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ABSTRACT. 

C. Chevalley gives a definition of an algebraic Lie algebra using the concept of 
algebraic group and characterizes these algebras. Jacobson has defined the concept 
of an almost algebraic Lie algebra of linear transformations. In this paper we give a 
purely algebraic definition of an algebraic Lie algebra. Using results from linear 
algebra we obtain: 

Theorem. If L is an algebraic Lie algebra over a field of characteristic zero, then 
L is almost algebraic. 

INTRODUCTION 

In this paper F denotes a field of characteristic 
zero. All vector spaces over F will be finite dimensional. 
Let L be a vector space over a field F with a binary 
composition defined from LxL to L. L is called an 
algebra provided: 

(i) 	 (bilinear condition or distributive property) 

(x+y)z=xz+yz, x(y+z)=xy+xz 

for x, y, z in L 

and 	 (ii) c(xy)=x(cy) for c E F and X,y E L. 

L is called a lie algebra if L is an algebra and 
(iii) 	xx=o for all x in L 

and 	 (iv) (Jacobi identity) (xy)z+(yz)x+(zx)y=O 
for x, y, z E L. 

The basic structure theory for Lie algebras can be 
found in [4] and [5]. 

If V is a vector over F, denote by End (V) the set 
of all linear transformations of V into V. End (V) 
forms a ring. In particular End (V) is an associative 

algebra over F. If we define a new binary operation 
[x,y]=xy-yx called the bracket of x and y or the Lie 
product or commutator, we get a Lie algebra structure 
on End (V). In order to distinguish the Lie algebra 
structure from the associative algebra structure we 
denote this algebra by gl(V). 

Jacobson [3] has defined almost algebraic. In this 
paper we give a purely algebraic definition of an 
algebraic Lie algebra, and show that algebraic implies 
almost algebraic. The usual definition that an algebraic 
Lie algebra is the Lie algebra of some algebraic group 
is seen to be equivalent to our definition; see [1, 
proposition 2, p. 181]. 

RESULTS FROM LINEAR ALGEBRA 

For completeness we collect some results from 
linear algebra. 

Theorem 	 1. 

Let A be an endomorphism (linear transformation) 
of a vector space V over F. The following are equi­
valent: 
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(i) 	 A is semisimple. 

(ii) 	 The minimum polynomial P for A is of the 
form p=p. P2... where Pi (i= I, ... ,k) are Pk 

distinct irreducible polynomials of F[x]. 

(iii) 	A is diagonalizable over a splitting field K ofF. 

(iv) Every A-invariant subspace W 	of V has a 
complementary A-invariant subspace. 

(v) 	 Every subspace W of V is aT-admissible 
subspace of V. Recall that W is T-admissible 
means that W is invariant under T and if 
f(T)u is in W for f E F [x] and any u in V 
there exists a vector w in W such that 
f(T)u =f (T) w. 

Theorem 2. 

Let A be an endormorphism of a vector space V 
over F. The following are equivalent. 

(i) 	 A is nilpotent. 

(ii) 	 AD =0 for some positive integer n. 

(iii) 	 All characteristic values of A are zero. 

The basic ideas of the proofs of the above two 
Theorems which characterize semisimple and nilpotent 
endomorphisms may be found in Hoffman and 
Kunze [3]. 

Definition 3. 

A Lie Algebra L of linear transformatIons of a 
vector space over F is called almost algebraic if it 
containts the nilpotent and semisimple components 
for each A E L. 

Recal that a field F of characteristic zero has an 
algebraic closure. 

Theorem 4. 

Let F be a field of characteristic zero and V be a 
vector space over F. If A is an endomorphism on 
V, then 

(i) there exists a semisimple endomorphism S 
and a nilpotent endomorphism N so that A=S+N. 

(ii) 	 Sand N commute, i.e., SN=NS. 

(iii) 	 Sand N are unique. 

(iv) 	 Sand N are polynomials in A. 

Proof 

See [3, Theorem 13, p. 267]. 

The above decomposition of A = S + N into 
semisimple and nilpotents is called the additive Jordan 
decomposition of A. 

Definition 5. 

A map p :L~ gl(V) is a representation of the Lie 
a] gebra L if P is a F-linear map and 

P(x,y)= [p(x), P(y)] 

= P(x)P(y) - p(y)p(x) 
for all x,y in L. 

Theorem 6. 

Let V* = Hom (V,F) be the dual space of the 
vector space V. Define 

Vpg=V® ... ®V ® V*® ... ®V* 
, .J \, zzw::A J 

p-copies q-copies 

where p and q are non-negative integers. 

The map p:gl(V)~gl(Vpq) defined by p(A)=Apq 
is a representation of gl (V) in gl (Vpq)' 
Apq is defined by 

Apq (v. ® ... ®vp ®v.*® ... (8)Vq*)= 

Av. (8) ... ®vp @v.*® ... ®Vq* 

(I) + v. ®Av2® ... <8> vp® v.* ® ... ®Vq* + .. . 

+ v.® ... ®vp ®A*v.*® ... ®Vq* + .. . 

