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Abstract. This paper deals with unreliable M/G/1 queueing system 

with modified vacation, repeated attempts and K-phase repair. The 

jobs arrive in Poisson fashion. On finding the server busy, under 

setup, under repair or on vacation, the jobs either join to the orbit or 

balk from the system. The jobs in the orbit repeat their request for 

service after some random time. The inter retrial time of each job is 

general distributed. The jobs are served according to FCFS discipline. 

After receiving the unsuccessful service, the job may immediately join 

the tail of the original queue with some probability p or may depart 

from the system with probability q(= 1-p). Accidental (operational) 

breakdown of the server is also considered. There is a provision of k-

phase repairs to restore the server to the state as before failure. First 

phase repair is essential whereas other (K-1) phases are optional. The 

repairman, who restores the server, requires some time to start the first 

phase of repair; this time is called as setup time. The service time, 

setup time and repair time of each phase are independent and general 

distributed. On finding the orbit empty, the server goes on at most J 

vacations repeatedly until at least one job is recorded in the orbit. The 

probability generating function of steady state queue size at random 

epoch is obtained using supplementary variable technique. Various 

models studied earlier are discussed as special cases of our model, by 

appropriate choice of parameter values. Some queueing as well as 

reliability indices to predict the behaviour of the system are also 

derived. The effects of various system parameters on the system 

performance indices are also examined numerically.  

Keywords: M/G/1 retrial queue, General retrial policy, 

Discouragement, Bernoulli feedback, Modified vacations, 

Phase optional repair. 
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Introduction 

In data transmission, a packet transmitted from the source may not 

successfully reach to the destination and returned back; it may retry for 

transmission until the packet is finally transmitted. These repeated 

attempts of jobs have been analyzed via retrial queueing model and 

Bernoulli feedback model. Such queueing situations may arise in many 

real time congestion systems such as telecommunication, data/voice 

transmission, computer system, manufacturing system, etc.  

Segmented message transmission is a practical application of retrial 

queue in real life. We consider an M/G/1 retrial queue where blocked 

jobs on finding the server busy or broken down leave the service area and 

enter the retrial group in accordance with FCFS discipline. We assume 

that only the job at the head of the queue is allowed to occupy the server 

if it is free. After some random time the blocked jobs return to repeat 

their request. Several studies on retrial queues have been made by many 

researchers working in the area of applied probability theory, from time 

to time. In almost all models of retrial queues, the time between retrials 

for any job is assumed to be exponentially distributed. The general retrial 

time policy arises naturally in many congestion problems related to many 

service systems where, after each service completion, the server spends a 

random amount of time in order to find the next job to be processed. In 

recent years there has been an increasing interest in the study of retrial 

queue with general retrial time
[1,2]

. Atencia and Moreno
[3]

 analyzed a 

discrete time Geo
[X]

/GH/1 retrial queue where each call after service 

either immediately returns to the orbit to complete unsuccessful service 

with probability θ or leaves the system forever with probability1-θ. A 

single server retrial queue with general retrial times and Bernoulli 

schedule was discussed by Atencia and Moreno
[4]

. 

In Bernoulli feedback queueing model, if the service of the job is 

unsuccessful, it may try again and again until a successful service is 

completed. Takacs
[5]

 was the first to study feedback queueing model. 

Studies on queue length, the total sojourn time and the waiting time for 

an M/G/1 queue with Bernoulli feedback were provided by Vanden Berg 

and Boxma
[6]

. Choudhury and Paul
[7]

 derived the queue size distribution 

at random epoch and at a service completion epoch for M/G/1 queue with 

two phases of heterogeneous services and Bernoulli feedback system. 
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Krishna Kumar et al.[8]
 considered a generalized M/G/1 feedback queue 

in which customers are either “positive” or “negative”.  

Queueing systems with vacations have also found wide applicability 

as realized in retrial and feedback models for the analysis of computer 

and communication network and several other engineering systems. 

Vacation models are explained by their scheduling disciplines, according 

to which when a service stops, a vacation starts. Wortman et al.[9]
 

discussed feedback as a mechanism for scheduling customer’s service; in 

systems in which customers bring work that is divided into a random 

number of stages. Li and Yang
[10]

 suggested a single server retrial 

queueing system with server vacations, no waiting space and finite 

population of the customers. Choi et al.[11]
 considered M/G/1 queueing 

system with multiple types of feedback, gated vacations and obtained 

joint probability generating function of the system size at steady state. 

Wenhui
[12]

 analyzed ergodic condition and probability generating 

functions for M/G/1 queue with Bernoulli vacation, general retrial, 

vacation and setup time. Feedback queueing system with single vacation 

policy was examined by Madan and Al-Rawwash
[13]

. 

Discouragement behaviour of the jobs has been realized in many 

retrial congestion situations. Non-Markovian multiple vacation queueing 

models with balking was discussed by Thomo
[14]

. Artalejo and Herrero
[15] 

determined the limiting distribution of the number of customers in the 

system by using recursive approach based on regenerative theory for the 

single server retrial queue with balking. Hyperexponential queueing 

model in case of impatient customers with retrial attempts was discussed 

by Jain and Rakhee
[16]

. 

