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Abstract. A new class of offshore platforms with periodic legs is 

presented. The dynamic response of this class of platforms to wave 

excitation is determined theoretically and experimentally. The 

emphasis is placed here on studying the behavior of legs with 

geometric and material periodicity.  

A theoretical model is developed to model the dynamics of 

periodic legs using the Transfer Matrix method. The predictions of the 

model are validated experimentally using a scaled experimental model 

of an offshore platform. The experimental model is tested inside a 

water basin which is provided with a water wave generator 

mechanism capable of generating periodic as well as random waves. 

The dynamic response of the platform with periodic legs is determined 

for different submergence levels. The obtained results are compared 

with the response when the platform is provided with plain legs. It is 

found that the periodic legs are capable of attenuating considerably the 

vibration transmitted from the water to the platform both in the axial 

and lateral directions over a broad frequency band. Comparisons 

between the experimental results and the theoretical predictions are 

found to be in close agreement. The developed theoretical and 

experimental techniques provide invaluable tools for the design of this 

new class of offshore platforms with periodic legs. 
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1. Introduction 

There are more than 5000 steel offshore platforms around the world. The 

main dynamic excitations depend on wind, sea waves, ice and 

earthquakes. Based on engineering experiences vibration amplitude 

reduces 15% the life of the structure enhanced double. Offshore 

platforms, such as the one shown in Fig.1, have many uses including oil 

exploration and production, navigation, ship loading and unloading, and 

to support bridges and causeways. Offshore oil production is one of the 

most visible of these applications and represents a significant challenge 

to the design engineer. These offshore structures must function safely for 

design lifetimes of twenty years or more and are subject to very harsh 

marine environments. Some important design considerations are peak 

loads created by hurricane wind and waves, fatigue loads generated by 

waves over the platform lifetime and the motion of the platform. 

 

 

 

 

 

 

 

 

Fig. 1. Oil production platforms. 

The offshore platform construction should provide technical 

information on the way in which vibration should be taken into account 

in the design and construction of offshore installations especially at the 

legs of the platform which are exposed to the sea waves. The leg design 

and isolation should be duly considered to avoid the effect of loads 

generated by the sea waves. The platforms are sometimes subjected to 

strong currents which create loads on the mooring system and can induce 

vortex shedding and vortex induced vibration.  

There are many sources of vibration that affect the offshore platform 

structures, for example machinery, water waves, wind and impact boats. 
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We concentrate on the high effect of these sources, large sea waves and 

we try to make a good solution to providing the better isolation of 

mechanical vibration by using the periodic structure technique. 

2.  Background 

The basic idea underlying the whole concept of periodic structures is 

that when a wave is traveling in a medium and meets a transition in that 

medium, a part of it will propagate and another part will be reflected. In a 

regular structure the wave is expected to travel without any change until 

it reaches the boundaries of that structure, but when the structure exhibits 

a change in its geometry and/or material properties, the incident waves 

will divide as described before. A part of the reflected wave will interact 

with the incident wave in a manner that will generate distractive 

interference. This research presents a new approach to isolate the 

vibration aspects of offshore platform structures, by making the platform 

legs as periodic structures. A periodic structure consists of an assembly 

of identical elements connected in a repeating array which together form 

a completed structure. Examples of such structures are found in many 

engineering applications. These include bulkheads, airplane fuselages, 

and apartment buildings with identical stories. Each such structure has a 

repeating set of stiffeners which are placed at regular intervals. The study 

of periodic structures has a long history. Wave propagation in periodic 

systems has been investigated for approximately 300 years. 

When constructive interference occurs, the frequency is 

characterized by being the pass band of the structure; while, if they 

destructively interfere, the frequency is characterized by being the stop 

band of the structure. If the structure setup is repeated for several times, it 

is known as periodic structure. The destructive effects will show more 

significantly when the repetitions of the structure unit increase in number 

because as the part of the wave that propagates incorporates other similar 

changes in the medium, another part of it is destructed and so on. 

