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Abstract 
Evolutionary Engineering (EE) challenge is to prove that it is possible to 

build systems without going through any design process. 

Evolutionary Engineering is defined to be "the art of using evolutionary 
algoritbms approach such as genetic algorithms to build complex systems" . 

In this paper, 'vve attempt to solve the neural net XOR problem through 
using a method that relies on evolving neural structures and based on genetic 
techniques. A formal EE method had been proposed in the past. 

Our main purpose is to show that the EE-Method steps are highly 
relevant, and that the evolving principle is effective. We had implemented 
software llsing the EE concepts to build/evolve a neural net that solve the 
XOR problem. 

Results are prominent and show clearly that the proposed Eli method can 
be easily extended to any type of neural network. 

Further works may emphasize on how this method would be effective 
when size and complexity of the system to be designed (evolved) increase. 

Key words: Evolutionary Engineering, Genetic Algorithms, EE-Method, 
XOR problem, Neural Net, Evolve. 

1. Introduction 
Computer science theory is based on two n1ajor concepts: con1putability 

and complexity. The cOl11putability concept deals with the fact that problem 
solving induces the existence of algorithlTIs. Furthermore, computer 
scientists may analyse problems and need strong capabilities to design the 
desired algorithms. It is evident that algorithtl1 design (the solution) is the 
result of the problem analysis. A highly relevant question might be: is it 
possible to solve a problem without going through any design process? 
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Evolutionary Engineering (EE) is a discipline of engineering soft 
computing. EE aims to solve the proqlem of building complex systems 
without going through any design proc(\ss (NJ.Macias, 1999),(H.De Garis, 
1993),(W.B.Langton et aI, 1996). 
EE is defined to be "the art of using evolutionary algorithms approach such 

as genetic algorithms (D.E.Goldberg, 1989) to build complex systems"(H.De 
Garis, 1993). 

Essentially, by imitating nature, the Evolutionary Engineering scientists 
describe an elementary structure of the system and then evolve this structure 
toward the desired system .. The Genetic Algorithm is a key-tool for 
evolving such huge systems. 

However, one may keep in mind that EE design might start from scratch, 
only prior knowledge, learning techniques, and a powerful physical (or 
logical) machine support and devices are necessary to make grow a 
particular application. 

The EE-Method (A.Lehireche et ai, 2001) intends to guide EE designer 
along the design process to achieve and implement a particular application. 
We carried out several experiments in the EEDIS laboratory applying the 
EE-Method (A.Lehireche et aI, 2001) on several different applications so to 
test its efficiency. 

In this paper, we intend to apply and test the EE-Method on the well­
known XOR problem. EE-Method is carried out to design or build a Neural 
Network XOR relying on an evolving algorithm. 
Simulation results show that the proposed EE-Method is highly relevant in 
evolving small systems. 

In section 2 we report the EE-Method as specified in (A.Lehireche et aI, . 
2001), sections 3,4,5,6,7,8 are the application of the related method to the 
neural net XOR problem, section 9 yield the implementation results and 
section 10 concludes this paper. 

2. Evolutionary Engineering Method (EE-Method) 
The EE-Method (A.Lehireche et aI, 2001) aspires to explicit and simplifies 
the EE approach. It also tries to enlarge the scope of Ggenetic Programming. . 
Six steps make up the EE-Method. Each step is a vital phase. The step order 
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ensures the coherence of the approach but it is not unique (A.Lehireche et 
ai, 2001), (A.Lehireche et ai, 2000). 

Given a Complex system: 
Step 1: Ensure the Availability Of 
- THe Inputs (data, parameters, or values), 
- The ol1tpUts, and 
- The Input/Output reiatibhsliips: this means that we are able to express any 

output in terms of input of the deSired system. 

Step 2: Choose a Model 
Choose a model with which the desired system should be implemented, 
such as: 
- Neural Networks, 
- Automata, 
- Petri Nets, 
- Electronic Circuits, 
- Graphs, 
- Programs, 
etc ... 

Step 3: Choose a System Genotype 
Use the Genetic Programn1ing (GP) techniques to encode the model. 

This step produces the structure of a Chromosome. A chromosome must 
encode all the system. The chromOSOlne is the genotype form of the system. 

Step 4: Determine The Adaptation Function of the System 
The adaptation function is a measure that points out to the system evolution 
degree during the evolving phase. In general, this represents the measure of 
the input-output association conformity (the fitness or objective function in 
Genetic Algorithlns). 