In many waiting line systems, the role of server is played by 

mechanical/electronic device, such as computer, pallets, ATM, traffic 

light, etc., which is subject to accidental random failures; until the failed 

server is repaired, it may cause a halt in service. Ke
[17]

 studied the control 

policy of the N policy M/G/1 queue with server vacations, startup and 

breakdowns, where arrival forms a Poisson process and service times are 

generally distributed. Gharbi and Ioualalen
[18] 

gave a detailed analysis of 

finite source retrial systems with multiple servers subject to random 

breakdowns and repairs using generalized stochastic model and shown 

how this model is capable to cope up with the complexity of such retrial 

system involving the unreliability of the servers. The steady state 
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performance and reliability indices were also derived. Sherman and 

Kharoufeh
[19]

 analyzed unreliable M/M/1 retrial queue with infinite 

capacity orbit. 

The present investigation is concerned with single unreliable server 

queueing model by incorporating Bernoulli feedback, general retrial 

time, K-phase optional repair along with modified vacation policy. To 

refer a practical application on the model under investigation, we cite an 

illustration of reception counter at any organization wherein the operator 

(receptionist) uses a telephone/answering machine. If any customer 

makes a call and finds the operator busy, then the customer either leaves 

message on the answering machine (retrial queue) or may balk due to 

impatience. Moreover the service of the incoming calls may be 

interrupted when the operator is not well or there may occur some 

problem in the telephone set. The operator/telephone set is immediately 

recovered in phases. In case when the operator is free, he goes on the 

vacation, however he may be restricted to take finite number of 

vacations. 

The study of queueing model is organized as follows. The model 

along with notations is described in Section 2.  Steady state behaviour of 

the system by constructing the Chapman Kolmogorov equations is 

outlined in Section 3. By using generating function method, the queue 

size distribution has been obtained in Section 4. Some queueing indices 

to predict the behaviour of the system are derived in Section 5. In Section 

6, the results for some of the well-established models as special cases of 

our model, are deduced. Reliability indices are obtained in Section 7. To 

validate the analytical results and to facilitate the sensitivity analysis, we 

present some numerical results for system performance indices in Section 

8. Finally, we have concluded our work in Section 9. 

2. Model Description  

We consider a single unreliable server retrial queueing system at 

which jobs arrive according to Poisson process with mean arrival rate λ. 

On finding the server busy, under setup, under repair or on vacation 

either job goes to some virtual place referred as an orbit or job may balk 

from the system with some probability h  ( h =1-h; h being joining 

probability). From the orbit, the jobs repeat their request for service after 
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some random time. The inter retrial time of each job is i.i.d. general 

distributed with distribution function A(u). 

On finding server idle only one job at the head of the queue (orbit) is 

allowed to access the server. The jobs are served according to FCFS 

discipline. After completion of service if the job is not satisfied with its 

service for any reason or if it receives incomplete service, in that case the 

job may immediately join the tail of the queue (orbit) with some 

probability p (0 ≤ p ≤ 1) i.e. feedback to have another regular service or 

job may depart from the system forever with probability q(= 1-p). The 

service times of the jobs follow the i.i.d. general distribution with 

cumulative distribution function B(u). 

When the server is working, he may meet unpredictable breakdowns. 

We assume that server’s life time is exponentially distributed with rate α. 

When the server fails, it is immediately send for repair at a repair facility. 

The repair facility requires some time before starting the repair; this time 

is known as setup time for the repairman. The repair is assumed to be 

performed in K phases. The repairman provides the first phase (essential) 

repair (ER) to the server. As soon as the ER of a server is completed, the 

server may join the system for service or may immediately go into 

second phase of repair with probability r1. Similarly after completing 

second phase of repair, which is optional, the repairman immediately 

starts subsequent third phase of repair with probability r2, otherwise the 

server goes to working state. On a similar pattern, the server may goes 

into a maximum of K phases of repair (including first ER phase) with 

different probabilities rk-1 (k = 2,3,…, K) for moving from (k-1)
th  

phase 

to k
th 

phase of repair. Setup time and k
th 

phase (k = 2,3,…, K) repair time 

are mutually independent and identically general distributed. 

As soon as the service of the jobs is completed, the server 

deactivates and takes at most J vacations repeatedly until at least one job 

recorded in the orbit upon returning from a vacation. If one or more jobs 

are present in the orbit in case when the server returns from a vacation, 

the server reactivates otherwise goes back for subsequent vacation. If no 

job is present in the orbit at the end of J
th

 vacation, the server remains 

dormant until at least one job arrives in the orbit. We assume that j
th 

phase (j = 1,2,…, J) vacation time follows general distribution law. 
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For distribution of retrial time, service time,  j
th

 (j = 1,2,…, J) phase 

vacation time , setup time and k
th

 (k = 1,2,…, K) phase repair time, we 

use the following notations: 

a(u),b(u),ν
j
(u) Probability density functions for retrial time, service 

time and j
th  

(j = 1,2,…, J)  phase vacation time, 

respectively. 

A(u),B(u),V
j
(u) Distribution functions for retrial time, service time and 

j
th 

(j = 1,2,…, J) phase vacation time, respectively. 

A
*
(.),b

*
(.),ν

j*
(.) Laplace transform of a(.), b(.) and ν

j
(.), respectively. 

S(v),g
(k)

(v)  Probability density functions for setup time and k
th

    (k 

= 1,2,…, K) phase repair time, respectively.  

