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ABSTRACT 

Linear stability analysis, Lyapunov analysis, and the Nyquist diagram are powerful 
tools with which to study plasma stability. Their applications, however, are not 
limited to the field of plasma physics. This paper presents a comprehensive 
(nonspecialized) discussion of these methods for stability analysis of nonlinear 
oscillations and waves. 
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BASIC METHODS FOR STABILITY ANALYSIS OF 
NONLINEAR OSCILLATIONS AND WAVES 

1. EQUILIBRIUM AND STABILITY 

An equilibrium is a state in which all forces are 
balanced. The equilibrium is stable or unstable accord
ing to whether small perturbations are damped or 
amplified. To illustrate, consider a simple one
dimensional system in a potential field, such as a 
marble in a vertical gravitational field, e.g. a marble on 
a surface represented by Figure 1. The positions A, B, 
C, E, F, and G are positions of equilibrium. In these 
positions, the force, which is proportional to the slope, 
is zero. D is not an equilibrium position; the marble if 
placed there is acted on by a force accelerating it 
toward C. 

The equilibria Band C are, however, very different. 
The slightest perturbation of the marble from position 
B results in a force which accelerates it away from the 
equilibrium. At position C if the marble is perturbed it 
is acted on by a force which returns it toward C; the 
marble here executes oscillations around the equilib
rium position. Since a small perturbation of the mar
ble can never be completely avoided, it is clear that 
for practical purposes the unstable position B is no 
better than the nonequilibrium position D. 

V(x} 

B 

In position E the marble is stable; however, if it is 
moved beyond a threshold, it is in an unstable state. 
This is called an 'explosive instability'. A similar si
tuation occurs in position G. At E we have linear 
stability and nonlinear instability, while at G we have 
a state of metastable equilibrium. In position F the 
marble is unstable, but it cannot go too far; it has 
limited excursions. At F we have a linear instability 
and a nonlinear stability. In position A the marble is 
said to be neutrally stable. 

In general, if the solution of an ordinary or partial 
differential equation describing a given process be
comes infinite for an increasing independent variable 
(mainly the time), then we call the solution unstable 
and we speak of an instability. Sometimes an in
stability occurs during a finite time to, 

1 
lim qJ(t) = 00, e.g. for qJ(t)~~--, 

t-+to t-to 

where qJ represents, for example, the amplitUde of the 
oscillation or wave, then we speak of an explosive 
instability. 

Figure 1. 
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2. OSCILLATIONS AND WAVES 

Oscillations act on a single particle; the space coor
dinates x(t), yet), z(t) of an oscillating particle obey 
ordinary differential equations. Because of the interac
tion between particles the oscillatory motion of a 
single particle is spread over space and waves are 
generated. Waves amplitudes 'P(x,y,z,t) depend on 
space and time and are therefore described by partial 
differential equations. Both oscillations and waves are 
characterized by three basic quantities: the amplitude, 
the frequency, and the phase. 

If the ordinary (or partial) differential equation de
scribing a given process is linear, then the process and 
the instabilities are also called linear. Terms contain
ing powers of the dependent variable (amplitude) or of 
its derivatives make the differential equation nonlinear. 
The process and the instabilities are then called non
linear. (Nonlinear dispersion relations belong to non
linear wave equations and contain the wave 
amplitude.) 

3. OSCILLATIONS: A SIMPLE ONE
DIMENSIONAL PROBLEM 

Consider the equation of motion in the immediate 
neighborhood of equilibrium. If the coordinate of 
equilibrium is Xo and the force f(x), one finds 

mx=j(x)=j(xo)+!'(xo)(x-xo)+.'" (1) 

where primes and dots refer to derivatives with respect 
to the x coordinate and the time respectively. At the 
equilibrium position, j(xo) =0. If we introduce the dis
placement ~ = (x - xo), for small ~ we can neglect higher
order terms in (1), the resulting equation of motion, 

(2) 

yields the solution 

(3) 

where 

(4) 

The frequency* w is determined by the slope !'(xo) of 
the restoring force. For f'(x o)< 0, w is real and ~ 

oscillates; the equilibrium is stable. For !'(xo)> 0, W is 
imaginary and instability may occur. 