In his paper reviewing the research performed in the area of wave 

propagation in periodic structures, Mead
[1]

 defined a periodic structure as 

a structure that consists fundamentally of a number of identical structural 

components that are joined together to form a continuous structure. An 

illustration of a simple periodic beam is presented in Fig. 2. 
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Fig. 2. An illustration of a simple periodic beam. 

Ungar
[2]

 presented a derivation of an expression that could describe 

the steady state vibration of an infinite beam uniformly supported on 

impedances. That formulation allowed for the analysis of the structures 

with fluid loadings easily. Later, Gupta
[3]

 presented an analysis for 

periodically-supported beams that introduced the concepts of the cell and 

the associated transfer matrix. He presented the propagation and 

attenuation parameters’ plots which formed the foundation for further 

studies of one-dimensional periodic structures. Faulkner and Hong
[4]

 

presented a study of mono-coupled periodic systems. Their study 

analyzed two types of mono-coupled systems are considered as 

numerical examples: a spring-mass oscillating system and a continuous 

Timoshenko beam resting on regularly spaced knife-edge supports. Their 

study analyzed the free vibration of the spring-mass systems as well as 

point-supported beams using analytical and finite element methods.  

Mead and Yaman
[5]

 presented a study for the response of one-

dimensional periodic structures subject to periodic loading. Their study 

involved the generalization of the support condition to involve rotational 

and displacement springs as well as impedances. The effects of the 

excitation point as well as the elastic support characteristics on the pass 

and stop characteristics of the beam are presented. Later, Mead, White 

and Zhang
[6]

 proved that the power transmission in both directions of a 

simply supported beam excited by a point force was equal regardless of 

the excitation location. These results were generalized by Langley
[7]

 for 

generalized supports and excitation in the absence of damping. 

Langley investigated the localization of a wave in a damped one-

dimensional periodic structure using an energy approach. This method is 

based on vibration energy flow, and excellent agreement with exact 

results is demonstrated for a periodic beam system. Gry and Gontier
[9]

 

Cell
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concluded the insufficiency of both Euler-Bernoulli and Timoshinko 

beam theories for the analysis or railway tracks. Thus, they developed a 

generalized cross-section displacement theory for periodic beams with 

general support conditions for the study of the dynamic characteristics 

and vibration attenuation of railways. 

The most common damping technique studied in periodic structures 

was through the introduction of random disorder. The concept of wave 

localization phenomenon was introduced to the study of mechanical 

wave propagation by Kissel
[10]

 through the use of the transfer matrix 

approach. Ariaratnam and Xie
[11]

 studied the effect of introducing 

random variations of the parameters of a periodic beam on the 

localization parameter. Later, Cetinkaya
[12]

, by introducing random 

variation in the periodicity of one dimensional bi-periodic structure, 

showed that the vibration can be localized near to the disturbance source. 

Therefore, the wave components corresponding to higher propagation 

zones penetrate deeper into a structure. It is observed that the right 

boundary of the propagation zones is the mean localization factor 

asymptote. Xu and Huang
[13]

 showed that the introduction of a finite 

number of nearly-periodic supports into an infinite beam introduced a 

large band of localized vibration and reduced the amount of energy 

transferring through the nearly-periodic segment. Using the same 

concept, Ruzzene and Baz
[14]

 used shape memory inserts into a one 

dimensional rod, and by activating or deactivating the inserts they 

introduced a periodicity which in turn localized the vibration near to the 

disturbance source. Later, they used a similar concept to actively localize 

the disturbance waves traveling in a fluid-loaded shell
[15]

. Thorp, 

Ruzzene and Baz
[16]

 applied the same concept to rods provided with 

shunted periodic piezoelectric patches which again showed very 

promising results. Asiri, Baz and Pines
[17]

 developed a new class of these 

periodic structures called passive periodic struts, which can be used to 

support gearbox systems on the airframes of helicopters. When designed 

properly, the passive periodic strut can stop the propagation of vibration 

from the gearbox to the airframe within critical frequency bands, 

consequently minimizing the effects of transmission of undesirable 

vibration and sound radiation to the helicopter cabin. The theory 

governing the operation of this class of passive periodic struts is 

introduced and their filtering characteristics are demonstrated 

experimentally as a function of their design parameters. Asiri and 
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Aljawi
[18]

 presented a new class of periodic mounts for isolating the 

vibration transmission from vehicle engine to the car body and seats. 