S(v),G
(k)

(v) Distribution functions for  setup time and k
th

  (k = 

1,2,…, K) phase repair time, respectively. 

S
*
(.),g

(k)*
(.) Laplace transform of s(.) and g

(k)
(.), respectively. 

3. Steady State Equations 

We analyze the system state at time t by means of Markov process 

}0t),t(),t(),t(),t(N{)t(X
)k(

0
j
0 ≥ηξψ= , where N(t) denotes the number of jobs 

in the orbit at time, Ψ(t) stands for the elapsed retrial time, )t(
0

ξ  and 

)t(
j

ξ stand for the elapsed time of service and elapsed vacation time of 

j
th

(j = 1,2,…, J) phase at time t, respectively. )t(
0

η  and )t(
)k(

η  stand for 

the elapsed time of setup and k
th

(k = 1,2,…, K) phase elapsed repair time, 

respectively. We introduce the supplementary variables corresponding to 

retrial time, service time, setup time, phase repair time and vacation time. 

We define the following limiting probabilities corresponding to different 

states: 

For retrial: 
1n},duu)t(u,n)t(N{Plimdu)u(A

t
n

≥+≤ψ<==
∞→  

For server’s busy state: 
0n},duu)t(u,n)t(N{Plimdu)u(B

0
t

n
≥+≤ξ<==

∞→  

For setup state: 
0n},dvv)t(v,u)t(,n)t(N{Plimdv)v,u(S

00
t

n
≥+≤η<=ξ==

∞→  
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For k
th

 phase repair: 

Kk1,0n},dvv)t(v,u)t(,n)t(N{Plimdv)v,u(R )k(
0

t

)k(
n ≤≤≥+≤η<=ξ==

∞→  

For j
th

 phase vacation: 

Jj1,0n},duu)t(u,n)t(N{Plimdu)u(V j

t

j
n ≤≤≥+≤ξ<==

∞→
 

Since A(u), B(u), S(v), G
(k)

(v) and V
j
(u) are distribution functions, A(0) 

= 0, A(∞) = 1; B(0) = 0, B(∞) = 1; S(0) = 0, S(∞) = 1; G
(k)

(0) = 0, G
(k)

(∞) 

= 1 and V
j
(0) = 0, V

j
(∞) = 1. Also 

)u(A

)u(a
)u(a = ,

)u(B

)u(b
)u(b = , 

)v(S

)v(s
)v(s = , 

)v(G

)v(g
)v(g

)k(

)k(
)k(

= , 
)u(V

)u(
)u(

j

j
j ν

=ν  

are the hazard rate functions of  A(u), B(u), S(v), G
(k)

(v) and V
j
(u), 

respectively. 

In all phases of vacation, we consider identical hazard rate, so that 

)u(V

)u(
)u()u(

j ν

=ν=ν  

Now i
th

 moments for retrial time, service time, setup time, repair 

time and vacation time are defined as: 

,)0(b)1(b),0(a)1(a )i(i

i

)i(i

i

∗∗

−=−= )0(g)1(g),0(s)1(s
)i)(k*(i)k(

i
)i(i

i
−=−=

∗

and

)0()1(
)i(j*i

i
ν−=ν . 

Here θ, μ, s, γ, ν denote the retrial rate, service rate, setup rate, repair 

rate, vacation rate, respectively. 

For steady state, we obtain the following differential difference 

equations governing the model: 

∫
∞

ν=λ

0

J

00
)u()u(VA du                        (1) 

),u(A)]u(a[
du

)u(dA
n

n
+λ−=     n ≥ 1                     (2) 

∫
∞

−
++λ+α++λ−=

0

)K(
n

)K(
1nn

n dv)v,u(R)v(g)u(hB)u(B])u(bh[
du

)u(dB ∫∑
∞−

=

−

0

)k(
n

)k(

k

1K

1k

,dv)v,u(R)v(g)r1(  
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 n ≥ 0, 1Kk1 −≤≤                (3) 

)v,u(hS)v,u(S)]v(sh[
dv

)v,u(dS
1nn

n

−

λ++λ−= ,    n ≥ 0                              (4) 

)v,u(hR)v,u(R)]v(gh[
dv

)v,u(dR )k(
1n

)k(
n

)k(
)k(

n
−

λ++λ−= ,  n ≥ 0, Kk1 ≤≤    (5) 

)u(hV)u(V)]u(h[
du

)u(dV j
1n

j
n

j
n

−

λ+ν+λ−= ,     n ≥ 0, Jj1 ≤≤        (6) 

The boundary conditions are: 

∑∫ ∫ ∫
=

∞ ∞ ∞

−
++ν=

J

1j 0 0 0

1nn
j
nn ,du)u(b)u(Bpdu)u(b)u(Bqdu)u()u(V)0(A    n ≥ 1      (7) 

∫
∞

λ+=

0

010 Adu)u(a)u(A)0(B                         (8) 

∫∫
∞∞

+
λ+=

0

n

0

1nn du)u(Adu)u(a)u(A)0(B ,    n ≥ 1        (9) 

)u(B)0,u(S
nn

α= ,    n ≥ 0                    (10) 

∫
∞

=

0

n
)1(

n dv)v(s)v,u(S)0,u(R ,    n ≥ 0        (11) 