These results are easily understood from the energy 
principle. For a conservative system the sum of the 
kinetic and potential energies is constant. At equili
brium, since fix) = - Vex), the potential gradient 
V'(xo)=0 and if w2 = V"(xo)/m (from Equation (4)) is 
positive it follows that a displacement in either direc
tion increases the potential energy (~2V"(X)O»0), and 
therefore decreases the kinetic energy. This is the case 
of the marble in a potential well, the marble in static 
equilibrium at the bottom of the well has a zero kinetic 
energy and therefore cannot climb out of the well 
without help. On top of a potential hill, however, 
where w2 = V"(xo)/m is negative, the farther the marble 
rolls the more kinetic energy it acquires and the faster 
it runs away. 

In the presence of friction the motion is damped, the 
process is described by Equation (3) with complex w 
and 1m w <0. One can also contruct a system with posi
tive feedback. For example, an external energy pump 
which feeds energy into an oscillating system. If the 
process is linear it is described by Equation (3) with 
complex w, but here 1m w> O. Thus, to introduce 
linear damping (positive or negative) in Equation (1), 
it is convenient to consider solutions of the form (3) 
with complex w: 

(5) 

where obviously Wr == Re wand Wi == 1m w. The ve.rious 
possible cases are given in Table 1. y == Iwd is the 

.. Customary name for w by plasma physicists; it is the angular 
frequency measured in radians per second. 

Table 1. 

Type wr Wi Equation The solution is 

zO <0 e -yte-iwrt Stable Oscillatory, damped 

2 zO >0 eyte -iwrt Unstable Oscillatory, increasing 

3 0 <0 e- yt Stable Aperiodic, damped 

4 0 >0 e 
yt Unstable Aperiodic, increasing 

5 ~O 0 e- iwrt Stable Periodic 

6 0 0 Constant Stable Marginal, no motion 
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growth rate. Needless to say that unstable solutions 
are determined by Wi> O. 

4. OSCILLATIONS: THE DIFFERENTIAL 
EQUATION 

An extremely high number of oscillatory processes 
in science and engineering are described by equations 
of the type 

x' +q(t)g(x)h(x) +p(t)f(X) = F(t). (6) 

The first l.h.s. term is the acceleration. The second 
l.h.s. term describes damping or dissipation. The third 
Lh.s. term is the restoring force. (The restoring force 
describes the tendency of the system to return to or 
deviate from equilibrium.) The r.h.s. term describes the 
external force. q(t) and pet) contain parametric effects. 
The same characteristic types of solutions will be 
shown to appear for the nonlinear Equation (6) as for 
the linear equation discussed above. 

5. LINEAR STABILITY ANALYSIS 

The linearized analysis of equilibria consists in the 
transformation of Equation (6) into three first-order 
equations. If the time does not appear explicitly in the 
equation, i.e. if p =constant, q =constant, and F(t) =0, 
then Equation (6) is called autonomous and two equa
tions are sufficient. 

X=Q(x,X)=X, (7) 

x'=P(x,x)= -qg(x)h(x)-pJ(x). (8) 

In order to simplify our calculations we consider 
explicit forms for the functions g(x), hex), and J(x). For 
physical reasons, we choose symmetric attenuation in 
the form 

g(x)=x, (9) 

qh(x) = - a bx 2
, (10) 

and antisymmetric restoring force 

pf{x) ex -dx3
. (11 ) 

This choice comprises not only the Van der Pol 
equation but also Duffing's equation and Lashingsky's 
equation. In this case, the equation for the acceleration 
becomes 

P(x,x) ax+bx2 x+ex+dx 3
, (12) 

which with Equation (7) forms the desired set of two 
first-order equations. This set of equations has the 
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following equilibria: 

El: x=O, x=O (13) 

and 

E2: X= ±( -e/d)1/2, x=O. (14) 

We look for a solution of the form 

(15) 

where 1'1,2 are the roots of the characteristic equation 

(16) 

In Equation (16), the various quantities are defined as 
follows: 

(17) 

(18) 

(19) 

1. (20) 

The roots 1'1,2 of Equation (16) characterize the 
stability of the respective equilibrium solutions. If )'1.2 

are real then the solution is nonoscillatory and for 
both roots positive we have unstable solution type 4, 
for both roots negative the solution is stable type 3, 
and for roots of different signs we have unstable 
solution type 4 (see Table 1). If )'1,2 are complex 
conjugate then the solution is oscillatory and for the 
positive real part we have unstable solution type 2, for 
the negative real part the solution is stable type 1, and 
for purely imaginary roots we have stable periodic 
solution type 5. 

