EXISTENCE THEOREM FOR ABELIAN GROUPS

A. SHAWKY IBRAHIM*

هذا البحث يتعلق بعمل إمتداد لبعض التطابقات الذاتية الجزئية لمجموعات إبيليه . ويسمى تطابقاً جزئياً لمجموعة G أي تناظر تطابقي µ يرسم تحت مجموعة G⊇A على تحت مجموعة أخرى B⊇G ومن المعلوم أن أي تطابق ذاتي جزئي µ لمجموعة G يمكن إمتداده إلى تطابق كلي *µ لمجموعة *G تحوى المجموعة G ، والإمتداد هنا يعني أن *µ معرفه لحميع عناصر تحت المجموعة A وأن *µ=µ لكل عنصر A∈A . وقد أمكن بعد ذلك إيجاد شروط كافية لإمتداد تطابقين جزئيين ٧,4 لمجموعة إبيليه G إلى تطابقي كلي عنصر *٧ ، *µ لمجموعة اليلية G تحوى المجموعة الابيلية *G بحيث أن *µ محموعة بعن كلي تصر وفي هذا البحث تمكن من إيجاد شروط كافية لامتداد تطابقين جزئين ٧,4 لمجموعة إبيليه G إلى تطابقين كلين وفي هذا البحث تمكن من إيجاد شروط كافية لامتداد تطابقات ذاتية جزئية π ,٧,4 لمجموعة ابيلية G إلى تطابقات كلية ∞، ∞, 0 لمجموعة ابيلية K تحوى المجموعة الأبيلية G بحيث أن 40 ∞ 00 ، ∞

ABSTRACT

The main purpose of the following paper is to derive conditions which are sufficient for extending three partial automorphisms of an abelian group G to three automorphisms of an abelian supergroup $K \supseteq G$ such that these automorphisms commute among themselves.

INTRODUCTION

By a partial automorphism of a group G we mean an isomorphic mapping μ of a subgroup $A \subseteq G$ onto another subgroup $B \subseteq G$, where B need not be different from A. If μ is defined on the whole of G then it is usually called automorphism on G. It is known [4] that any partial automorphism of a group can always be extended to an automorphism of a supergroup. It is also known [1] that under certain sufficient conditions, two partial automorphisms of an abelian group can be extended to two commutative automorphisms of an abelian supergroup. In this paper we consider a given abelian group G and three partial automorphisms μ, ν and τ of G and derive conditions which are sufficient for μ , ν and τ to be all extendable to automorphisms θ , \emptyset , and ω , respectively of one and the same abelian supergroup $K \supseteq G$ such that θ , \emptyset and ω commute among themselves. The principal tool throughout is the direct product of two groups with one amalgamated subgroup [2].

THE CONSTRUCTION

Let G be an abelian group which contains subgroups A, B, C, D, F, and H and three partial automorphisms μ , ν and τ that maps A isomorphically onto **B**, C isomorphically onto D, and F isomorphically onto H respectively. Assume that:

1)	$(\mathbf{A} \cap \mathbf{C}) \boldsymbol{\mu} = \mathbf{B} \cap \mathbf{C}$	2)	$(A \ \cap \ D) \ \mu = B \cap \ D$
3)	$(A \cap F) \mu = B \cap F$	4)	$(A \cap H)_{\mu} = B \cap H$
5)	$(C \cap A) \lor = D \cap A$	6)	$(C \cap B) \nu = D \cap B$
7)	$(C \cap F) \lor = D \cap F$	8)	$(C\ \cap\ H)\ v=D\cap\ H$
9)	$(F \cap A) \tau = H \cap A$	10)	$(F \cap B)_{\tau} = H \cap B$
11)	$(F \cap C) \tau = H \cap C$	12)	$(F \cap D) \ \tau = H \cap D$
13)	$g_{\mu\nu}=g_{\nu\mu}, g_{\mu\tau}=g_{\mu\tau} \text{ and } g_{\nu\tau}=g_{\tau\nu}$		

whenever $(g\mu)$, $(g\tau)$, $(g\nu)$, $(g\mu)$, $(g\mu)$, $(g\nu)\mu$, $(g\nu)\mu$, $(g\nu)\tau$ $(g\tau)\mu$, $(g\tau)\nu$ are defined.