∫
∞

−
−

−

=

0

)1k()1k(
n

)k(
n dv)v(g)v,u(Rr)0,u(R

1k ,    n ≥ 0, k ≥ 2     (12) 

⎪
⎪
⎩

⎪⎪
⎨

⎧

≥

=
= ∫

∞

1n,0

0n,du)u(b)u(Bq
)0(V

0

n1
n                   (13) 
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⎪
⎪

⎩

⎪
⎪

⎨

⎧

≥

≤≤=ν
=

−

∞

−

∫
1n,0

Jj2,0n,du)u()u(V
)0(V

)1j(

0

1j
nj

n               (14) 

The normalizing condition is 

∑ ∫ ∫∑ ∫∑ ∫
∞

=

∞ ∞
∞

=

∞
∞

=

∞

+++

0n 0

n

00n 0

n

1n 0

n0 dudv)v,u(Sdu)u(Bdu)u(AA   

                                           1du)u(Vdudv)v,u(R

0n 0

J

1j 0n

j
n

00

)k(
n

K

1k

=++ ∑∫ ∑∑∫∫∑
∞

=

∞

=

∞

=

∞∞

=

        (15) 

4. Queue Size Distribution 

We use method of generating function to solve above steady state 

equations. Define the following probability generating functions: 

∑
∞

=

=

1n

n

n ,z)u(A)u,z(A    ∑
∞

=

=

0n

n
n ,z)u(B)u,z(B   ∑

∞

=

=

0n

n
n z)v,u(S)v,u,z(S , 

∑
∞

=

=

0n

n)k(
n

)k( z)v,u(R)v,u,z(R , ∑
∞

=

=

0n

nj
n

j ,z)u(V)u,z(V  1≤z  

Now from eqs (2) to (12), we obtain 

)u,z(A)]u(a[
u

)u,z(A
+λ−=

∂

∂
         (16) 

++α++−λ−=
∂

∂

∫
∞

dv)v,u,z(R)v(g)u,z(B])u(b)z1(h[
u

)u,z(B

0

)K()K(
,dv)v,u,z(R)v(g)r1(

0

)k(
n

)k(
1K

1k

k∫∑
∞

−

=

−  

1Kk1 −≤≤                                              (17) 

)v,u,z(S)]v(s)z1(h[
v

)v,u,z(S
+−λ−=

∂

∂
       (18) 

),v,u,z(R)]v(g)z1(h[
v

)v,u,z(R )k()k(
)k(

+−λ−=
∂

∂
Kk1 ≤≤      (19) 
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),u,z(V)]u()z1(h[
u

)u,z(V j
j

ν+−λ−=
∂

∂
Jj1 ≤≤       (20) 

∑∫ ∫ ∑
=

∞ ∞

=

−λ−++ν=

J

1j 0 0

J

1j

j
00

j
)0(VAdu)u(b)u,z(B)pzq(du)u()u,z(V)0,z(A               (21) 

∫ ∫
∞ ∞

λ+λ+=

0

0

0

Adu)u,z(Adu)u(a)u,z(A
z

1
)0,z(B                  (22) 

)u,z(B)0,u,z(S α=                      (23) 

∫
∞

=

0

)1(
dv)v(s)v,u,z(S)0,u,z(R                          (24) 

∫
∞

−−

−

=

0

)1k()1k()k( dv)v(g)v,u,z(Rr)0,u,z(R
1k ,    k ≥ 2                 (25) 

Normalizing condition (15) yields 

1du)u,z(Vdudv)v,u,z(Rdudv)v,u,z(Sdu)u,z(B)z(AA

J

1j 0

j
K

1k

)k(

0 00 00

0 =+++++ ∑∫∑∫∫∫∫∫
=

∞

=

∞∞∞∞∞

    (26) 

Theorem 1: The partial probability generating functions when the server 

is in idle, busy, under setup, k
th 

(k = 1,2,..., K) phase repair 

and on j
th

 (j = 1,2,… J) phase vacation state  respectively, 

are given by  

)u(A}uexp{
))z(H(b))}(a1(z)(a){pzq(z

))}z(H(b)pzq(1)z(N{zA
)u,z(A

***

*
0

λ−

λ−+λ+−

++−λ
=     (27) 

)u(B}u)z(Hexp{
))z(H(b))}(a1(z)(a){pzq(z

]z)}(a1(z)(a}{1)z(N[{A
)u,z(B

***

**
0

−

λ−+λ+−

+λ−+λ−λ
=     (28) 

=)v,u,z(S )v(S)u(B}v)z1(hexp{}u)z(Hexp{
))z(H(b))}(a1(z)(a){pzq(z

]z)}(a1(z)(a}{1)z(N[{A

***

**
0

−λ−−

λ−+λ+−

+λ−+λ−λ
α     

(29) 
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)}z1(h{s
))z(H(b))}(a1(z)(a){pzq(z

]z)}(a1(z)(a}{1)z(N[{A
)v,u,z(R *

***

**
0)1(

−λ

λ−+λ+−

+λ−+λ−λ
α=  

)v(G)u(B}v)z1(hexp{}u)z(Hexp{
)1(

−λ−−×               (30) 

