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ABSTRACT. The concept of sections of a fuzzy matrix was introduced by
Kim & Roush. We study the relation between a fuzzy matrix and its sec-
tions. Also, we introduce the concept of a-irreflexive, strongly irreflexive
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l 1. Introduction

A Boolean matrix is a matrix with elements each has value 0 or 1. A fuzzy matrix is a
matrix with elements having values in the closed interval [0,1]. The concept of sec-
tions of a fuzzy matrix was introduced by Kim and Roush('l.

In this paper, we show that many properties of a fuzzy matrix, such as reflexive, ir-
reflexive, transitive, nilpotent, regular and others, can be extended to all its sections.
We show also that some properties of the sections of a fuzzy matrix do not extend to
the original fuzzy matrix, such as regularity property.

Moreover, we define some properties of a square fuzzy matrix, such as a-irrefle-
xive, strongly irreflexive and circularity, and examine it throughout our results.
2. Preliminaries and Definitions
We shall begin with the following definitions.

Definition 2.1 %)
The operations +, -, < and — on [0,1] are defined as follows:

a+ b =max(a,b), a-b=min(ab),
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a<—b={ if a>b, b—a=a<b,
a a<b,

_[a ifa>b
s [0 if a<b.

where a, b € [0,1].
We shall write a b instead of a - b.

Remark. _

A fuzzy relation R from X to Y is defined to be fuzzy subsetof X X Y. If Xand Y
are finite, weput X ={x,, ... ,x,,tandY={y,,...,y,}and R(x,,y!) r; (r;€[0,1]),
ielandjeJ,whereI={1,...,mtandJ={1,...,n}. So,R =[r, ] i.e., R is a fuzzy
matrix. The composition of the fuzzy relations Rand Son X X Y and Y x Z, respec-

tively, is defined to be a fuzzy relation R o S on X X Z such that R o S(x,2) = Sup
yeY

min ( R(x,y), S(,2) ). The equation R 0 § = T of fuzzy relations is called fuzzy rela-
tion equation. The problem of fuzzy relation equation is “find R knowing § and 7.
In order to solve this problem, Sanchez!% introduced the operations «— and —. Note
that the equation R o § = T can be written in fuzzy matrix form [7,] [s;] = [#; ], where
X and Y as above and Z = {z,, ..., z;}. The product of the fuzzy matrices is defined as
in the crisp case with + and - as in the above definition.

Definition 2.2 (257
For fuzzy matrices A = [a,] (m x n), B=[b;] (m X p),D =[d;] (p X q),G = ;]
(m x n)and R = [r;] (n X ni the following operations are defined :

A+G = [g;+gl, ANG = [g;g],

P .
= [ Z bikdkjL A-G = [aij_gijlf
=1
14 SR P .
BeD = [[(by«dy)], B->D = []Gu—dy
k=1 o k=t
(where [] a, = a4, g, a, 4,
k=1

= [a,] (the transpose of A), Rk*! = RFR(k=0,1,2,..),

A/R A - AR, AR =R-R, VR =RAR,
A < G ifand onlyif g; < g; for all i, j.
Definition 2.3 13589

An n X n fuzzy matrix R is called reﬂexwe ifand only ifr, = 1foralli=1,2,.
It is called a-reflexive if and only if r; = aforalli= 1, 2, . .n where ae[0,1]. Itis cal-
led weakly reflexive if and only if if r,.,. =r;foralli,j= 1
Definition 2.4 (2-47.8.10] :

Ann x n fuzzy matrix R is called irreflexive if and only 1f r,=0foralli=1,2,...n
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Definition 2.5 2.8.10}

An n X n fuzzy matrix S is called symmetric if and only if 5s; = s, for all ,
=1,2,...n. Itis called antlsymmetrlc ifandonlyif SAS' <1, wherel 1s the usual
unlt matnx

Remark.
Note that the condition S /A S’ < I, means that S /\s;=0foralli+ jands,=<1for
alli. So, if s; = 1, thens; = 0, which is the crisp case

Lemma 2.68
Let A be an m X n fuzzy matrix. Then AA’ is weakly reflexive and symmetric.
Proof |
Let S = [s;] = AA’. Thens, Z a, a, = Z a, = a,, for some h,

n
$; = > @y ay = aya, for some . Therefore s; = a,a, < a,<a, =s, Hence§

n n
is weakly reflexive. Since s; = kz @y @y, $; = > a4, ay, s; = s; and so, S is
. =1 k=1 :
symmetric.

Corollary 2.7
If the fuzzy matrix S is symmetric, then S? is weakly reflexive.

