
Scicntitic Journal of'King Faisal Univcrsity (Basic and Applied Sciences) Vo!.5 No.2 1425 (2004)

On Applying an Evolutionary Engineering Method
to Evolve a Neural Net XOR System

A. Lehireche, A. Rahmoun *
Evolutionary Engineering and Distributed Information Systems Laboratory, EEDIS

Computer Science Department, University Djilali Liabes of Sidi Bel-Abbes, Algeria
* College of Planning & Management, King Faisal University

AI_Hassa Kingdom of Saudi Arabia

Abstract
Evolutionary Engineering (EE) challenge is to prove that it is possible to

build systems without going through any design process.

Evolutionary Engineering is defined to be "the art of using evolutionary
algoritbms approach such as genetic algorithms to build complex systems" .

In this paper, 'vve attempt to solve the neural net XOR problem through
using a method that relies on evolving neural structures and based on genetic
techniques. A formal EE method had been proposed in the past.

Our main purpose is to show that the EE-Method steps are highly
relevant, and that the evolving principle is effective. We had implemented
software llsing the EE concepts to build/evolve a neural net that solve the
XOR problem.

Results are prominent and show clearly that the proposed Eli method can
be easily extended to any type of neural network.

Further works may emphasize on how this method would be effective
when size and complexity of the system to be designed (evolved) increase.

Key words: Evolutionary Engineering, Genetic Algorithms, EE-Method,
XOR problem, Neural Net, Evolve.

1. Introduction
Computer science theory is based on two n1ajor concepts: con1putability

and complexity. The cOl11putability concept deals with the fact that problem
solving induces the existence of algorithlTIs. Furthermore, computer
scientists may analyse problems and need strong capabilities to design the
desired algorithms. It is evident that algorithtl1 design (the solution) is the
result of the problem analysis. A highly relevant question might be: is it
possible to solve a problem without going through any design process?

167

On Applying an Evolutionary Engineering Method ... A. Lehireche & A. Rahmoun

Evolutionary Engineering (EE) is a discipline of engineering soft
computing. EE aims to solve the proqlem of building complex systems
without going through any design proc(\ss (NJ.Macias, 1999),(H.De Garis,
1993),(W.B.Langton et aI, 1996).
EE is defined to be "the art of using evolutionary algorithms approach such

as genetic algorithms (D.E.Goldberg, 1989) to build complex systems"(H.De
Garis, 1993).

Essentially, by imitating nature, the Evolutionary Engineering scientists
describe an elementary structure of the system and then evolve this structure
toward the desired system .. The Genetic Algorithm is a key-tool for
evolving such huge systems.

However, one may keep in mind that EE design might start from scratch,
only prior knowledge, learning techniques, and a powerful physical (or
logical) machine support and devices are necessary to make grow a
particular application.

The EE-Method (A.Lehireche et ai, 2001) intends to guide EE designer
along the design process to achieve and implement a particular application.
We carried out several experiments in the EEDIS laboratory applying the
EE-Method (A.Lehireche et aI, 2001) on several different applications so to
test its efficiency.

In this paper, we intend to apply and test the EE-Method on the well­
known XOR problem. EE-Method is carried out to design or build a Neural
Network XOR relying on an evolving algorithm.
Simulation results show that the proposed EE-Method is highly relevant in
evolving small systems.

In section 2 we report the EE-Method as specified in (A.Lehireche et aI, .
2001), sections 3,4,5,6,7,8 are the application of the related method to the
neural net XOR problem, section 9 yield the implementation results and
section 10 concludes this paper.

2. Evolutionary Engineering Method (EE-Method)
The EE-Method (A.Lehireche et aI, 2001) aspires to explicit and simplifies
the EE approach. It also tries to enlarge the scope of Ggenetic Programming. .
Six steps make up the EE-Method. Each step is a vital phase. The step order

168

Scientific Journal of King Faisal University (Basic and App lied Sciences) Vol.5 No.2 1425 (2004)

ensures the coherence of the approach but it is not unique (A.Lehireche et
ai, 2001), (A.Lehireche et ai, 2000).