5.1. Stability at Equilibria Type El 

For E1 we have x=0 and x O. If we substitute in 
Equations (17)-(20) we obtain the coefficients 

e: a; Qx=O; Q,,= 1, (21) 

and hence, the characteristic equation 

,.{2 -al. -e =0. (22) 

Equation (22) leads to solutions of the types to 6 
found for the simple one-dimensional problem. 
,.{1,2 (a/2)±«a2/4)+e)1/2. The various possibilities 
are shown in Table 2. 
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Table 2 

c a Stability Type 

<0 Unstable 4 

>0 0 Unstable 4 

>0 Unstable 4 

<0 Stable 1,3 

<0 0 Stable 5 
>0 Unstable 

<0 Stable 3 

o 0 Marginal 6 

>0 Unstable 4 

The Stability 
conditions 

at El is established when the two 

a~O (23a) 

e~O (23b) 

are both satisfied. 

5.2 Stability at Equilibria Type E2 

For E2 we have X=O and x= ±( e/d)1/2; by sub
stituting in Equations (17)--(20) we obtain 

where 

be
A =a---- (25)

d' 

The resulting characteristic equation for E2 

).2 -A}.+2e=0 (26) 

yields the roots 

(27) 

We therefore have stability (negative real part) if* 

A~O (28a) 

e;;:::O. (28b) 

The solution is oscillatory if 

A2 < 8c. (29) 

*Equation (26) is of the same form as Equation (22). The conditions 
(28a, b) can therefore be deduced from the conditions (23a, b) by 
letting a~A and c~ -c. 

5.3. Stabilization by Saturation due to Nonlinear Term§ 

The calculations above demonstrate possible 

stabilization by saturation due to the nonlinear terms. 

For better clarification of this point compare the two 

sets of conditions (23a, b), where the equation is linear, 

and (28a, b), where the nonlinear terms are introduced 

into the equation. Consider for example the linear 

equation with as 0, e ;;:::0, and all the nonlinear terms 

equal to zero, then from (23a, b) the system has an 

unstable equilibrium at the origin. If the nonlinear 

terms are introduced and if the coefficients band dare 

chosen to give (-c/d);;:::O and AsO, the nonlinear 

system has two new* equilibria at x= ±J( c/d) 

which are stable. To illustrate, consider the values 

a = - 2, c = + 1, and all the nonlinear terms equal to 

zero, then the differential equation is 


x+2.x x=O, (30) 

which has an equilibrium at the origin that is unstable 

nonoscillatory of the type 4 (see it from (23a, b) or 

from ).1,2 = -1 ± j2). Let us now add the nonlinear 

terms, and consider precisely b + 1 and d 1, the 

differential equation becomes 


(31 ) 

In this case we have A -1 < 0, and since e = + 1> 0, 

then, from the conditions (28a, b) and (29) we have a 

stable oscillatory solution of the type 1 

().1,2= -1/2±ij7/4) at x ±1. 


6. THE LYAPUNOV ANALYSISt 

We consider here the more general Levinson-Smith 

equation: 


x' + g(x,x)x +.fix) =0. (32) 

For the case treated above, we have 

g(x,x)= -a-bx 2 
, (33) 

j(x)= -ex-dx3
• (34) 

F or equilibria of the type El we construct the 

*For the system described by Equations (7) and (12) the nonlinear 

effect is negligible at the origin. 

t The equilibrium of an autonomous system is stable in the 

Lyapunov sense, if in a certain region of phase space, which includes 

the equilibrium and its neighborhood, there exists a function V(x,x) 

of definite (positive or negative) sign, which admits an infinitely 

small upper bound, and is such that the total derivative dV/dt is 

semidefinite of opposite sign to V (or identically zero). 
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Lyapunov function: 
1 rx 

V(x,X)=:f(2 + Jo f(x)dx 

1'2 x 2 
X4 

=-x -c~-d- (35)
2 2 4' 

where x here is a small displacement from the origin. 