3. A Periodic Beam Model 

3.1 Theoretical Model 

Spectral finite element analysis will be used to analyze the beam 

vibrations and determine the propagation parameter, µ. This parameter 

indicates the regions for which there is attenuation of the vibrations 

transmitted through the structure (stop bands) and where waves are 

allowed to transmit energy (pass bands) This section will begin with the 

development of spectral finite element analysis for transverse vibrations 

of a beam and the effect of geometrical changes in the cell structure will 

be presented. For a beam (see Fig. 3). The equation of motion may be 

derived by considering a beam section with uniform properties. 

 

Fig. 3. Beam geometry. 
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the nodal displacements of the element are given by 
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Define P by rearranging equation (7) to (10) in matrix form, thus 
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the nodal forces and moments must satisfy the following at the right and 

left   ends of the beam segment (see Fig. 4). 

 

Fig. 4. The dynamics of plain beam sub-cell. 
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where φ is given by rearrange equation (12) to (15) in matrix form 
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thus, the stiffness matrix [K] is then given by 
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[ ] 1−

= PK φ                                        (14) 

The forces at the ends of the element are related to the displacements 

by the relation 
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When considering a series of cells, one may derive a relation 

between consecutive left-end of elements (i to i  + 1). It is given by Fig. 5. 

 

Fig. 5.   Interactive between two consecutive cells. 

 

i+1 

νLi+1 

θLi+1 

FLi+1 

MLi+1 

νRi+1 

θRi+1 

FRi+1 

MRi+1 

 

i 

 

νLi 

θLi 

FLi 

MLi
 

νRi 

θRi 

FRi 

MRi 



Saeed A. Asiri et al. 102 

iL

L

L

L

iL

L

L

L

M

F
T

M

F

v

⎪
⎪

⎭

⎪
⎪

⎬

⎫

⎪
⎪

⎩

⎪
⎪

⎨

⎧

=

⎪
⎪

⎭

⎪
⎪

⎬

⎫

⎪
⎪

⎩

⎪
⎪

⎨

⎧

+

θ

ν

θ
][

1

                     (17) 

or  

ii
YTY ][

11
=

+
                               (18) 

⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
=

⎭
⎬
⎫

⎩
⎨
⎧

i

i

i

i

R

L

RRRL

LRLL

R

L

KK

KK

F

F

ν

ν

                         (19) 

where 

⎭
⎬
⎫

⎩
⎨
⎧

−
=

⎭
⎬
⎫

⎩
⎨
⎧

+

+

i

i

i

i

R

R

L

L

FF

νν

1

1

                               (20) 

⎭
⎬
⎫

⎩
⎨
⎧
⎥
⎦

⎤
⎢
⎣

⎡
=

⎭
⎬
⎫

⎩
⎨
⎧

−
++ 11 i

i

i

i

L

L

RRRL

LRLL

L

L

KK

KK

F

F

ν

ν

                       (21) 

The transfer matrix [T] may be constructed using the transformation 
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thus, the eigenproblem is formulated as 
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combining equations (E.18) and (E.23) gives: 
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indicating that the eigenvalue λ of the matrix [T] is the ratio between the 

elements of the two state vectors at two consecutive cells.  

Hence, one can reach the following conclusions: 

If 1=λ , then Yi+1=Yi and the state vector propagates along the strut. 

This condition defines a "Pass Band" condition. 

If 1≠λ , then Yi+1 ≠Yi and the state vector is attenuated as it 

propagates along the strut. This condition defines a "Stop Band" 

condition.  

A further explanation of the physical meaning of the eigenvalue λ 

can be extracted by rewriting it as: 
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where μ is the propagation factor which is a complex number whose real 

part (α) represents the logarithmic decay of the state vector and its 

imaginary part (β) defines the phase difference between the adjacent cell. 