)}z1(h{s
))z(H(b))}(a1(z)(a){pzq(z

]z)}(a1(z)(a}{1)z(N[{A
)v,u,z(R *

***

**
0)k(

−λ

λ−+λ+−

+λ−+λ−λ
α=  

)v(G)u(B}v)z1(hexp{)}]z1(h{gr[}u)z(Hexp{
)k(*)n(

1k

1n

n −λ−−λ−× ∏
−

=

Kk2, ≤≤              

(31) 

)u(V}u)z1(hexp{
}]h{v[

A
)u,z(V

1jJ*

0j
−λ−

λ

λ
=

+− ,  Jj1 ≤≤                 (32) 

where 

]1)}z1(h{v[
)]h(v1[)]h(v[

)]h(v[1
)z(N *

*J*

J*

−−λ

λ−λ

λ−
=  

H(z)=λh(1-z)+ )}z1(h{g)}]z1(h{gr[)}{z1(h{s1[ *)K(
1K

1k

*)n(
n

*
−λ−λ−λ−α ∏

−

=

 

}])}z1(h{g)}]z1(h{gr[)r1()}z1(h{g)r1(
2K

1k

)1k(K

1n

*)kK(*)n(
n

*)1(
kK1 ∑ ∏

−

=

+−

=

−
−λ−λ−+−λ−+

−

  

Proof:  For proof see Appendix A. 

Theorem 2: Probability generating functions for the number of jobs in 

the orbit and in the system (one is in service) are 

)z(V)z(R)z(S)z(B)z(A)z( j
J

1j

)k(
K

1k

∑∑
==

++++=Θ
              (33) 

)z(V)z(Rz)z(zS)z(zB)z(A)z( j
J

1j

)k(
K

1k

∑∑
==

++++=Π
              (34) 

where 
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))z(H(b))}(a1(z)(a){pzq(z

))}z(H(b)pzq(1)z(N)}{(a1{zA
)z(A

***

**
0

λ−+λ+−

++−λ−
=                             (35) 

)z(H
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Proof:  For proof see Appendix A. 
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5. Performance Indices 

We derive some performance indices to predict the behaviour of the 

system using the probability generating functions obtained in previous 

section as follows: 

� Expected number of jobs in the orbit: (for three (K = 3) phase of 

repair) 
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� Expected number of jobs in the system: 

dz

)z(d
Lt)M(E

1z

Π
=

→
 

)L(E

}]grgs{h)h()h1)((aph)[1(N}]grgs{)1(q)[(ha

)](a)1(N[h

1k

1n

K

2k

)k(
1n

)1(
11

*
1k

1n

K

2k

)k(
1n

)1(
11

*

*

+

++αρ+ζ−ρ+−λ+−′+++αρ+−ζρ−λ

λ+′ρ
=

∏ ∑∏ ∑
−

= =

−

= =

                                                                 (42) 

� Long run fraction of the time when the server is idle state during 
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� Long run fraction of the time when the server is in busy state: 
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� Long run fraction of the time when the server is under k
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� Long run fraction of the time when the server is on j
th 

phase vacation 
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where 
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6. Special Cases 

In this section, we shall examine whether by setting appropriate 

parameters, our results are consistent with known results for some 

specific cases. 

9. Model with Bernoulli feedback, repeated attempts, modified 

vacation with discouragement and reliable server : Setting α = 0, 

Eq. (41) becomes 
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(II) Model with modified J-vacations and reliable server: Putting 

α=0, p=0,   

h=1, a
*
(λ)→1 in eq. (41), we get  
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This result agrees with Takagi’s modified vacation model
[20]

. 

 (III) Model with single vacation and reliable server: Substituting α = 

0, p = 0,   

           h = 1, a
*
(λ)→1, J = 1, eq. (41) reduce to 
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which coincides with the results obtained by Takagi for single vacation 

system
[20]

. 
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(IV) Model with multiple vacations and reliable server: Substituting 

α = 0, p = 0, h = 1, a
*
(λ)→1, J→∞, eq. (41) provides 

             ]b1[2

b

v2

v
)L(E

1

2

1

2
2

λ−

λ
+

λ
=          (51) 

 In this case, our result tally with the result of Takagi’s multiple 

vacation model
[20]

. 

(V) Model with Bernoulli feedback and reliable server: On putting 

α=0, h=1, a
*
(λ)→1, J=0, eq. (41) yields 
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This result matches with Madan and Al-Rawwash’s
[13]

model with 

without bulk and vacation. 

(VI) Model with general retrial attempts and reliable server: On 

setting α = 0, p = 0, h = 1, J = 0, eq. (41) turns into 
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which is same as that of Gomez-Corral
[1]

. 

(VII) Model with exponential retrial attempts and reliable server: 

Substituting 

α=0, h=1, J=0, 
λ+θ

θ
=λ)(a* , eq. (41) converts into 

]b)([2

b2b
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which coincide with the results obtained by Choi et al.
[21]

. 

7. Reliability Indices 

Since reliability shows failure free behaviour of the server, in order 

to obtain reliability indices we consider setup state and repair state as 

absorbing states. Now we shall construct the transient state equations for 

idle state, busy state and vacation state as follows: 
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The transient state boundary conditions are: 
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Initial condition is  
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Taking Laplace transform of equations (55-63), we get 
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Define probability generating functions in the form of Laplace 

transforms as 
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Multiplying eqs. (64)-(70) with appropriate power of 
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z and 

summing, we get 
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Theorem 3: Reliability of the server in Laplace form is given by 
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Proof: For proof see Appendix B. 