+ v.® ... ®vp ®v.*®... ®A*vq* 

where Vi E V for i= 1, ... ,p; vj * E V* for j = 1,... ,q 
and A * is the transpose of A. A very read able treat­
ment of tensor product may be found in [6]. 

Example 7. 

Let p=q= 1. Thus p: g.(V) ~ g.(Vll) 
where V. 1=V ®V*. 

Clearly p is F-linear. To show 

p ([A,B])= [A,B] 11 = [All,Bll ] = [p(A), P(B)]. 

Now for v E V and A E V*, 

[A,B] 11 (v ® A)= [A,B]v ® A +v ® [A,B]* A 

= [A,B]v ® A +v ® [A*,B*] 

= (ABv-BAv) ® A + v (A*B* A - B*A* A) 

= ABv® A- BAv ® A + v ® A*B*A - v ® B*A*A. 

Also, 
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(Al1BII-BllAlI)(V@A)=AllBII(V@A)-BuAl1 (V@A) 

= Au(Bv ®A +V® B*A)- BIl(AV®)\)- Bll(v®A*A) 

= ABv®A+Bv®A*A+Av® B*A+V®A*B* A_ BAv 

-BAv @A - Av® B*A - Bv A* A - v® B*A* A 

= ABv®A+v® A*B*A -BAv®A-V® B*A*A. 

Comparing the above two equations, we see that p 
is a representation. 

ALGEBRAIC LIE ALGEBRAS. 

We now give a purely algebraic definition of an 
algebraic Lie algebra which is independent of the 
concept of an algebraic group. Then the main result 
of this paper is established in Theorem 12. 

Definition 8. 

Let A be an endomorphism of a vector space V. 
Then an endormorphism B of V is called ~ replica 
of A if and only if B kills the tensors killed by A, i.e., 
for each positive integers p,q then Apq(v)=O if and 
only if Bpq(v)=O. 

Definition 9. 

A Lie algebra contained in gl(V) is called an 
algebraic Lie algebra if and only if L contains the 
replicas for all its elements. 

Lemma 10. 

Let AeEnd (V) where A=S+N is the additive 
Jordan decomposition of A into semisimple and 
nilpotent components Sand N respectively. Then the 
representation p : A -+ Apq preserves Jordan de­

composition, i.e., Apq=Spq+Npq . 

Proof 

Since p is a representation [Spq,Npq ] = [S,Npq ] =0 
Therefore SpqNpq = NpqSpq . Let the dimension of V 
be n. By Theorem I(i) if and only if (iii), choose a 
basis {VI'" .,vn } of V consisting of characteristic 
vectors for S. If F is not a splitting field for S we may 
extend F to a field K which is a splitting field. Also 

choose a dual basis {vI*, ... ,vn*} of V* consisting of 
characteristic vectors for S*. Thus {Vii vjl ... Vjp*} 
is a basis for Vpq and Spq has these basis elements 
as characteristic vectors. So Spq is semisimple. Npq 
is a sum of commuting nilpotents of the form 
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ly®...®N® ...®Iv*®...®ly• 

ly® ... ®ly®Iv*® ... @N* ® ... ® Iy•. 

Therefore, Npq is nilpotent. 

Theorem II. 

Let Apq e p ( g I (V)) c g I (V pq)' Then there exists 

semisimple Spq in gl ( V pq) and nilpotent Npq in 
gl(Vpq) such that 

(i ) 	 Apq = Spq+Npq 

(ii) 	 SpqNpq = NpqSpq 

(iii) 	 Spq and Npq satisfying ( i) and (ii) are unique 

and each is a polynomial in Apq. 

Proof 

Statements (i) and (ii) follow from Lemma 10. The 
uniqueness part of (iii) is the same as the uniqueness 
proof in the additive Jordan decomposition (see 
[3, Theorem 13, p.222]). Let Ae gl(V) and, A=S+N 

be the additive Jordan decomposition. By [3, Theorem 

13, p.267], s is a polynomial in A. Hence there is 

f in F[x]so that f(A)=S. By using equation I we 

see that f(Apq)=Spq' Since Npq=A-Spq, Npq is also 
a polynomial in Apq . 

Theorem 12. 

Let L be an algebraic Lie algebra over a field of 

characteristic zero. Then L is almost algebraic. 

Proof 

Let AeL, then Aegl(V). Thus A has an additive 

Jordan decomposition, Le., A = S + N. Suppose 

Apq ( V ) = O. Since Spq is a polynomial in Apq. we 

have an fin F[x] so that Spq=f(Apq ). Consequently, 

f(Apq) (v)=O for each v e Vpq for which Apq(V) = O. 

Otherwise, if Apq (v)=O and f(Apq)(v):F 0 then 

f(Apq)(v)=cv for some ceF. This means v is a cha­

racteristic vector for Spq. Hence v is a characteristic 

vector for Apq. But this would contradict the fact 

that Apq (v )=0. This shows that Spq is a replica of 

Apq. L algebraic implies S is in L. So N =A-S is 

in L. Therefore L is almost algebraic. 
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