For the periodic beams, there are two propagation factors (μ), one 

for the lateral deflection and anther for rotational deflection. 
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where the t11, t22, t33, and t44 get from the transfer matrix [T] 
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3.2 Periodic Leg Design 

In our case, we will investigate the effect of material and geometry 

discontinuity with asymmetric cells for vibration isolation. The 

propagated waves across the periodic beam cell largely depend on the 

extent of matching and appropriate materials. Aluminum and Mearthane 

Durethane material will be used (Fig. 6). Mearthane Durethane is a solid 

urethane elastomeric. Formulations are individually compounded and 

tested to meet OEM requirements for durometer, tensile strength, tear 

strength, elongation, coefficient of friction, abrasion resistance, 

compression set, compression modulus, tensile modulus, resilience, 

solvent resistance and color. Mearthane will custom-manufacture 

industrial product, wheels (Table 1). 

 

 

 

 

 

Fig. 6. An illustration of a periodic beam cell coupling. 

      Table 1. Experimental material property. 

Note in Fig. 7 which is obtained by MATLAB program, there are two 

propagation parameters associated with the beam cell. One corresponds to 

the near-field waves (both rightward and leftward travelling) and it has a real 

component for all frequencies. The other is associated with the propagating 

waves (leftward and rightward travelling). Also it can be seen that the first 

cut-off frequency is 16 Hz.   In Fig. 8 the magnitudes of the response at the 

left end of a beam (free–free end conditions with a harmonic excitation force 

at the left end) composed of three, four, and five cell structures are 

Material 
Modules of elasticity, 

(N/m2) 

Density, 

(kg/m3) 

Wave   

speed (m/s) 

Diameter, 

(m) 

Length,    

(m) 

Aluminum 70×10
9
 2700 5128 30×10

-3 
90×10

-3 

Mearthane 

Durethane 
0.000345×10

9 
1150 17 25×10

-3 
20×10

-3 

Aluminum

Rubber 
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compared. It may be seen that periodic beams composed of greater numbers 

of cells exhibit the attenuation regions more clearly. 

 

 

 

 

 

 

 

Fig. 7. Propagation parameter for a periodic beam cell. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Magnitude of the response for three, four, and five cells respectively. 
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4.  Experimental Work 

Periodic structures techniques were employed to act as filters of 

traveling waves from the sea waves to legs of the offshore platform and 

then to the bed of the offshore platform. The periodic beams were 

screwed to a 50 cm × 50 cm square plate. The vibration levels 

measurements are done by using the Pulse system machine. The 

simulation model was submerged in water in a rectangular glass tank 2m 

long, 1m wide and 0.5m high. The water was excited by a wave 

generator system at known frequencies. This experimental model is 

showed in (Fig. 9).   

 

Fig. 9. The experimental test-rig. 

 The pulse system is a multi-analyzer system which was used to plot 

the frequency response functions for different configurations of periodic 

legs in order to develop a better understanding of the behavior of the 

excited periodic leg as well as developing a numerical model to study its 

characteristics. 

The wave generator consists of a metal holder as shown in Fig. 10 

and a thin plate sinking vertically into water which is connected to the 

vibration exciter. The main goal of using the vibration exciter in the 

water wave generator mechanism is to determine the input frequencies 

from the Pulse system by using the force transducer which is connected 

to the vibration exciter. The force transducer is used in mechanical-

dynamics measurements together with an accelerometer to determine the 
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dynamic forces in a structure and the resulting vibratory motions. The 

parameters together describe the mechanical impedance of a structure. 

By exciting a structure at different positions with a vibration exciter and 

measuring the structural response, the so-called modal analysis can be 

made describing the total behavior of the structure as a system. 

 

Fig. 10. An illustration of wave generator parts set-up. 

4.1 Experiments on Legs Alone 

In order to clearly understand the effect of the water waves on the 

periodic legs alone a beam is tested with water waves generator 

mechanism for both types (plain, and periodic) with the same conditions 

and dimensions. These experimental tests provide a basis for comparison 

of the dynamic characteristics between the plain and periodic beams. 