Given a Complex system:
Step 1: Ensure the Availability Of
- THe Inputs (data, parameters, or values),
- The ol1tpUts, and
- The Input/Output reiatibhsliips: this means that we are able to express any

output in terms of input of the deSired system.

Step 2: Choose a Model
Choose a model with which the desired system should be implemented,
such as:
- Neural Networks,
- Automata,
- Petri Nets,
- Electronic Circuits,
- Graphs,
- Programs,
etc ...

Step 3: Choose a System Genotype
Use the Genetic Programn1ing (GP) techniques to encode the model.

This step produces the structure of a Chromosome. A chromosome must
encode all the system. The chromOSOlne is the genotype form of the system.

Step 4: Determine The Adaptation Function of the System
The adaptation function is a measure that points out to the system evolution
degree during the evolving phase. In general, this represents the measure of
the input-output association conformity (the fitness or objective function in
Genetic Algorithlns).

Step 5: Choose a System Phenotype
During the evolving phase, to be able to evaluate the adaptation function of
an occurrence of the systeln; we must proceed as follow:
1. Extract the real characteristics of the occurrence of the system by

decoding the chromosome.

169

On Applying an Evolutionary Engineering Method . .. A. Lehireche & A. R ~lhlll o lin

2. Inlplemcnt the systelTI model according to its characteristics.
3. Simulate the behaviour of the systelTI.

The real characteristics of an occurrence of the system are call ed systenl
phenotype.

Step 6: Use A Genetic Algoritlun As Follow
A) Generate randol11Jy a population of chrol11osomes (each chromosome i

a system genotype).
B) For each chronl0so111e do: genotype ~ phenotype ~ system

implenlentation,
Start up the systenl,
Inject inputs, retrieve outputs,
Evaluate the system adaptation function.

C) Select genotypes of the most adapted occurrences of the system.
D) Produce a new generation by applyin,g the crossover and the mu tation

operators to the selected genotypes.
E) Repeat B), C) and D) until the desired system is reached (with an

acceptable fitness).

3. Evolving an Neural Network XOR using the EE-Mehod
3.1 The XOR problem:

The exclusive-OR (XOR) problem is a standard problem and i often
used as a test for neural network. It is well known that the XOR is not
linearly separable (Yan Le Cun, 1987) and for this reason we consider it as a
good test (AJ.F.Van Rooij et aI, 1995). The following table depicts the
XOR function.

Input 1 Input 2 Output

0 0 0
0 1 1
1 0 1
1 1 0

170

Scicnt i li c JOLirna l of King Fai sal lini\,t:rs ity (l3asic and J\ppli t.'u Sciences) Vo !. 5 No.2 1425 (2004)

3.2 EE- Method Step 1: Problcn1 definition

The /ollo\ving relation expresses the input/output association:
E = {O I t. , J

R: Ex E ~ E
R = {((O,O),O), ((0,1),1), ((1,0),1), ((1,1),0)}

3.3 EE-Method Step 2: Choosing the model
The model with which we desire to i1nplen1cnt our example is the "Neural
Networks" CNN). A NN is characterised by its topology and the
functionality of the artificial neuron.

• Topology of the NN.
A recurrent NN is selected for this purpose. A recurrent NN is a self

fully connected NN. This topology has the advantage that does not deal with
any specific details of the NN, such as number of layers, nUlnber of neurons
in each layer, number of hidden layers, how neurons are connected and so
on ... Only the number of neurones has to be chosen. For our exmnple the
NN contains 5 neurones. This choice is motivated by our knowledge on the
XOR problem. Fig. I shows such topology .

