r, .1 0) g(r,)=1Gs) g(ry) #0.

Repeating this argument establishes the second
statement of the claim. We now show that.

(1) rrjgg ...1c try ...1j4€ Sefor alljand allr € Sg and
Q) Ifry ..o’ tr ... 151" €Se then 1y ... r'try” ... 132
€ Sgforall ry;.,r' €S

This will establish the claim.
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Let re S;. Then

0# g(l’) f(l'j+|... ritr; ... l'j) =gf(l’ Tit1...Tct I .0 r,-) =
=fg(rrj41 ... it rp...0) =f(C 141 ... Tt 11...T5) 8(15)
which proves (1).

Let f(r,-’ I i SR I'j.ll) # 0.

Then 0 # g(ri'.) f(ry ... 0"ty ... ') =
=gf(tjury ...ty ... 1) =

=fg(l"j.1 I'j‘ LLnltry .. I"j-l)=

=f(l"j_1 fk' trl' l"j.z) g(r’,-.,).

This finishes the proof of the claim

Claim 3.
Let T;= {t: d(t) < d(g) and there exists
...,k € Sg such that ry...rcte S¢}.

Then given t € Ty and 1y, ..., 1x; 11’y ...y T’ € Sg
we have f(ry...rct) f(ry...1e’' t)
g(ry)...gm) ~ g(r1)...glrx")

Hence the map t fri. 1 O is a well defined

7.2
function of T, into C.
Proof.

g(r) ... gr) f(ry ... e t) =
=ghr ..o ) ftr ... )=gf(r ...ty m) =
=fgk (r/'..0y’ try ... i) = f(ry" ... fi't) g(r1) ... g(re).
Claim 4.

Givent e T and r e S; there exists t'e€ T, and
r' e S, such that tr = r't’.

Proof.

Choose any ry,...,1, € S;. Then ry,...,1, 1t € S¢and hence
0 # g(r) f(r;...01t) = gf (ry..1, 1) =F g (r, .. 1, 1t).
Hence thereexists ' ¢ S; andt’ ¢ F such that d(t') ==
d(t) and rt=t'r’.

But r,..rt° eS¢, thus t'eT,.

Claim 5.

f(r,...r,t)
gry)...g(m)
for te T,. Let hy(s)=0 for s €T,. Then f=g*h,=h, g*,
gh; =h,g and fh, = h,f. (Note that h, is independent
of the choice of ry... 1, by claim 3.)

Proof.
It is obvious that f=gk h; =h, g*

Choose ry...1; € S; and let hy(t) =

Now, by claim 4, Sghl = S“lﬂ'
Let tr€S, , with te S, and re S Then, by claim4,

there exists r" € S; and t' € S, such that tr=rt".
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f(ry...t  _, t) g(r)
8(ry)---8 (re—y) £(r)
f(ry... 1 _yrt) f(ry...r_, t'1")
ey gy g(ry)...g (1)
_f(rl...rk_, t'r’) g(r)
g (ry) ... g(re—y) 8(r")
=hy(t") g(r’)=g(r") hy(t)=gh,(r't')=gh, (tr).
Hence h; g =gh,
We also have hf(t'r,...rt) = h,t")f(r; ..., t) =
_ My ..ont) _f(y ... nt)
g(ry) ... g) g(ry) .- (1)
=h,t) f(r, ... r,t") = f(t'r, ... r)h,O)=Fh,(t'r,... 1,t)
Hence h, f = fh;. This establishes the claim.

We have h, g(tr)=h,(t) g(t)=

f(ry...nt)

f(r,...r,t")

Claim 6.

There exists a homogeneous polynomial he A such
that g=ah” and f=0h™ for somea 3cC and some
positive integers n and m.

Proof.

If T, = {1} then se S;if and only if s=r,...r,
for some r..r.eS; Hence S;=S;, and since
f g*=g* fit follows by lemma 2 that f=xg* for somexeC
If T, # {1}, then replacing (f,g)by (g,h,) in the previous
claims we obtain a set T, and h, €A such that Sp,=T,,
d(h,)>d(h,), g=h;*1, for some positive integer k,
and h, commutes with h, and g.

If T, # { | } repeat the same argument to obtain T;and h?
This process will stop at the n-th stage when T, ,, = {1}.
Let h=h, . Then it is easy to verify that h satisfies the
conclusion of the claim. This finishes the proof.

Lemma 4.

Let f and g€ A be homogeneous polynomials.
Suppose that f"=g" for some positive integers n
and m. Then fg=gf.

Proof.

We may assume that d(f)>d(g). Given se S; we have
s" e Sgm = (5,)™. Hence there exists r, "¢ S; and
u,u’ € F such that s=ru = u'r.

Claim 1.
If ur e S; then r'ueS; for all r'eS;, where r'eS;.

Proof.
We have 0 # g(r’) f(ur)*=gf *(r'(u r)")=f*2 g(r’(ur)*)
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=f°(r" u(r w™') g(r) = f(r' v) fu ™' g(1).
Hence r'ue S, .
Claim 2.

If ureS; with re S; then f(ur) = f(r u).