Theorem 4: Availability of the server is obtained as 
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Theorem 5: Failure frequency of the server is: 
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8. Numerical Results 

In this section, we present numerical illustrations in order to justify 

the implementation of analytical results. We have used software 

MATLAB to develop computational program. Reliability indices such as 

availability and failure frequency of the server are summarized in Tables 

1-3. The effect of different parameters on the expected number of jobs in 

the orbit E(L) are displayed in Fig. 1-4 by varying arrival rate (λ), failure 

rate (α), retrial rate (θ) & set up rate (s). Fig. 1-3 are for the model when 

service time, setup time, repair time and vacation time follow Erlangian 

(k = 4) distribution, whereas graphs for the exponential distributions (i.e. 

k = 1) are taken in Fig. 2-4. The numerical results corresponding to 

Erlangian retrial time (k = 4) and exponential retrial time have been 

shown through discrete and continuous lines, respectively in all figures. 

For numerical experiments, we set default parameters as λ = .7, α = 1, 

θ = 2, s = 1, p = .3, h = .4, r1 = r2 = r = .5, g = .8, μ = 6, ν = .5, J = 10. 

In Tables 1-3, we have examined the sensitivity of the feedback 

parameter (p) and failure rate (α), arrival rate (λ) & service rate (μ) and 

joining probability (h), retrial rate (θ) and repair rate (γ), respectively on 

availability (AV) and failure frequency (FR) of the server. It is noticed 

that the availability (failure frequency) increases (decreases) with μ, γ 

and θ whereas on increasing p, h, λ and α, the availability (failure 

frequency) of the server decreases (increases). 
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Table 1. Effect of feedback parameter (p) and failure rate (α) of the serveron availability 

and failure frequency of the server. 

 

Table 2.  Effect of arrival rate (λ) and service rate (μ) of the server on availability and 

failure frequency of the server. 

 

Exponential (k = 1) retrial rate Erlangian (k = 4) retrial rate 

θ = 1 θ = 3 θ  = 1 θ = 3 Α 

  
AV FR AV FR AV FR AV FR 

0 1 0 1 0 1 0 1 0 

1 0.8960 0.0620 0.9116 0.0527 0.8904 0.0653 0.9108 0.0532 

2 0.7920 0.1240 0.8232 0.1054 0.7809 0.1306 0.8216 0.1064 

3 0.6880 0.1860 0.7348 0.1581 0.6714 0.1959 0.7324 0.1596 

4 

p=0 

0.5841 0.2480 0.6465 0.2108 0.5619 0.2612 0.6432 0.2127 

0 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 

1 0.8271 0.1031 0.8664 0.0797 0.8113 0.1125 0.8645 0.0808 

2 0.6543 0.2061 0.7328 0.1593 0.6226 0.2250 0.7291 0.1616 

3 0.4816 0.3091 0.5994 0.2389 0.4340 0.3375 0.5937 0.2423 

4 

p=.3 

0.3090 0.4120 0.4660 0.3184 0.2455 0.4499 0.4584 0.3230 

Exponential (k = 1) retrial rate Erlangian (k = 4) retrial rate 

θ = 1 θ = 3 θ = 1 θ = 3 Α  

AV FR AV FR AV FR AV FR 

0.2 0.9594 0.0242 0.9625 0.0224 0.9590 0.0244 0.9625 0.0224 

0.4 0.9145 0.0510 0.9277 0.0431 0.9114 0.0528 0.9274 0.0433 

0.6 0.8586 0.0843 0.8879 0.0669 0.8484 0.0904 0.8867 0.0676 

0.8 0.7936 0.1231 0.8440 0.0930 0.7703 0.1370 0.8412 0.0947 

1.0 

μ=6 

0.7205 0.1667 0.7967 0.1212 0.6766 0.1928 0.7912 0.1245 

0.2 0.9796 0.0122 0.9812 0.0112 0.9794 0.0123 0.9812 0.0112 

0.4 0.9572 0.0255 0.9638 0.0216 0.9557 0.0264 0.9637 0.0217 

0.6 0.9293 0.0422 0.9439 0.0334 0.9242 0.0452 0.9433 0.0338 

0.8 0.8968 0.0616 0.9220 0.0465 0.8851 0.0685 0.9206 0.0474 

1.0 

μ=12 

0.8602 0.0833 0.8983 0.0606 0.8383 0.0964 0.8956 0.0622 
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Table 3. Effect of joining probability (h) and repair rate γof the server on availability and 

failure frequency of the server. 