Remark 2.8
All the powers S¥;k=1,2, ...ofa symmetric fuzzy matrix S are also symmetric and
weakly reflexive.
Definition 2.92-47.10] ‘
Ann x nfuzzy matrix N is called nilpotent if and only if N" = 0 (the zero matrix).
Remark

(1) Note that, if Nis an n X n fuzzy matrix with N™ = 0 for some positive integer m,
then N is nilpotent in the sense of the above definition; i.e., N* = 0 (see [10] ).

2) If N" = 0and N*! # 0,1 < m < n, then N is called nilpotent of degree m.
Note that nilpotent of degree m is nilpotent.

Definition 2.1012-5.78.10,11]

An n X n fuzzy matrix E is called idempotent if and only if EZ = E. Itis called trans-
itive if and only if E? < E. It is called compact if and only if E*> = E.

Remark
If Eis 1dempotent i.e., E2 = E, then we have E* = E* = Eand E* = E* = Eandso
on. This means that E” = E for allp = 2.

\
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Proposition 2.11
Let E be an n X n fuzzy matrix. If E is transitive and reflexive, then E is idempo-
tent.

Proof
Since we have E is a transitivc_: fuzzy matrix, E> < E. Now, we show that E*> = E.

Let E2 [e2]. Then )= Zl ey €, = ¢; e; = e; (Since we have E is reflexive).

*

Proposition 2.1214
Let Nbe an 1rreﬂex1ve and transitive fuzzy matrix. Then N is nilpotent.

Definition 2.13 (1.5]

An m X n fuzzy matrix A is called regular if and only if there exists an n X m fuzzy
matrix G such that AGA = A. Such a fuzzy matrix G is called a generalized inverse or
a g-inverse of A.

Remark
Note that G is not unique since it is not unique in the crisp case.

Definition 2.14 18]

" An n X n fuzzy matrix S is called similarity if and only if it is reflexive, symmetric
and transitive.

3. Some Properties of Sections of Fuzzy Matrices

Definition 3.1

The section a of a fuzzy matrix A is a Boolean matrix, denoted by A = [a}] such
thata“ =1lifa; > aandaj; = 0ifg; <a.
Where o € [0,1].

Lemma 3.2
For a, b € [0,1], we have the followings :
(D) a=b = a*= b,
(2) (ab)* = a* b°,
(3) (@ + b = a + b,
@) (@a—> b)* < a*— b,
(5) (a=b)* =a* - b~

Proof :

(1) Obvious by definition.

(2) Ifab=a,then(ab)*=1,a*b*=1.1fab < a, then (ab)*=0.Sincea b < a,
at least ¢ one of a and b is less than a. So, a® b* = 0. Hence (a b)* = a® b°.

(3)Ifa+b @, then @ = a or b = a or both. So, (a+b)"—a“+b“—llf
a+b<a,thena<aandb < a.So, (a + b)* = a* +b*=0.
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4) Ifb = a then (@ — b)* = a®— b* = 1. If b < g, then (a — b)* = b* and

a—.>b“—{ . 8o, (a— b)* < a*— b

() Ifb = a, then(a—b)"=0“={0 ifa>0 g _be=0 Ifb<a
1 ifa=0
then (a — b)* = a® = a* - b°. Hence (a — b)* = a* - b*".

Proposition 3.3
Let A = [a,] (m x n), B={b;](m x n), R=[ry] (nx n)and C = {c;] (n X p) be
fuzzy matrices. Then we have the following :
(1) A= B => A*= B°,
2) (AN B)"‘ = A* N\ B°,
(3) (A + B)* = A* + B,
4 (A—- O = A*> C,
(5) (A-B)* = A* - B°,
6) (A C)* = A C°,
M (A/ R = A*/R%,
(8) (A")* = (A%)".
Proof
(1), (2), (3), (5) and (8) are clear.
(4) Let D=A— C and F = A*— C*. Then

d. =

y

I|:=

x> Ck]) ) (aih i Chi)a: for some h.

fi= H @3 — c;) = aj;—>cj; forsomel.
k=1
It follows from Lemma 3.2 that

[z @) = (@, ) =

d.

(6) Let G = (AC)* and P = A°C*. Then

—_— a — o Qa
8 = ay ¢)* = (@ c,)* = a3, ¢, forsome h.

K=
p; = Z Gk Ch = Z (axk C/q)cl = ( Z Ay Ck, = a5y, Chi = &
7) Let H = (A/R)*. It follows from Lemma 3.2, that

n n
hy = (a; - er ay ry)* = ag;—( kZl ay ky)°
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Thus H = A* - (AR)® = A~ A°R* = A*/R*

Proposition 3.4

Let A and B be two m X n fuzzy mattices. Then for a;, a, € [0,1] with a; < &,
we have :

(1) (A + B)® < A™' + B™
() (AANB) <

Proof

(1) (A+B)*= A"+ B2 < A" + B*< A% + B = (A + B)"

(2) (AAB)2 = A A\ B < AN\ B"< AN\ B" = (ANB)".