Proof.
Fix UT e S; where T e §;.
Let seS; be arbitrary. Let s = ur where r €S,. Then
fr ) fF 0)™' = u () *!)=g" ru@@u) *)=
=g g™ (@DH™ ) = g™ (@D"'W g(r) =
=g (@D an=(@nH™'ur) = @D f@r).
Hence
f(ur) T w\™!
fca) (f(ﬁ T)))
Now f(ru) f(r u) *! = £* (ru (r u) *' )=f"(u(ru) *' r)
(by going through g™)
=f"ur ur)*') = fur) fu r)>!

Hence f(ru) _ (f(t'i r) )n'l _ (f(f ﬁ))(n-l)z .

fur)  \ f(ru) f@r)
LetU={uegF:rueS,for some reS;}.

ThenS;= {ru:reS;,uelU} = {ur:reS;, ueU}

Hence Z f(u,r) = Z f(s) = Z f(r,u).

u€U 8EF wEU
rES‘ I'ES‘
Thus «=1, establishing the claim.
Claim 3.
Proof.

Let seS;and r e S;. Then there exists s, €S; and r, €S,
such that sr = r; s;, and hence there exists ueF such
that s=r, u, so ur=s, since r, ur = r; s,. Thus we have
flur,) g@=frw? g@) = g™ *' ((r,u)'r) =
=g (1) g™ (u(r; ) " 1)= g (@)~ ur) =
=g(r,) fur)* ! fur).

Hence f(u r,) g(r)=g(r,) f(u r). Thus fg(sr)="fg(r, ur)=
=f(r, v) g()=f(ury) gO)=g(r,) fur)=g () f (s,)=
=gf(r;s) = gf(sr).

Hence fg = gf. This finishes the proof.

5. Lemma.

Let f and g be homogeneous polynomials in A.
If f g“ = g* f for some positive integer k, then there
exists aeCand positive integers m and n such that
fo =ag®
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Proof.

Let h,=f*® and let h,=g<¢®,
Then h; h, = h, h; and d(h;) = kd(g) d(f) = d (h,).
Hence by Lemma?2 there exists «eC such that h;= «h,.
Hence f* ¢ (8)= gkd (D)

The following theorem summarizes the results in the
previous lemmas.

6. Theorem.

Let f and g be homogeneous polynomials in A.
Then the following statements are equivalent.

(@ fg=gf
(b) fgt=gkf for some positive integer k.

) f®= ¢ g" for somex e C and some positive
integers m and n.

(d) Thereexistsh ¢ A such thatf = « h™and g =3h"
for some «, eC and some positive integers m

and n.
Proof.
(a) = (b) : trivial
(b) = () : byLemmas5
(0 = (@) : byLemma4
(@ = (d) : byLemma3
(d = (a) : trivial

7. Corollary.

If f, g, and h are homogeneous polynomials such
that fh = hf and gh = hg, then fg=gf.

Proof.

By theorem 6, f*=ah™for some n, m> 0anda €C.
Hencef® g = g f®and thusf g=g fby (b) of theorem 6

8. Corollary.

If f, geA with f a homogeneous polynomial and -
fg = gf, then there is a homogeneous polynomial h

such that f = a h" and g= ibihi for some n>0
i=o
and complex numbers a, by, b, ...

Proof.

Note that for every positive integer m, we have
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fg.=fg n=0Ef), =g.f Hence by corollary 7,
the elements f, g,, g,, ... are pairwise commutative.

Let B be a maximal commutative subalgebra
containing f (such subalgebra exists by Zorn’s lemma).
Then g, e B for all m > 0.

Choose he B to be a homogeneous polynomial of
minimal degree. Then there exists kA such that

f = ak® and h = k™. By corollary 7, gk, = g,k for
all m>0. Hence, k eB by maximality of B and thu$
k = h by minimality of d(h).

Repeat the above argument with g, in place of
k
f, to get g,=cyh ™ for somek, > 0 and c,eC.

Therefore f =a h"andg= 3> g= 3 chk

i=0 i=0
9. Lemma.

A has no zero divisors.

Proof.

Suppose f #0 # g. Lets em,(f) and t € m,(g).Then
fg(st) = f(s) g(t) # 0.
10. Theorem.

Letf, g e Awithf® g=g " for some positive integer
n. Then fg=gf.
Proof

We have f*(fg—gf)=(fzg—gO)f "
Therefore, f ,°( fg—f), =("(fg—egf) ), =( (fg—ef ) f"),
=(fg—efh),f,’ ¢y
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From the fact that f"g=gf", we get,

n-1
> fo-k-1 (fg-gf)fk=0.

k=g

n-1
Hence 0 = [ T vkl (fg - gf) f* ]1 =
k=0

n-1
> frket (fg-gf) fi*=

k=0

=nfj" (fg-gf),; by (1).
Hence, by lemma 9, f;=0, or (fg—gf),=0 and therefore
f=0 or fg=gf.

11. Theorem.

If f, ge A with f®=g" for some positive integer n.
Then f=ag for some a ¢ C such that a®=1. (This
result shows uniqueness, in some sense, of n-th roots,
when they exist).

Proof.

If f"=g", then f g = gf by theorem 10, and the
result follows by factoring out fZ2g" and applying
lemma 9.
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