Define for each i in I, the set of all integers, a group G_i isomorphic to G under a fixed isomorphism γ_i :

$$G\gamma_i = G$$

Thus each G_i contains subgroups A_i, B_i, C_i, D_i, F_i, and H_i which are isomorphic images of A, B, C, D, F and H under γ_i , and there exist isomorphisms $\mu_i = \gamma_i^{-1}\mu_i \gamma_i$, $\nu_i = \gamma_i^{-1}\nu\gamma_i$ and $\tau_i = \gamma_i^{-1}\tau\gamma_i$ mapping A_i onto B_i, C_i onto D_i and F_i onto H respectively

* Mathematics Department, University of Petroleum and Minerals, Dhahran, Saudi Arabia.

 A_i , B_i , C_i , D_i , F_i , and H_i satisfy the conditions that correspond to 1 - 13.

Now we define a sequence of groups $P_{i,j}$ for all $i, j \in I$ and i < j as follows: we first form the direct product of G_i and G_{i+1} amalgamating $B_i \subseteq G_i$ with $A_{i+1} \subseteq G_{i+1}$ according to the isomorphism $\gamma_i^{-1} \mu^{-1} \gamma_{i+1}$. Call this direct product $P_{i,i+1}$:

 $P_{i,i+1} = \{ G_i \times G_{i+1} ; B_i = A_{i+1} \}$

Then define P_{i, j} inductively to be the direct product

$$P_{i,j} = \{P_{i,j-1} \times G_j; B_{j-1} = A_j\}$$

amalgamating $B_{j-1} \subseteq P_{i, j-1}$ with $A_j \subseteq G_j$ according to the isomorphism $\gamma_{j-1}^{-1} \mu^{-1} \gamma_j$

If we form $K_1 = \bigcup_{n=1}^{\infty} P_{n,n}$

then K_1 is evidently abelian.

Using Lemmas 1 and 2 in Reference[1] and through steps similar to those in Lemmas 5-8, Reference [3], we can prove that K_1 possesses an automorphism θ_1 that extends each μ_i and partial automorphisms \emptyset_1 that extends each ν_i , and ω_i that extends each τ_i such that: \emptyset_1 maps the subgroup

$$V = \{..., C_{.1}, C_o, C_1, ...\} \subseteq K_1$$
 onto the subgroup

$$W = \{..., D_{.1}, D_{0}, D_{1}, ...\} \subseteq K_{1}$$

and $\boldsymbol{\omega}_1$ maps the subgroup

 $Y = \{\dots, F_{-1}, F_0, F_1, \dots\} \subseteq K_1$ onto the subgroup

 $Z = \{..., H_{-1}, H_{0}, H_{1}, ...\} \subseteq K_{1}$

and θ_1 maps V, W, Y, and Z each onto itself.

Lemma.

In K_1 the following holds

(i) $(V \cap Y) \varnothing_1 = W \cap Y$ (ii) $(V \cap Z) \varnothing_1 = W \cap Z$ (iii) $(Y \cap V) \omega_1 = Z \cap V$ (iv) $(Y \cap W) \omega_1 = Z \cap W$ (v) $k_1 \varnothing_1 \omega_1 = k_1 \omega_1 \varnothing_1$ whenever $k_1 \varnothing_1, k_1 \omega_1$ $(k_1 \varnothing_1) \omega_1, (k_1 \omega_1) \varnothing_1$ are defined. *Proof.*

By the use of lemmas 5 and 6 in Reference [3] together with the uniqueness of the normal form of the elements of the direct product of groups with one amalgamated subgroup [2], any element $x \in V \cap Y$ can be written in the form

$$\mathbf{x} = \mathbf{x}_{\alpha(1)} \mathbf{x}_{\alpha(z)} \dots \mathbf{x}_{\alpha(n)},$$