Exponential (k = 1) retrial rate Erlangian (k = 4) retrial rate 

θ = 2 θ = 4 θ = 2 θ = 4 H  

AV FR AV FR AV FR AV FR 

0.2 0.9184 0.0487 0.9303 0.0415 0.9150 0.0507 0.9295 0.0420 

0.4 0.8561 0.0858 0.8717 0.0765 0.8519 0.0883 0.8706 0.0772 

0.6 0.8031 0.1174 0.8167 0.1093 0.7997 0.1195 0.8157 0.1099 

0.8 0.7585 0.1440 0.7665 0.1393 0.7566 0.1452 0.7659 0.1396 

1 

γ=8 

0.7205 0.1667 0.7205 0.1667 0.7205 0.1667 0.7205 0.1667 

0.2 0.9348 0.0487 0.9444 0.0416 0.9321 0.0507 0.9437 0.0420 

0.4 0.8851 0.0858 0.8976 0.0765 0.8818 0.0883 0.8967 0.0772 

0.6 0.8429 0.1174 0.8537 0.1093 0.8401 0.1195 0.8529 0.1099 

0.8 0.8073 0.1440 0.8136 0.1393 0.8057 0.1452 0.8131 0.1396 

1 

γ=16 

0.7769 0.1667 0.7769 0.1667 0.7769 0.1667 0.7769 0.1667 

 

From Fig. 1(a) & 1(b), we study the effect of arrival rate (λ) and 

failure rate (α), respectively on the expected number of jobs in the orbit 

E(L) for different sets of joining probability (h). We observe that initially 

E(L) increases gradually but later on increases sharply with the arrival 

rate (λ) and failure rate (α). The effect of retrial rate (θ) and setup rate (s) 

have been displayed in Fig. 1(c) and 1(d), respectively. We can easily see 

that initially E(L) decreases rapidly as θ and s increase but after some 

time there is a linear decrement. In Fig. 2(a-d), a slight change occurs in 

comparison to Fig. 1(a-d). A remarkable increment has been seen in E(L) 

on increasing joining probability (h) in Fig. 1(a-d) and 2(a-d). 

Figures 3(a-d) and 4(a-d) depict the same pattern with arrival rate 

(λ), failure rate (α), retrial rate (θ) and setup rate (s) as we have obtained 

in Fig. 1(a-d) and 2(a-d). As we increase the feedback parameter (p), the 

expected number of jobs in the orbit E(L) also increases. Significant 

change occurs in case of Erlangian retrial time as comparison to 

exponential retrial time. 
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(a)  (a) 

   

(b)  (b) 

   

(c)  (c) 

   

(d)  (d) 

 

 

 

Fig. 2. Effect of (a) λ, (b) α, (c) θ & (d) 

s for different sets of h for 

exponential model. 
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(a)  (a) 
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Fig. 4. Effect of (a) λ, (b) α, (c) θ & (d) 

s on E(L) for different sets of p 

for exponential model. 

Fig. 3. Effect of (a) λ, (b) α, (c) θ & (d) 

s on E(L) for different sets of p 

for Erlangian model. 
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From all tables and graphs, we conclude that: 

• With the increase in failure rate (α) of the server, arrival rate 

(λ), feedback parameter (p) and joining probability (h) of the jobs, we 

notice that the availability (AV) decreases but failure frequency (FR) of 

the server increases. But on increasing service rate (μ), repair rate (γ) and 

retrial rate (θ), the availability (AV) increases but the failure frequency 

(FR) of the server decreases. The patterns of the graphs are in agreement 

with physical situations. 

• As we expect, the expected number of jobs in the orbit E(L) 

increases as arrival rate (λ), feedback parameter (p) and joining 

probability (h) of the jobs and failure rate (α) of the server increase, but 

there is a decreasing trend in the number of jobs in the orbit with the 

increase in retrial rate (θ ) and setup rate (s). 

• Balking behaviour of jobs significantly affect the expected 

number of jobs in the orbit as decreasing trend is quite visible; this may 

be due to fact that effective arrival rate decreases in such a case. 

9. Conclusion 

In the present study, a single unreliable server M/G/1 queueing 

system with modified vacation, repeated attempts and discouragement is 

considered. To obtain analytical expressions for various performance 

indices of interest, we employ the generating function approach. An 

important feature of the model with general retrial policy studied, is that 

we have obtained the analytical solutions in closed form. The modified 

vacation policy concept is introduced for utilizing the idle time of the 

server. The provision of K-phase optional repair makes our model more 

versatile in real congestion situations as broken down server may need 

different phases of repair, some of which may be optional.  
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Appendix A 

Proof of Theorem 1 

Solving eqs. (16), (18) & (19), we get 

)u(A}uexp{)0,z(A)u,z(A λ−=                                                                                      (A.1) 

)v(S}v)z1(hexp{)0,u,z(S)v,u,z(S −λ−=                                                                      (A.2) 

)v(G}v)z1(hexp{)0,u,z(R)v,u,z(R
)k()k()k(

−λ−=                                                      (A.3) 

Now for k≥2, using eq. (25), eq. (A.3) becomes  

dv)v(G}v)z1(hexp{)v(g)v,u,z(Rr)v,u,z(R
)k()1k()1k(

0

)k(

1k
−λ−=

−
−

∞

∫ −

                     (A.4) 

For k=1, using Eq. (24), Eq. (A.3) yields 

dv)v(G}v)z1(hexp{)v(s)v,u,z(S)v,u,z(R

0

)1()1( ∫
∞

−λ−=                                                      (A.5) 

Using (A.2) and (23), eq. (A.5) provides 

)v(G}v)z1(hexp{)}z1(h{s)u,z(B)v,u,z(R
)1(*)1(

−λ−−λα=                                      (A.6) 