The plain beam is made of aluminum with 500, 600, and 700 mm 

lengths and 30 mm diameter. They are supported vertically in the basin 

and submersed in water to a depth of 200 mm. Also the periodic beams 

with 5, 6, and 7 cells are tested at the same conditions. The lengths of the 

plain beams above the water level (200 mm) are 300, 400, and 500 mm. 

Similarly, the number of cells of the periodic beams above the water 

level are 3, 4 and 5. These represent the actual parameters studied and 

analyzed in this research. The beam is excited by water waves and the 

measurement was taken by an accelerometer from the free end (Fig. 11).   

By using the Pulse System, frequency response of each beam can 

obtained to make comparisons between the plain and periodic beams. 
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Fig. 11. Experimental set-up and the accelerometer position. 

4.2 Experimental Results 

Experimental results for testing the plain and periodic beams were 

obtained at a frequency range from 1 Hz to 1000 Hz. The main goal of these 

experiments is to investigate the effect of periodic beams on isolation. To 

provide better study of wave attenuation, comparison between both types of 

beams is outlined and compared with the attenuation factors which are 

displayed in Fig. 7. Figure 12 presents the frequency response obtained for the 

plain and periodic beam with 3 cells. It can be noticed that the periodic beam 

is more active in isolation and reduction of vibrations. Also the wave 

attenuation by the periodic beam is from 20 Hz to 100 Hz and from 200 Hz to 

1000 Hz which is the same stop band ranges of the propagation factor. The 

same comments can be noticed in Fig. 13 and 14 which present the results for 

4 cells and 5 cells respectively. It may be seen that periodic beams composed 

of greater number of cells exhibit the attenuation regions more clearly. 

In the alone periodic beam experiment previously tested, the 

attenuation factor of the beam, as calculated numerically by the real part 

of the propagation factor of the periodic leg model, is plotted below the 

frequency response obtained experimentally for alone periodic beam for 

the sake of comparison. The results shown emphasize the accuracy of the 

periodic leg model used to predict the behavior of the proposed beam 

over the attenuation bands. 
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Fig.  12. The frequency response of 3 cells together with the numerical results of the stop 

bands for the proposed beam. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13. The frequency response of 4 cells together with the numerical results of the stop 

bands for the proposed beam. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14. The frequency response of 5 cells together with the numerical results of the stop 

bands for the proposed beam. 
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4.2.1 Effect of Water Level 

In order to get a better understanding of the external effect on the 

offshore platform with periodic legs, the relationship between water level 

and the frequency response of alone periodic leg is outlined. The water 

level in the basin was increased to 300 mm. The alone periodic leg with 5 

cells that was previously presented was tested under the new conditions 

and compared with the plain beam. Also two levels of water were tested 

to evaluate to effect on vibration isolation and attenuation factor at the 

same experimental testing conditions described above. 

Figure 15 shows that the periodic leg is effective in reducing 

vibration due to water level increase. Comparison between two levels of 

water testing for periodic legs is presented in Fig. 16. It can be noticed 

that more attenuation occurs when the water level increases for 

frequencies greater than 300 Hz. So, the water level acts as a factor that 

influences vibration reduction and this will be examined further below.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 15. The frequency response of 5 cells periodic leg with the numerical results of the stop 

band at water level 300mm. 

4.3 Platform Experimental Model  

The beams (legs) are joined with a rectangular plate. The proposed 

plate was 500 mm by 400 mm and 5 mm in thickness. The plate was then 

divided into 25 measurement points in order to define it in the Pulse 

System (Fig. 17). The beams are joined with the plate to simulate the 

platform. One model is joined with plain beams (plain legs) and another 

model joined with periodic beams (periodic legs) at 3, 4, and 5 cells as 

showing in Fig.18. 
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Fig. 16. The frequency response of 5 cells periodic leg with different water levels. 

 
 

 

 

 

 

Fig. 17. Measurement points in the rectangular plate. 