• • • • • •
Input 1

.... ~
Output

Fig. I: Recurrent NN (5 neurons)

171

On Applying an Evolutionary Engineering Method ... A. Lehireche & A. Rahmoun

• Artificial neuron functionality.

Fig. 2 and 3 shows in details the behaviour of the artificial neuron. The
neuron transfer function is a sigmoid function-. "External inputs are used to
control the NN (R.De Garis, 1993). We use them to direct input data into
theNN.
Sj == input signal "j".
Wji == weight associated to Sj for the neuron "i".
Ei == external input of the neuron "i"; when used its weight is set to 1.0

if not to 0.0.

S,
WII NEURON "I" - ..

~-

Intenlal
Inputs

Sz
W2, ACTIVN1= .- E1+I:WJI*SJ ...

SN
WN1 OUTPUTI = Outp -- ut I

External input E, 1.0
f(ACTIVN I)

......

Fig. 2: Artificial Neuron as a single node

OUTPUT

+ 1.0

Activit

OUTPUT = 2/(1 +exp(-ACTIVN))-l

Fig. 3: Neuron's output function

172

Scientific Journal of King Faisal University (Basic and Applied Sciences) Vol. 5 No.2 1425 (2004)

3.4 EE-Method Step 3: System genotype
The set of weights determines fully the behaviour of the recurrent NN;

then the chromosome witch represents the system genotype is simply: the
set of coded weights.
Fig. 4 describes the chromosome structure.

r_---.A.---'" r_---A.--- r_---A.----'"

I I

1 1 1
Bit 0 Bit 6 Bit 174

Fig.4: Chromosome structure

Wji denotes the weight associated to the signal Sj comming from neuron j
into neuron i.
Each weight is coded with 7 bits and has its value in the range [-1,+ 1].
The chromsolne legth is 5*5*7=175 bits.
In fig.4 WIt is interpreted as follows:

Bit 0 = 1
· Bit 1 ;:;: 1

Bit 2 = 1
Bit 3 = 1
Bit 4 = 1
Bit 5 = 1
Bit -6 = 1

So:

~ weight is a negative value.
~ weight = weight + 1 * 2.1

= weight + 1 *0.5.
~ weight = weight + 1 * 2-2

= weight + 1*0.25.
::::> weight ::::; weight + 0* 2-3

= weight + 0*0.125.
=> weight ;::: weight + 1 * 2-4

= weight + 1 *0.0625.
::::> weight = weight + 1 * 2-.5;:: weight + 1 *0.03125.
=> weight ::=: weight + 0* 2.0 = weight + 0*0.015625 .

W lI = -(0.5 + 0.25 + 0.0625 + 0.03125) = -0..84375.

3.5 EE-Method Step 4: The Adaptation Function of the System

During the evolution phase, for a systeln in test, we note:

173

On Applying an Evolutionary Engineering Method . .. A. Lebirech~ & 1\. Rahmoun

- Ai : the actual output for a set i of input data.
- Di : the desired ouput for a set i of input data.
- Fitness: the adaptation function.

The adaptation function (i.e. the fitness) is the distance (i.e the gap) between
the actual outputs and the desired outputs. The fitness is not an absolute
tneasure but is subject to the way we cOlnpute it. The fitness fonnula
influences strongly this measure.

For the XOR the fitness is expressed as follow:

SSD = I (Di - Ai)2, (i= 1,4)
Fitness = if (SSD > 1) then 1/SSD else 1 - SSD.

• Example:

Desired Actual
Input 1 Input 2 output output

(Di) (Ai)

0 0 0 0.43

0] 1 0.25

1 0 1 0.12

1 1 0 0.03

Given the above data, the fitness is computed as follows:

SSD = I (Di-Ai)2,(i= I ,4) = (0-0.43) 2+ (1-0.25) 2+ (l-0.12) 2 + (0- 0.23) 2
= 0.1849 + 0.5625 + 0.7744 + 0.0529

1.5747
Fitness = 1/ SSD = 1/ 1.5747 = 0.635
This result means that the gap between the system in evolution and the
desired system is .365.