A necessary condition for stability is xj(x) ~O. This 
condition is implied by the fact that a perturbed stable 
system has a tendency to return to equilibrium. To 
understand this condition physically, consider the case 
of a simple spring for which j(x) = kx and xj(x) =kx 2 

(all simple spring oscillations are stable). This neces
sary condition for stability yields c~O, which is the 
same as condition (23b). 

Consider now 

. ,av ..av :n) 2 
V=k~+X--- XJ\x +xx= -x g(x, X), (36)ax ax 

where we have used the Equations (32) and (35). From 
Equation (33) we have 

(37) 

From Equation (35) and xf(x) ~O one can easily 
show that V= (X2 + xj(x))j2 +0(X4) is positive definite. 
Lyapunov's theorem for stability thus implies that 
V~O (or, more precisely, that V be negative semi
definite or identically zero). This condition yields a ~ 0, 
which is the same as condition (23a). Thus, the same 
conditions for stability at El are obtained from the 
Lyapunov and linear stability analyses. 

6.1. How to Apply the Lyapunov Analysis to Equilibria 
Type E2 

The Lyapunov function defined in Equation (35) is 
valid for the origin*, i.e. at x=O (El is an equilibrium 
at the origin). For E2, we need therefore to shift the 
singularity to the origin by the following transfor
mation: 

v=x-w; w= ±( _C/d)1/2. (38) 

We thus obtain the following differential equation: 

ii+ g(v, l~li +j(v) =0. (39) 

This equation is of the Levinson-Smith type where the 
functions 

g(v,[;)= A -bv2- 2bvw, (40) 

*V should admit an infinitely small upper bound. One rna)' satisfy 
this condition at E2 by taking V (v, v), where v = x ± ( - c/d)! and V 
as defined in Equation (35). 
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j(v) 2cv - 3dv 2 w -dv3
, (41) 

and A is defined in Equation (25). 

The transformation (38) transforms E2 to the origin 
of the v-axis. A necessary condition for stability at E2 
is vj(v) ~O. This condition yields c ~O which is the 
same as the condition (28 b) obtained from the linear 
stability analysis. 

As for El, we construct for E2 the Lyapunov func
tion 

V(v,v) =W + ff(V) dv. (42) 

The derivative of V with respect to time is 
V= v2g(V,V). By substituting from (40) we obtain 

t?(A + bv2+2bvw). (43) 

From Lyapunov's theorem (V~O as V=(v 2+vf(v))/2 
+ 0(v3 

) is positive definite) we have stability 
at E2 if A ~ O. This condition is the same as 
the condition (28a) obtained from the linear stability 
analysis. Thus the same conditions for stability at E2 
are obtained from the Lyapunov and linear stability 
analyses. 

7. WAVES: THE DIFFERENTIAL EQUATION 

We consider the linear partial differential equation: 

1 a2 'P a'P
V2'P g--+ b'P (44)at ' 

where 'P(x,y,z, t) is the wave amplitude. Here b, g, and 
v are constants characterizing the wave. v is the speed 
of whatever the wave is - in the case of sound, it is 
the sound speed; in the case of light, it is the speed of 
light; etc. 

8. WAVES: THE ONE-DIMENSIONAL 
PROBLEM 

We look for solutions of the form 

(45) 

If we substitute (45) in (44) we obtain the dispersion 
relation: 

(46) 

Since (46) belongs to a linear wave equation It IS 

sometimes called a linear dispersion relation, although 
k2 

(1)2 and appear. Nonlinear dispersion relations 
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belong to nonlinear wave equations and contain the 
wave amplitude. If g =0 (no dissipation) and 
b [46J becomes identical to 

(47) 

where vt/> is the phase velocity. If vt/> is constant the 
wave is called nondispersive, while if vt/> depends on 
w(and hence k) the wave is called dispersive. 