 

 

 

 

 

 

Fig. 18. The simulation platform model: (a) with plain legs, (b) with periodic legs. 

Two measurement points were chosen for testing. One was close to the 

end joint of one beam (point A), and another point at the middle of the plate 

edge (point B). An accelerometer was connected to selected points to 

determine the frequency response of the simulation platform model which 
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was excited by water waves. The accelerometer was set in axial position for 

both measured points and laterally for measurement point B (Fig. 19). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 19. The selected measurement points. 

The main objective in this experimental testing was to study the 

dynamic response of the simulation platform model by frequency 

response of measurement point of the proposed plate. Comparisons 

between both legs types are outlined. An accelerometer was connected to 

selected points to determine the frequency response of simulation 

platform model which was excited by water waves. The experimental set-

up is illustrated in Fig. 20. 

 

 

 

 

 

 

 

 

 

Fig. 20. Experimental set-up. 
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4.4 Experimental Results 

Figure 21 shows the frequency response curve obtained in range 1 

Hz to 1000 Hz for the simulation platform model with the 3-cell periodic 

beam at measurement point A in axial direction. It shows a vibration 

reduction for frequencies over 300 Hz.  

 

 

 

 

 

 

 

 

 

Fig. 21. The frequency response of the platform model with 3 cells periodic legs in axial 

direction at point A.  

Figure 22 shows the frequency response curve for the simulation 

platform model with the 4-cell periodic beam at the same measurement 

point. It shows more vibration reduction. The same comments can be 

noticed in Fig. 23 which presents the results for simulation platform 

model with the 5-cell periodic beam. It shows more reduction of 

vibration when the number of cells is increased. The water waves 

propagate through the legs to the proposed plate, so the periodic legs act 

as a filter for wave propagation and to isolate the vibration causing 

reduction of vibrations. 

 

 

 

 

 

 

 

 

Fig. 22. The frequency response of the platform model with 4 cells periodic legs in axial 

direction at point A. 
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Fig. 23. The frequency response of the platform model with 5 cells periodic legs in axial 

direction at point A. 

Experimental testing at the measured point B were obtained for the 

frequency response   range from 1 Hz   1000 Hz. Fig. 24-26 shows the 

vibration reduction when the periodic legs are used. The attachment point B 

was at the middle of the proposed plate. The vibration level is greater than 

the vibration level measured at the point A because it is close to the leg. 

 

 

 

 

 

Fig. 24. The frequency response of the platform model with 3 cells periodic legs in axial 

direction at point B. 

 

 

 

 

 

 

 

 

 

 
Fig. 25. The frequency response of the platform model with 4 cells periodic legs in axial 

direction at point B. 
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Fig. 26. The frequency response of the platform model with 5 cells periodic legs in axial 

direction at point B. 

The testing presented the capability of periodic legs to decrease the 

vibration on the plate over specified frequency band displacement of 

plate. Also the periodicity can eliminate the localization of waves over 

some areas of the proposed plate. In all the results presented in this paper 

it is demonstrated that the periodic beam can provide attenuations over a 

broad frequency. 

In the simulation platform model with plain legs which has been 

studied, the wave propagation through the legs affects to the dynamic 

response of the proposed plate causing the vibration localization as 

shown in Fig. 27. Fig. 28 proves that the second measurement point has a 

higher vibration localization than the first measurement point over the 

frequency ranges 200 to 400 Hz and 900 to 1000 Hz. Fig. 29 presents the 

capability of periodic legs to eliminate vibration localization at 

measurement point B. As previously described, increasing the cell 

number increases the localization elimination. So, the periodic leg with 5 

cells produces more activity of localization elimination than the periodic 

legs with 4 or 3 cells. 

4.4.1 Lateral displacement 

In order to better understand the dynamic studies of the simulation 

platform model, an accelerometer was attached in the lateral or bending 

direction as shown in Fig. 30. 
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Fig. 27. Localization area in the proposed plate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 28. Frequency response of simulation platform model with plain legs at measurement 

point A & B. 