Where each $x_{\alpha(i)\in} C_{\alpha(i)} \cap F_{\alpha(i)}$ and $\alpha(1) < \alpha(2) < \dots < \alpha(n)$. Thus $x \otimes_1 = (x_{\alpha(1)} \vee_{\alpha(1)}) (x_{\alpha(2)} \vee_{\alpha(2)}) \dots (x_{\alpha(n)} \vee_{\alpha(n)}),$ where each $x_{\alpha(i)} \vee_{\alpha(i)} \in D_{\alpha(i)} \cap F_{\alpha(i)}$ by condition 8. Thus $x \otimes_1 \in W \cap Y$, and $(V \cap Y) \otimes_1 \subseteq W \cap Y$. On the other hand, any element $y \in W \cap Y$ can be written in the form

$$y = y_{\beta(1)} y_{\beta(2)} \dots y_{\beta(m)}$$

where each $y_{\beta(i)} \in D_{\beta(i)} \cap F_{\beta(i)} =$

 $(C_{\beta(j)} \cap F_{\beta(j)}) \vee_{\beta(j)} = (C_{\beta(j)} \cap F_{\beta(j)}) \varnothing_{1},$

Thus $y \in (V \cap Y) \varnothing_1$, and hence $(W \cap Y) \subseteq (V \cap Y) \varnothing_1$, which completes the proof of (i). Similarly we prove (ii), (iii), and (iv). The proof of (v) is by direct calculation, putting under consideration condition 13 and that \varnothing_1 and ω_1 extend each v_i and τ_i respectively. This completes the proof of the lemma.

Using the above lemma and lemma (3) in Reference [1] we can prove that: If we replace G; A, B, C, D, F, H; μ , ν , τ by K₁; V, W, Y, Z, K₁, K₁; $\emptyset_1 \omega_1$, θ_1 respectively then the conditions that correspond to 1) - 13) will be satisfied.

Thus we can repeat the above procedure, this time embedding K_1 in an abelian group K_2 which posesses an automorphism \emptyset_2 that estends \emptyset_1 and two partial automorphisms ω_2 and θ_2 extending ω_1 and θ_1 respectively such that \emptyset_2 , ω_2 , θ_2 , commute among themselves.

We carry on indefinitely, thus when K_{n-1} is formed we embed it in the abelian group K_n that possesses three mappings θ_n , \emptyset_n and ω_n one of which is an automorphism and the others are parial automorphisms such that θ_n , \emptyset_n , and ω_n commute among themselves.

Finally we form the group

$$K = \bigcup_{n=1}^{\infty} K_n$$

which is abelian and define the mappings θ , \emptyset and ω . as follows: For any $k \in K$, $k \in K_i$ for some i and we put

$$k \theta = k \theta_i;$$
, $k \varphi = k \varphi_i, k \omega = k \omega_i$

Thus θ , \emptyset and ω are automorphisms of K which extend each θ_i , \emptyset_i and ω respectively and hence extend μ , ν and τ .

Using Lemma 4 in Reference [1] we can prove that θ , \emptyset and ω commute among themselves.

This completes the proof of the following theorem

Theorem.

Conditions 1-13 are sufficient for extending three partial automorphisms μ , ν and τ of an abelian group G to automorphisms θ , \emptyset , and ω of an abelian group K \supseteq G such that θ , \emptyset , ω commute among themselves.

REFERENCES

- C.G. Chehata and A. Shawky, "Note on Extending Partial Automorphisms of Abelian Groups." *The Journal of the Australian Math. Soc.*, Vol. XI, Part 1, 1970.
- (2) C.G. Chehata and A. Shawky, "Normal Form of Elements of the Direct Product of Groups with one amalgamated Subgroup." *The Journal of Natural Sciences and Mathematics, Pakistan*, Vol. VII, No. 2, Oct. 1967.
- (3) C.G. Chehata, "Commutative Extention of Partial Automorphisms of Groups." Proc. Glasgow Math. Association, Vol. I, Part IV, 1953.
- (4) G. Higman, B.H. Neumann and Hanna Neumann
 "Embedding Theorems for Groups." J. London, Math. Soc., 24, 1949.

Reference Code for AJSE Information Retrival: QA1175IB 1. Paper received March 15, 1975.