For problems with dissipation (g#O) wand H 
become complex. We consider H=Hr+iH i where Hr 
and Hi are respectively the real and imaginary parts of 
H(w,k), and w is defined in (5). In this case the phase 
velocity equals wrlk. From Equation (46) one finds 

Hi = (2Wi +gv2)wr =0 (48) 

and, for the real part, 

w;-wr- k2V2-bv2-Wjgv2=0. (49) 

From Equation (45) an instability is obtained if 
Wi >0. Equation (48) yields Wi= -gv2/2, so that the 
instability occurs when g < 0 i.e. for negative damping 
(of course). To obtain the phase and group velocities 
of the wave, one eliminates Wi in (49) by replacing 
from (48), one finds 

Hr w;-k2v2-bv2+±g2V4=0, (50) 

which yields the phase speed 

2 w ) b g2v )1/2
Vt/>= ( i v(l + k2 - 4k 2 ' (51) 

The group velocity, vi =dwr/dk), is obtained from (50) 

2I? V
V =--=- (52) 

g (wrlk) vt/>' 

An alternative form for Equation (52) is the well
known relation VgV t/> = v2 

. Precisely, v and Vg (the 
signal speed) :::; v. 

9. THE NYQUIST METHOD 

The Nyquist diagram is a convenient method for 
discovering instabilities. An instability is a root Wo of 
H(w, k) with 1m Wo > O. The number of unstable modes 
(unstable waves) therefore equals the number of zeros 
of H(w,k) in the upper half of the complex w-plane. 
For plasma waves the form of H(w,k) and location of 
its roots are determined by the equilibrium fields and 
plasma distribution. 

F. M. Harnzeh 

Assume H(w,k) to be an analytic function of w in 
the upper half of the complex w-plane. The function 
(dH(w, k)/dw)1 H{w, k) clearly has poles at those values 
of w fdr which H(w, k) has zeros. The number No of 
points where H(w, k) 0 in the upper half of the com
plex w-plane is given by the residue theorem 

(53)NO~2~ iJ (~ ~:) dw. 

The integration contour C is shown in Figure 2(a). 
Equation (53) can be generalized to functions H(w, k) 
analytic in the upper half of the complex w-plane 
except for a finite number of poles. 

The counter-clockwise contour C starts at Re w 
- 00, follows the real axis through w r =0, and goes 

to w r = + 00, then it closes back to w r = 00 on the 
Re ilJhalf circle (w with R ~ (0) over Wi = + 00. All 

the poles with Wi> 0 are enclosed. 

In many cases H(oo)=constant, so that 

1'1t(' dH) (54)1 ~ dw dO-->O, 

R~oo. 

For such cases the contribution from the great half 
circle vanishes and the integral in (53) is evaluated 
merely by finding the change in the phase of H as w 
changes from 00 to + 00 along the real axis 

f+ (~dH) dw In H( + (55) 
-oc Hdw H(-oo}' 

The number of instabilities is therefore obtained from 
(53), (54), and (55) 

N =~1_ In H( + (0) (56)
o 2ni H(

Equation (56) holds if H(lwl ~ oo)~ constant, thus 
IH( (0)1 IH( - 00 )1. Since the problem is unchanged by 
multiplying H(w, k) by a constant, we arbitrarily set 
IH( (0)1 = IH( 00 )1 = 1. The phase of H can be chosen 
arbitrarily at w 00; take H( - (0) = 1 (Le. the phase 
at 00 to be zero). This choice, however, determines 
the phase at w = + 00. 

21tinH( + (0) e , H( (0) 1. (57) 

The change of the phase is obtained by plotting Hi 
versus H r for all values of w from - 00 to + 00 on the 
real axis; n is the number of times the curve Hi versus 
H r encircles the origin. This curve in the complex H
plane is the conformal mapping of the real w-axis. The 
great half circle maps into H = 1. From Equations (56) 
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and (57) the number of instabilities is easily shown to 
equal n; 

No n. (58) 

The Nyquist technique is very useful since the dis
persion curve H(w, k) is simpler for real w than for 
complex w. Furthermore, to keep track of the encirc
ling of the origin only Hr at Wo such that Hj(wo) 0 is 
required. Note that the behavior of H(w) away from 
the points Hj(w) =0 is irrelevant to the stability analy
SIS. 