174

Scicnlili c Journal ot'K ing Faisal Univcrsity (Basic and App li ed Sciences) Vo!. 5 No.2 1425 (2004)

3.6 EE-Method Step 5: System Phenotype

Tn this step the evolutionary engineer have to nlake choices on how his
system must be implemented. In our case we have to inlplenlent (siluulate) a
recurrent NN.

The fact that we are evolving systetns by luean of their genotype form,
we need to decode each chromosome to obtain the recurrent NN weights
real values. These values are stored in a "weight table" (Fig. 5). The external
input data are stored separately in vector noted "E" and for each neuron the
conlputed output signal is stored in a vector noted S.

The weight table, the vectors E and S are the phenotype fornl of the
systeln in evolution.

From
Neuronj

To Neuron i

___ A ___ """"
(\

Wl1 W21 W31 W41 W51

W12 W22 W32 W42 W52

W1 3 W23 W 33 W34 W35

W14 W24 W34 W35 W54

W15 W25 W35 W45 W55

Fig. 5: The W cight Table

175

On Applying an Evolutionary Engineering Method ... A. Lehireche & A. Rahmoun

• The recurrent NN simulation algorithm:

Given the weight table W, the external input data vector E and the output
signal S the recurrent NN simulation program is as follows:

Loop
{

For i= 1 to neuron number I I compute the output signal for each neuron.

For j= 1 to neuron number
{ACTIVI = ACTIVI + Wji * Sj} II compute the activity of neuron i (Fig. 2).
ACTIVI=ACTIVI + Ei; II inject input data to neurone i (Fig. 2).
Si = 2 / (l + exp (-ACTIVI))-l II apply the output function f (Fig. 3).

}
} Until Stability lithe recurrent NN is activated many times to reach

lithe stability (equilibrium state).

3.7 EE-Method Step 6: Evolution phase

The evolution phase is an operational phase; the evolutionary engineer must
implement the overall software, taking into account all the decision made in
steps 1 to 5.
Fig. 6 describes the architecture of such software.

. . /):~\ . ..-----
j/ ~ . Genotype to GA ,\h'/I- ::=:tion -r ~::"

\ System ;D test

. Chr

Population of Gen i

Fig. 6: Evolution scheme

176

.t

External
Inputs

Yes

Scientific Journal of King Faisal University (Basic and Appli~Q Sciences)

• Evolution Software Para,meters for the XOR :
NUlnber of Neurons

. Number of input neurons
Number of output neurones
Weight code length
Chromosome length
Numbers of cycle to reach the NN stability
Type of crossover
Crossover probability
Mutation probability
Selection strategy
Evolution strategy
Scaling constant
Population size
NUlnber of generation

4. Experimental results

Vol.5 No.2 1425 (2004)

5,
2,
1,
7 bits,
175 bits,
100,

Uniform crossover,
0.6,
0.001,

Roulette wheel,
Elitism,

2.0,
100,

until fitness> 0.99

In EEDIS laboratory, we have implemented a software; namely GES or
Genet Evolution Software. This software uses evolutionary engineering
concepts as specified by the EE·Method .(A.Lehireche et aI, 2001).
Notice that a similar work has been presented by G.A.1ayalakshmi et a1.
They performed almost the same experiment (The XOR) with a totally
different approach in a sense that the chromosome structure is different, and
the evaluation scheme is different also.
In their work, the selection procedure and the algorithm termination criteria
lead to a premature convergence (within four generations!) . In such case,
the evolvft.{l architecture does not converge to a global optimum (best
topology) as pretended in the paper.
Our paper, however, proposes a different method tha e'¥olves the system
topology (as tnentioned in "CAM Brain project' (HDe Garis», and takes
into consideration the best-fit GA parameters., and therefore led to fast GA
convergence. Such GA parameters are difficult to establish at flTSt glance.
These have been set according to several simulation tests so to. avoid
premature convergence.
Notice also that the same method (EE method) had been used to evolve a
real-time neural network controller fOT a robot using the Genet Evolution
Software (A.Lehireche et aI, 2003). Results show -that the evolved NN
controller performs as good as a classical PID controller.