Step 5: Choose a System Phenotype 
During the evolving phase, to be able to evaluate the adaptation function of 
an occurrence of the systeln; we must proceed as follow: 
1. Extract the real characteristics of the occurrence of the system by 

decoding the chromosome. 
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2. Inlplemcnt the systelTI model according to its characteristics. 
3. Simulate the behaviour of the systelTI. 

The real characteristics of an occurrence of the system are call ed systenl 
phenotype. 

Step 6: Use A Genetic Algoritlun As Follow 
A) Generate randol11Jy a population of chrol11osomes (each chromosome i 

a system genotype). 
B) For each chronl0so111e do: genotype ~ phenotype ~ system 

implenlentation, 
Start up the systenl, 
Inject inputs, retrieve outputs, 
Evaluate the system adaptation function. 

C) Select genotypes of the most adapted occurrences of the system. 
D) Produce a new generation by applyin,g the crossover and the mu tation 

operators to the selected genotypes. 
E) Repeat B), C) and D) until the desired system is reached (with an 

acceptable fitness). 

3. Evolving an Neural Network XOR using the EE-Mehod 
3.1 The XOR problem: 

The exclusive-OR (XOR) problem is a standard problem and i often 
used as a test for neural network. It is well known that the XOR is not 
linearly separable (Yan Le Cun, 1987) and for this reason we consider it as a 
good test (AJ.F.Van Rooij et aI, 1995). The following table depicts the 
XOR function. 

Input 1 Input 2 Output 

0 0 0 
0 1 1 
1 0 1 
1 1 0 
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3.2 EE- Method Step 1: Problcn1 definition 

The /ollo\ving relation expresses the input/output association: 
E = {O I t. , J 

R: Ex E ~ E 
R = {((O,O),O), ((0,1),1), ((1,0),1), ((1,1),0)} 

3.3 EE-Method Step 2: Choosing the model 
The model with which we desire to i1nplen1cnt our example is the "Neural 
Networks" CNN). A NN is characterised by its topology and the 
functionality of the artificial neuron. 

• Topology of the NN. 
A recurrent NN is selected for this purpose. A recurrent NN is a self 

fully connected NN. This topology has the advantage that does not deal with 
any specific details of the NN, such as number of layers, nUlnber of neurons 
in each layer, number of hidden layers, how neurons are connected and so 
on ... Only the number of neurones has to be chosen. For our exmnple the 
NN contains 5 neurones. This choice is motivated by our knowledge on the 
XOR problem. Fig. I shows such topology . 

• • • • • • 
Input 1 

.... ~ 
Output 

Fig. I: Recurrent NN (5 neurons) 
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• Artificial neuron functionality. 

Fig. 2 and 3 shows in details the behaviour of the artificial neuron. The 
neuron transfer function is a sigmoid function-. "External inputs are used to 
control the NN (R.De Garis, 1993). We use them to direct input data into 
theNN. 
Sj == input signal "j". 
Wji == weight associated to Sj for the neuron "i". 
Ei == external input of the neuron "i"; when used its weight is set to 1.0 

if not to 0.0. 

S, 
WII NEURON "I" - .. 

~-

Intenlal 
Inputs 

Sz 
W2, ACTIVN1= .- E1+I:WJI*SJ ... 

SN 
WN1 OUTPUTI = Outp -- ut I 

External input E, 1.0 
f(ACTIVN I ) 

...... 

Fig. 2: Artificial Neuron as a single node 

OUTPUT 

+ 1.0 

Activit 

OUTPUT = 2/(1 +exp( -ACTIVN))-l 

Fig. 3: Neuron's output function 
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3.4 EE-Method Step 3: System genotype 
The set of weights determines fully the behaviour of the recurrent NN; 

then the chromosome witch represents the system genotype is simply: the 
set of coded weights. 
Fig. 4 describes the chromosome structure. 

r_---.A.---'" r_---A.--- r_---A.----'" 

I I 

1 1 1 
Bit 0 Bit 6 Bit 174 

Fig.4: Chromosome structure 

Wji denotes the weight associated to the signal Sj comming from neuron j 
into neuron i. 
Each weight is coded with 7 bits and has its value in the range [-1,+ 1 ]. 
The chromsolne legth is 5*5*7=175 bits. 
In fig.4 WIt is interpreted as follows: 