The Nyquist method is a powerful tool with which 
to study stability because it makes it possible to 
predict stability by calculating the sign of Hr for a few 
particular values of Wr instead of having to solve an 
equation H(w,k)=O. A simple example is presented 
below. 

10. A SIMPLE EXAMPLE 

We consider here the one-dimensional problem 
treated in Section 8. The dispersion relation is given by 
Equation (46). In this case (l/H dH/dw)dw does not 
vanish for Iwl-+ 00. Thus the sum of (l/H dH/dw)dw 
over the contour C cannot be replaced by J+ (l/H 
dH/dw)dw. This poses no real difficulty; writing 
w = ReiO, we sketch H(w) as w follows the contour C; 
this gives the number of instabilities directly. 

The imaginary part of H is given by Equation (48); 
the real part of H by Equation (49). Wi and g are 
related at the pole by the Equation (48). In order to 
simplify this example we substitute from Equation (48) 
once for Wi as function of gv 2 in the second term on 
the r.h.s. of Equation (49) only. This is equivalent to 
adding to Equation (49) a quantity that equals zero at 
the singularity. This is perfectly legitimate since it 
leaves the dispersion equation unchanged. We thus 
write the real part of the dispersion equation: 

H

On the real w axis (Wi =0) and for Wr (-R, 0, +R) 
we have Hi -gv 2 R, 0, gv 2 R) and H r=(R 2

, 

_(k 2 +b)v 2 , R2)* respectively. On the semicircle 
w=Reo and for 0 (0, n/2, n) we have respectively 

j = (gv 2 R, 0, _gv2R) and H r= (R2, -'igv2 R, R2 )*. 

For g >0 the wave is damped and therefore stable. 
Accordingly the corresponding Nyquist plot in Figure 

*Stated values sometimes take into account the fact that R-+ 

Aif. Hamzeh 

2(b) does not encircle the ongm to predict stability. 
For g < 0 the wave (negatively damped) is increasing 
and unstable. Accordingly the corresponding Nyquist 
plot in Figure 2(c) encircles the origin once to predict 
the existence of one instability. 

It. THE MULTIDIMENSIONAL 
CONSERVATIVE SYSTEM 

For a system to be conservative, it is required that 
the kinetic part of the energy integral be a function of 
the time derivative of coordinates only and the poten
tial part of the coordinates only. For such a system the 
total energy, kinetic plus potential, is conserved. An 
unexpected example is a magnetohyd rod vnamic 
system. 

Consider the one-dimensional conservative system 
described by the potential V(x 1)' An example of such 
system was illustrated in Section 1 and studied at the 
beginning of Section 3: (f(xd= -dV/dxd. In the 
vicinity of an equilibrium x?we found one equation of 
motion for (x 1 - xf) (Equation (2)) and one frequency 
of oscillation, w, where w 2 III 1(d2 £1/dx;lx?) 
(Equation (4)). Among the equilibria of this system are: 
potential hilltops, where (d2 V/dxf) < 0, and potential 
wells, where (d 2V/dx ~) > O. Clearly the stable equilibria 
are the potential wells where w is real. 

The two-dimensional conservative system is 
described by the potential V(X 1,X2 ). Among the equilib
ria are: potential hilltops ((J2V/oxi) < 0, (a 2 v/cxi) < 0); 
potential wells ((a 2 V/Dx;) > 0, (c 2 v/cxi) > 0); and two 
types of saddle points ((c2V/Dx~) > 0, (c 2 V/Dxi) < 0 and 
(c 2 V/Dxi) < 0, (c2v/cxi) > 0). In the vicinity of an 
equilibrium (x?,x~) we have two equations of 
motion one for (x 1 x?) and one for (x 2 x~). 
With the proper choice of coordinates (normal 
coordinates) the two equations are uncoupled, and 
two frequencies of oscillations are sufficient to describe 
the motion about each equilibrium. If both frequencies 
are real the system is stable, otherwise it is unstable. 
These frequencies are related to the second derivatives 
of V by equations similar to (4). Clearly then the 
stable equilibria are potential wells. 