Similarly, we obtain 

)v(G}v)z1(hexp{)}]z1(h{gr[)}z1(h{s)u,z(B)v,u,z(R
)k(

1k

1n

*)n(
n

*)k(
−λ−−λ−λα= ∏

−

=

, (2≤k≤K)      (A.7) 

On solving Eq. (17) and using Eq. (21) & (A.7), we get 

)u(B}u)z(Hexp{)0,z(B)u,z(B −=  

)u(B}u)z(Hexp{]A}
z

))(a1(z)(a
){0,z(A[ 0

**

−λ+
λ−+λ

=                                           (A.8) 

Solution of eq. (6) at n=0, gives 

)u(V}huexp{)0(V)u(V
j
0

j
0 λ−= , (1≤ j ≤  J)                                                                     (A.9) 

)h(v)0(Vdu)u(V}huexp{)u()0(Vdu)u()u(V *j
0

j
0

0

j
0

0

λ=λ−ν=ν ∫∫
∞∞

 

For j=J ,  
)h(v

A
)0(V

*

0J

0

λ

λ
=                                                                                                    (A.10) 
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From eqs (A.10) and (14), we have 

1jJ*

0j
0

)]h(v[

A
)0(V

+−
λ

λ
=  ,          (1≤ j ≤  J-1)                                                                   (A.11) 

1jJ*

0j

)]h(v[

A
)0,z(V

+−
λ

λ
= ,          (1≤ j ≤  J)                                                                   (A.12) 

Using eq. (A.9), we obtain 

du)u(V}huexp{)0(Vdu)u(V
j
0

0

j
0

0

λ−= ∫∫
∞∞

                                                                   (A.13) 

h

)]h(v1[

)]h(v[

A
V

*

1jJ*

0j
0

λ−
×

λ

=
+−

,       (1≤ j ≤  J)                                                    (A.14) 

J*

J*

0
0

)}h(v{h

])}h(v{1[A
V

λ

λ−
=                                                                                                    (A.15) 

)u(V}u)z1(hexp{)0,z(V)u,z(V jj
−λ−=                                                                    (A.16) 

From eq. (21), we have  

)}z(H{b)0,z(B)pzq()1)z(N(A)0,z(A *

0 ++−λ=                                                    (A.17) 

From eqs (A.8) and (A.17), we get 

))z(H(b))}(a1(z)(a){pzq(z

]z)}(a1(z)(a}{1)z(N[{A
)0,z(B

***

**

0

λ−+λ+−

+λ−+λ−λ
=                                                    (A.18) 

))z(H(b))}(a1(z)(a){pzq(z

))}z(H(b)pzq(1)z(N{zA
)0,z(A

***

*

0

λ−+λ+−

++−λ
=                                                    (A.19) 

Proof of Theorem 2 

For the prove of this theorem, we use 

∫
∞

=

0

du)u,z(A)z(A ; ∫
∞

=

0

du)u,z(B)z(B ; ∫ ∫
∞ ∞

=

0 0

dvdu)v,u,z(S)z(S ; 

dvdu)v,u,z(R)z(R

0 0

)k()k( ∫ ∫
∞ ∞

=  (k=1,2,…,K);  ∫
∞

=

0

jj du)u,z(V)z(V (j=1,2,…,J) 

 Using eq. (26) at z=1, we can find normalizing constant A0.   
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Appendix B 

Proof of Theorem 3  

On solving Eq. (73), (74) and (75), we get  

)u(Ae)0,z,s(A)u,z,s(A u)s(** λ+−
=                                                                                       (B.1) 

)u(Be)0,z,s(B)u,z,s(B u)}z1(hs{** −λ+α+−
=                                                                       (B.2) 

)u(Ve)0,z,s(V)u,z,s(V u)}z1(hs{*j*j −λ+−
=                                                       (B.3) 

From eq. (67) at n=0, we obtain  

)u(V}u)hs(exp{)0,s(V)u,s(V
j
0

j
0 λ+−= ,       (1≤ j ≤  J)                                                      (B.4) 

at j=J       
1jJ*

*
0*J

0
)]hs(v[

]1)s(A)s[(
)0,s(V

+−
λ+

−λ+
=  ,      (1≤ j ≤  J)                                                     (B.5) 

1jJ*

*
0*j

)]hs(v[

]1)s(A)s[(
)0,s,z(V

+−
λ+

−λ+
=  

Now )s(a)0,z,s(Adu)u(a)u,z,s(A **

0

*
λ+=∫

∞

                                                                      (B.6) 

)s(

)s(a1
)0,z,s(Adu)u,z,s(A

*
*

0

*

λ+

λ+−
=∫

∞

                                                                                      (B.7) 

 

 (B.8) 

 

 

Using eq. (B.5), Eq. (76) yields  

}1)s,z(N}{1)s(A)s{()}z1(hs{b)0,z,s(B)pzq()0,z,s(A *

0

***
−−λ++−λ+α++=                       (B.9) 

Using (B.6) & (B.7), again Eq. (77) becomes 

))z1(hs(b)]}s(a1[z)s(a)s){(pzq()s(z
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)s(
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By Rouche’s theorem, the denominator of the above Eq. (B.16) has one zero ω(s) inside the unit 

circle 1z =  for Re(s)>0, and it is also the zero point for the numerator of above Eq. (B.16). 
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where  
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where ω(s) is the root of the equation 
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Using above results we obtain reliability of the server as 
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