Bit 0 = 1 
· Bit 1 ;:;: 1 

Bit 2 = 1 
Bit 3 = 1 
Bit 4 = 1 
Bit 5 = 1 
Bit -6 = 1 

So: 

~ weight is a negative value. 
~ weight = weight + 1 * 2.1 

= weight + 1 *0.5. 
~ weight = weight + 1 * 2-2 

= weight + 1*0.25. 
::::> weight ::::; weight + 0* 2-3 

= weight + 0*0.125. 
=> weight ;::: weight + 1 * 2-4 

= weight + 1 *0.0625. 
::::> weight = weight + 1 * 2-.5;:: weight + 1 *0.03125. 
=> weight ::=: weight + 0* 2.0 = weight + 0*0.015625 . 

W lI = -(0.5 + 0.25 + 0.0625 + 0.03125) = -0..84375. 

3.5 EE-Method Step 4: The Adaptation Function of the System 

During the evolution phase, for a systeln in test, we note: 
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- Ai : the actual output for a set i of input data. 
- Di : the desired ouput for a set i of input data. 
- Fitness: the adaptation function. 

The adaptation function (i.e. the fitness) is the distance (i.e the gap) between 
the actual outputs and the desired outputs. The fitness is not an absolute 
tneasure but is subject to the way we cOlnpute it. The fitness fonnula 
influences strongly this measure. 

For the XOR the fitness is expressed as follow: 

SSD = I (Di - Ai)2, (i= 1,4) 
Fitness = if ( SSD > 1) then 1/SSD else 1 - SSD. 

• Example: 

Desired Actual 
Input 1 Input 2 output output 

(Di) (Ai) 

0 0 0 0.43 

0 ] 1 0.25 

1 0 1 0.12 

1 1 0 0.03 

Given the above data, the fitness is computed as follows: 

SSD = I (Di-Ai )2,(i= I ,4) = (0-0.43) 2+ (1-0.25) 2+ (l-0.12) 2 + (0- 0.23) 2 
= 0.1849 + 0.5625 + 0.7744 + 0.0529 

1.5747 
Fitness = 1/ SSD = 1/ 1.5747 = 0.635 
This result means that the gap between the system in evolution and the 
desired system is .365. 
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3.6 EE-Method Step 5: System Phenotype 

Tn this step the evolutionary engineer have to nlake choices on how his 
system must be implemented. In our case we have to inlplenlent (siluulate) a 
recurrent NN. 

The fact that we are evolving systetns by luean of their genotype form, 
we need to decode each chromosome to obtain the recurrent NN weights 
real values. These values are stored in a "weight table" (Fig. 5). The external 
input data are stored separately in vector noted "E" and for each neuron the 
conlputed output signal is stored in a vector noted S. 

The weight table, the vectors E and S are the phenotype fornl of the 
systeln in evolution. 

From 
Neuronj 

To Neuron i 

___ A ___ """" 
( \ 

Wl1 W21 W31 W41 W51 

W12 W22 W32 W42 W52 

W1 3 W23 W 33 W34 W35 

W14 W24 W34 W35 W54 

W15 W25 W35 W45 W55 

Fig. 5: The W cight Table 
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• The recurrent NN simulation algorithm: 

Given the weight table W, the external input data vector E and the output 
signal S the recurrent NN simulation program is as follows: 

Loop 
{ 

For i= 1 to neuron number I I compute the output signal for each neuron. 

For j= 1 to neuron number 
{ACTIVI = ACTIVI + Wji * Sj} II compute the activity of neuron i (Fig. 2). 
ACTIVI=ACTIVI + Ei; II inject input data to neurone i (Fig. 2). 
Si = 2 / (l + exp (-ACTIVI))-l II apply the output function f (Fig. 3). 

} 
} Until Stability lithe recurrent NN is activated many times to reach 

lithe stability (equilibrium state). 

3.7 EE-Method Step 6: Evolution phase 

The evolution phase is an operational phase; the evolutionary engineer must 
implement the overall software, taking into account all the decision made in 
steps 1 to 5. 
Fig. 6 describes the architecture of such software. 