Further generalization to more then two degrees of 
freedom follows the same lines: the condition for 
stability is that all values of ware real. Since a real w is 
associated with a positive second derivative of 1" then 
a necessary and sufficient condition for stability of a 
conservative multidimensional system is that all the 
second derivatives of V with respect to all the indepen
dent variables, iJ2V;1txr where i = 1,2,3... , be positive. 
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If we assume all equilibria to be equally probable: 
in the one-dimensional case (we have one constraint 
for stability 82Vj8x 2 > 0) the chances are that roughly 
half the equilibria are stable. In the two-dimensional 
case, we have two constraints and roughly one fourth 
of the equilibria are stable. By extrapolating the above 
reasoning to the multidimensional conservative 
system, one finds that an arbitrarily chosen equilib
rium configuration in that system has almost nil 
chance to be stable. It is therefore desirable to look 
directly for the stable equilibrium configuration in 
these systems through general stability criteria. 
Examples of these criteria are the energy principle 
illustrated below and Gardner's theorem illustrated in 
Section 12. 

Consider two incompressible fluids in hydrostatic 
equilibrium in a gravitational field. Take the two-fluid 
interface to be in a horizontal plane and assume the 
specific weights of the two fluids to be different. The 
slight perturbation of the interface (for example a 
ripple) causes the potential energy of the system to 
change*. Now if the lower fluid is heavier than the 
upper fluid then the change in the potential energy is a 
net increase causing the kinetic energy (if any) to 
decrease and therefore resulting in stable oscillations 
of the interface. (The system composed of the two
fluids is assumed to be a conservative system. The 
conditions under which this assumption hold are 
irrelevant here.) If the upper fluid is the heavier one, 
the potential energy decreases and the kinetic energy 
increases; the perturbation grows leading finally to the 
two fluids exchanging places. The instability of a heavy 
fluid supported under gravity by a lighter fluid is 
known as the Rayleigh-Taylor instability. An 
example from the field of controlled fusion is a plasma 
(the heavy fluid) in a gravitational field, supported by 
magnetic field lines (the lighter fluid!). 

The above example illustra[es how the energy prin
ciple permits a quick answer to the question of 
stability. In the following section, where the stability of 
a monotone-decreasing distribution is demonstrated, 
this stability criterion is generalized to include, on top 
of the energy principle, the principle of volume conser
vation in phase space, also known as Liouville's 
theorem. 

12. GARDNER'S THEOREM 

This theorem states the stability of a field-free 
plasma with an equilibrium distribution that decreases 

*~V -(PL -Pu)~, where L, U, p, and ~ are for lower, upper, fluid 
density, and interface excursion respectively. 
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monotonically with speed. The stability of a mono
tone-decreasing distribution (Figure 3(a)) is a conse
quence of two constraints: conservation of energy and 
conservation of volume in phase space (Liouville's 
theorem). Consider a one-dimensional model for a 
general initial distribution F(x, u2 

). In Figure 3(b) we 
plot regions of approximately constant F in (x, u2

) 

phase space, indicating the size F in each region by the 
ordering F(a) > F(b) > F(c) > F(d).... Stability is deter
mined for a given initial state if no other state with 
lower internal (kinetic) energy can be reached from 
that state. What then is the minimum value, consistent 
with Liouville's theorem, of the energy integral 
SIj2mu 2 F(x,u 2 ) dxdu? 

F( u' ) 

u' 

(a) 

a 

c 

d 

b 
x 

(b) 

d 

c 

b 

a 

x 
(c) 

Figure 3. (a) u' =uo+ u. (b) Unstable State. (c) Stable State. 
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The constraint from Liouville's theorem allows the 
constan t F zones to be rearranged and reshaped but 
not changed in area. Clearly, then, because of the 
weighting factor u2

, the lowest value of the energy 
integral is achieved when the zones of greatest F lie 
nearest u2 O. Like a mixture of fluids of different 
specific gravity, the heaviest layer sinks to the bottom. 
The result is Figure 3(c), a function distribution 
independent of x and monotone decreasing in u 2

• 

If the initial state is already a monotone-decreasing 
state, the proof above shows that small disturbances 
do not grow. In particular, the maximum change in 
kinetic energy transfer to fields cannot be greater than 
any initial kinetic energy perturbation. By energy con
servation, changes in the field energy are similarly 
bounded. The extension to three dimensions IS 

straightforward. This proof is due to Gardner [7]. 
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