177

On Applying an Evolutionary Engineering Method ... A. Lchireche & A. RahmoLlIl

A.lehireche: GENET EVOLUTION SOFTWARE, EEDIS LABORATORY, 2001

Manipulation Genetique Algorithme Genetique Population Parametres de l'Application simulate weight table interactive Quiter

EVOLUTION RESUL TS OF NEURAL NET SYSTElVI Solving the XOR Pb
---the Best Fitness ====>: 0.999999981327087
---Neuron Nmnber ===> : 5
---Weight Code Length ===>: 7
- the System Genotype (ie the cllI'omsome) :
101110110000001101011101111011000101000100111110100101100001
011000010011010001111010100110101110001111011011010111010001
1100101010011011011001000000011000110001110001001111100

- the System Phenotype (ie the weigth table) :
-0.453125 0 -0.671875 -0.46875 -0.53125
-0.0625 -0.953125 0.34375 0.171875 0.0625
-0.625 -0.90625 -0.203125 0.875 -0.921875
0.828125 -0.625 -0.78125 -0.296875 0.84375
0.5 0.375 -0.546875 -0.0625 -0.9375

- the Simulation Results:
o : 0==> Di = 0==> Ai = 0 .. Error: 0
o : 1==> Di = 1==> Ai = 0.986512.319441638 .. Enol': 0.0134876805583617
1: 0==> Di = 1==> Ai = 0.980974814405446 .. Enol': 0.0190251855945544
1: 1==> Di = 0==> Ai = -0.00164931936446757 .. En'oJ': 0.00164931936446~

5 . Conclusion
Evolutionary Engineering creates an elementary structure of the system and
then evolves this structure toward the desired system. Evolutionary
Algorithnls are powerful tools for evolving such huge systems. Such process
relies on observing and imitating natural systetns. EE-Method intends to
guide EE designer along the design process to achieve and implement a
particular application. This paper shows, step by step, how to apply the EE­
n1ethod to a specific example: the neural net XOR problem. The results
yield in section 8 are significant. We had repeated the experiment on several
different Neural Networks configurations to evolve an NN XOR system.
Evolutionary Engineering techniques are proven in the recent past to be
efficient methods to evolve systems. 'rhey have also capabilities of
generating several different solutions on several runs for the saIne problem.
Furthennore, further works and investigations must emphasize on evolving
more complex systetTIs to test to what extend the EE method would be
reliable and exhaustive.

178

Scicillilic Journal oj' King faisa l Uni vers ity (Basic and App lied Sciences) voL 5 No.2 1425 (2004)

6. References
I. A J F Van Rooij , L C Jain, R P Johnson, "Neural Network Training Using

Genetic Algorithms ", World Scientific, Series In Machine Perception &
Artificial Intelligence, Vo1.26.

2. Lchireche, A. Rahmoun and A. Gafour: "Highlights the Evolutionary Engineering
Approach: the EE-Method", ACS/IEEE International conference on computer systems
and app lications (AICCSA 2001), Beirut, 0-7695-1165-1 /01 , pp5-12, Copyright 2001
IEEE.

3. Leh ireche, A. Rahmoun, "Evolutionary Engineering Approach: the EE­
Me/hod ", lecture notes, EDDIS lab, Dept of computer science, UDL Sidi Bel
Abbes, Algeria , 04/ 2000.

4. Lehireche, A. Rahmoun , "Real time Evolutionary Engineering in Tracking
Problems: Evolving a Real-Time "Track and Evolve" neural Network for a
Rohot", lecture notes, EDDIS lab, Dept of computer science, UDL Sidi Bel
Abbes, Algeria, 02/ 2003.