. . /):~\ . ..-----
j/ ~ . Genotype to GA ,\h'/I- ::=:tion -r ~::" 

\ System ;D test 

. Chr 

Population of Gen i 

Fig. 6: Evolution scheme 
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• Evolution Software Para,meters for the XOR : 
NUlnber of Neurons 

. Number of input neurons 
Number of output neurones 
Weight code length 
Chromosome length 
Numbers of cycle to reach the NN stability 
Type of crossover 
Crossover probability 
Mutation probability 
Selection strategy 
Evolution strategy 
Scaling constant 
Population size 
NUlnber of generation 

4. Experimental results 

Vol.5 No.2 1425 (2004) 

5, 
2, 
1, 
7 bits, 
175 bits, 
100, 

Uniform crossover, 
0.6, 
0.001, 

Roulette wheel, 
Elitism, 

2.0, 
100, 

until fitness> 0.99 

In EEDIS laboratory, we have implemented a software; namely GES or 
Genet Evolution Software. This software uses evolutionary engineering 
concepts as specified by the EE·Method .(A.Lehireche et aI, 2001). 
Notice that a similar work has been presented by G.A.1ayalakshmi et a1. 
They performed almost the same experiment (The XOR) with a totally 
different approach in a sense that the chromosome structure is different, and 
the evaluation scheme is different also. 
In their work, the selection procedure and the algorithm termination criteria 
lead to a premature convergence (within four generations!) . In such case, 
the evolvft.{l architecture does not converge to a global optimum (best 
topology) as pretended in the paper. 
Our paper, however, proposes a different method tha e'¥olves the system 
topology (as tnentioned in "CAM Brain project' (HDe Garis», and takes 
into consideration the best-fit GA parameters., and therefore led to fast GA 
convergence. Such GA parameters are difficult to establish at flTSt glance. 
These have been set according to several simulation tests so to. avoid 
premature convergence. 
Notice also that the same method (EE method) had been used to evolve a 
real-time neural network controller fOT a robot using the Genet Evolution 
Software (A.Lehireche et aI, 2003). Results show -that the evolved NN 
controller performs as good as a classical PID controller. 
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A.lehireche: GENET EVOLUTION SOFTWARE, EEDIS LABORATORY, 2001 

Manipulation Genetique Algorithme Genetique Population Parametres de l'Application simulate weight table interactive Quiter 

EVOLUTION RESUL TS OF NEURAL NET SYSTElVI Solving the XOR Pb 
---the Best Fitness ====>: 0.999999981327087 
---Neuron Nmnber ===> : 5 
---Weight Code Length ===>: 7 
- the System Genotype (ie the cllI'omsome) : 
101110110000001101011101111011000101000100111110100101100001 
011000010011010001111010100110101110001111011011010111010001 
1100101010011011011001000000011000110001110001001111100 

- the System Phenotype (ie the weigth table) : 
-0.453125 0 -0.671875 -0.46875 -0.53125 
-0.0625 -0.953125 0.34375 0.171875 0.0625 
-0.625 -0.90625 -0.203125 0.875 -0.921875 
0.828125 -0.625 -0.78125 -0.296875 0.84375 
0.5 0.375 -0.546875 -0.0625 -0.9375 

- the Simulation Results: 
o : 0==> Di = 0==> Ai = 0 .. Error: 0 
o : 1==> Di = 1==> Ai = 0.986512.319441638 .. Enol': 0.0134876805583617 
1: 0==> Di = 1==> Ai = 0.980974814405446 .. Enol': 0.0190251855945544 
1: 1==> Di = 0==> Ai = -0.00164931936446757 .. En'oJ': 0.00164931936446~ 

5 . Conclusion 
Evolutionary Engineering creates an elementary structure of the system and 
then evolves this structure toward the desired system. Evolutionary 
Algorithnls are powerful tools for evolving such huge systems. Such process 
relies on observing and imitating natural systetns. EE-Method intends to 
guide EE designer along the design process to achieve and implement a 
particular application. This paper shows, step by step, how to apply the EE­
n1ethod to a specific example: the neural net XOR problem. The results 
yield in section 8 are significant. We had repeated the experiment on several 
different Neural Networks configurations to evolve an NN XOR system. 
Evolutionary Engineering techniques are proven in the recent past to be 
efficient methods to evolve systems. 'rhey have also capabilities of 
generating several different solutions on several runs for the saIne problem. 
Furthennore, further works and investigations must emphasize on evolving 
more complex systetTIs to test to what extend the EE method would be 
reliable and exhaustive. 
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