 

 

 

 

 

 

 

 

 

Fig. 29. Capability of periodic legs to reduce localization at point B. 
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Fig. 30. Accelerometer setting in lateral direction. 

In nature, water waves are normally generated by wind blowing over 

the water surface and continue to exist after the wind has ceased to affect 

them. Offshore platforms are usually located in hostile environments. 

These platforms undergo excessive vibrations due to water wave loads 

for both normal operating and extreme conditions. To ensure safety, the 

lateral displacements of the platforms need to be limited, whereas for the 

comfort of people who work at the structures, accelerations also need to 

be restricted. In the extreme condition, the amplitude of water waves may 

reach high levels caused by the lateral displacement of the offshore 

platform. Thus the damages may occur especially in the large sea or 

ocean. So, creation of the extreme wave filter may be considered. The 

periodic structures technique may be efficient to act as the wave filter 

under extreme condition.  

Figures 31-33 illustrate the capability of periodic legs to act as a filters 

and vibration isolators for lateral displacement. Also and as previously 

described, a large number of cells may produce a better isolation. 

 

 

 

 

 

 

 

 
 

Fig. 31. The frequency response of the platform model with 3 cells periodic legs in lateral 

direction. 
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Fig. 32. The frequency response of the platform model with 4 cells periodic legs in lateral 

direction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 33. The frequency response of the platform model with 5 cells periodic legs in lateral 

direction. 

5.  Conclusions and Recommendations 

In this paper, the effectiveness of the periodic beam structures, with 

different configurations, in damping vibrations was demonstrated using 

various experimental and numerical models. Further, the periodic beam 

has shown high ability to attenuate vibrations over broad frequency 

bands. 

The theoretical equations that govern the operation of this class of 

periodic beam are developed using the transfer matrix method. The basic 

characteristics of the transfer matrices of periodic legs are presented and 

related to the physics of wave propagation along these legs. The effect of 
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the design parameters of the periodic legs on their dynamic behavior is 

investigated for legs with geometry and material discontinuities. The 

theoretical work is modeled as experimental work and it found the 

experimental identical with the theoretical concept. 

A simulation model of offshore platform was fabricated to provide a 

better understanding of wave mechanics in the legs with different cells 

number. Two main cases of experimental testing were studied, axial 

direction experimental testing and lateral direction experimental testing.  

The periodic legs can block the propagation of waves over specified 

frequency band extending in most of the considered cases between 16 to 

100 Hz and 200 to 1000 Hz. The experimental model was tested at 

measurement points which were located at the middle of one edge. The 

tests were conducted with different cell numbers of periodic legs and 

compared with plain legs. The results showed the capability of periodic 

legs to decrease the vibration on the plate over a specified frequency 

band in axial and lateral displacements of the plate. Also the periodicity 

can help eliminate the localization of waves over some areas of the 

studied plate. 

In all the results presented in this thesis, it is demonstrated that the 

periodic beam can provide attenuations over broad frequencies. 

This paper has presented the fundamentals and basics for designing a 

new class of legs for offshore platforms. However, the experiments 

conducted here were limited to laboratory conditions on a simulation 

model of the offshore platform. Work is therefore needed to extend the 

applicability of the periodicity approach to real platforms in order to 

control the vibration transmission. 

The offshore platform is a huge structure and there are many sources 

of vibration which may have an effect on it due to operation, machinery 

and environments factors as presented. So, the periodic structure can be 

employed in different cases and applications to ensure the vibration 

control of the offshore platforms to avoid the failures of structures, 

equipments, and oil piping. Thus this technique can ensure the 

comfortable work environments on the offshore platform. Applying 

periodic structures in offshore platform has opened the door for a rich 

field of research to study the periodic structure using possibility 

especially for the critical vibration problems. The periodic structures 
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concepts can be easily implemented for the control of vibration 

transmission in many types of applications. And this implementation is 

not limited by structure size and location. But, the necessary part of this 

implementation is how to redesign and modify existing platform 

structures to take full advantage of the benefits of periodic legs. 
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