5. D.E. Go ldberg, "Genetic Algorithms in Search, Optimisation, and Machine
Leorning", Addison - Wesley Publi shing Company, 1989.

6. Hugo de Gari s ,Michael Korkin , Felix Gers , Norberto Eiji Nawa ,
MichaelHough , "CAM-Brain, Atr's Artificial Brain Project An Overview",
Brain Builder Group, Evolutionary Systems Department, A TR HU111an
I nformation Process ing Research Labs, September 1998.

7. Hugo de Gari ,Genetic Programming: GenNets, Artificial Nervous Systems,
Artificial Embryos, PHD thesis 1993.

8. G.A.Jaya lakshmi et a!, An Evo lutionary Programming Approach to Evolve
The Architecture of Aliificial Neura l Networks.

9. Nicholas J.Macias, "Ring Around the PIG: A Parallel GA with only local
interactions coupled with a Se lf-Reconfigurable Hardware Platform to
implement an 0(1) Evolutionary Cyc le For Evolvable Hardware", Proceeding
of 1999 Congress on volutionary Computation, Copyright 1999 IEEE.

10. William B. Langton, Adil Qureshi , "Genetic Programming, Computers Using
'Natural Selection ' To Generate Programms", Lecture Notes of a survey, Dept
Of Computer Science, University College London, 1996.

1 J. W.B.Langdon, Genetic Programming Bibliography, Revision Date:
200 1/05 /05,
W.B.Langdon@cwi.nl ,ftp: llftp.cs .bham.ac.uk/pub/authorsIW.B.Langdon/biblio
IgpsubmiLhtml , 200 J.

12 . Yan Le Cun, Modeles Connex ionnistes de I ' Apprentissage,These de Doctorat,
Universite Pari s 6, 1987

179

On Applying an Evolutionary Engineering Method ... A. Lehireche & A. Rahmbun

180

~I.l Jg.bJ :ii:!Jgb:iJ1 iLLt~1 ~ iiLlb wlo.!!bOj

~li..bacl ~ u~ FW

·W~J~'~J u!.~\~t

~T y..-uG.. ~ - ~~I ~~IJ ~jjl\ wLA.,hl1 F~

";I~I - u-u~ ~~ - ~4J1 ~)4.J1 ~~

~ ~I ~~ - ! b.!b~IJ ~lj)'1 r#1 ~.!'

~j~1 ~~I ~1 -l'~~ 1

.~ JI ~G.. uJ..l:' F l'~ ~ ls3IJ~ j 1.)-:1 1 :i..J..)~1 L~I wl:~ 0A

JkU....1 ~" -: ~i ~~ J ~~I l'lb.JJ1 J~ ~ ..l:~ ~ JA ~~I ~~I

."o..lA.AA J o~ F l'4J ~I w~jjl.PJlb ~~18~jJIj3J1

J~L. ~lu..::J· 1 w~. :. L. XOR 4.J~ L 4.J b l'1 I " ~!I I.JA L _ loP J ~. ~. _

~..;-b J:!L... ~ ~ Lo.~1 ~ .~ w~ J ~ p~ j-J~ ~ ~ ~

wLAy~1 D.JA ~ j~~1 ~ J.4j .~~I wLAy~1 ~w JI G~i J ~~

J)l;.. 0A .XOR ~ J>J ~ w~ l'4J ~I.)-:I j-J~ ~I I.JA ~ ~~I

,UW ~ w~ ~ ~ b~1 ~~I OJ~ ~ ~~I ~ '-:-'J~I D.JA

.~'p-i ~J.:,~jJFJI ~~c:Gj w=

:~L..u~ 1 ~w=.J1

w~1 , XOR 4.J~ ,~~~..;-b , ~I w~jjl.PJ1 ,~~I 6.......~1

.~I