< (A + B)™"
A"\ B2 < (AN B)"

Remark 3.5

The above proposition can be generalized to a finite number n of fuzzy matrices as
follows :
n . n n X .
A .)max (a;i=1, n) < A‘!.l,» < ( AA)mm (o3i=
and

By

( /\ Ai)max(ui;i= 1. n) < /\ A?i < ( /\ Ai)min (opi=
i=1 i=1

Proposition 3.6

For an n X n fuzzy matrix A, we have '

(1) AA* < (AA)"

(2) VA* = (VA)*

Proof

(1) AA* = A*- (A% = A°- (A s (A-A") = (AA)"

(2) VA* = A*/\ (A% = A*N(A)* = (ANA") = (VA)".

%

The following theorem is useful for decomposition of fuzzy matrices into its sec-
tions. ‘
Theorem 3.7 )

Any fuzzy matrix A can be decomposed in the form :

A=2aA"; 0<a=1

Where o A® indicates that all the elements of the Boolean matrix A® are multiplied
by a. '

Proof
Let T = 3 aA, ie t;=2>aaj;. Butaf;=0if a;<a.
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4. Relationship between a Fuzzy Matrix and Its Sections

Proposition 4.1
Let R be an n X n fuzzy matrix and «, 8 € [0,1] such that 8 < «. Then :
(1) Ris a-reflexive => R® is reflexive,
(2) R°isreflexive => R is a-reflexive.
Proof

(1) Suppose that R is a-reflexive, i.e., r; = a. Since we have d < a,r; = 3 and so,
7, = 1. Hence R® is reflexive for all § < a.

(2) Obvious from definition of a-reflexivity.

Corollary 4.2
R is reflexive if and only if R® is reflexive for all & € [0,1].

Proposition 4.3
Let R be an n X n fuzzy matrix. Then R is weakly reflexive if and only if all its sec-
tions are weakly reflexive.

Proof
First, suppose that R is weakly reflexive, i.e., r; = r,. So that r§; = r{ forevery a e
[0,1]. Hence R* is weakly reflexive.

Second, suppose that R* is weakly reflexive for every a € [0,1], i.e., 75, = 75,
For a = r; we get, rji= rij'ii = 1. Therefore r; = r; and hence R is weakly reflexive.

*

Now, we define an a-irreflexive and strongly irreflexive fuzzy matrix.

Definition 4.4 ,

An nXxn fuzzy matrix R is called a-irreflexive if and only if r; < a for alli =
1,2, ... n. It is called strongly irreflexive if and only if r, < ri foralli, j=1,2,...n
Remark 4.5 '

O-irreflexive means, in fact, irreflexive.

Proposition 4.6
Let R be an nxn fuzzy matrix and a, 3 € [0,1] such that a < 8. Then
(1) R is a-irreflexive => R* is irreflexive, '
(2) R°isirreflexive => R is a-irreflexive.

Proof

(1) Suppose that R is a-irreflexive. i.e., r; < a. We have a < 8 and so, ¢; < 3,
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i.e., R%is irreflexive.
(2) Obvious.

Corollary 4.7

Let R be an nxn fuzzy matrix. Then R is irreflexive if and only if R® is irreflexive for
all 3 € [0,1]. '
Proposition 4.8 ,

Let R be an nXxn fuzzy matrix. Then R is strongly irreflexive if and only if R* is
strongly irreflexive for all « € [0,1].

Proof
~ Suppose that R is strongly irreflexive. i.e., r, < r;foralli, j=1,2, ... n
So that r}; < r};. Hence R* is strongly irreflexive.

Conversely, suppose that R* is strongly irreflexive for all o € [0, 1]. Then

P o r. r.oo. r.
ry =1} Taking a = r, we get r;i < ryi, i.e., 1 < r;i. Therefore, r; = r,.

ES

Proposition 4.9
Let S be an nxXn fuzzy matrix. Then § is symmetric if and only if all its sections are
symmetric.
Proof.
We have § is symmetric if and only if § = §’ if and only if §* = (§')* = ($°)'.
®

Proposition 4.10 _ .

A fuzzy matrix T 'is transitive if and only if all its sections are transitive.

Proof _

We have Tis transitive if and only if 72 < Tif and only if (TT)* < T*if and only if
(T%)* < T*if and only if T* is transitive.

Propositions 2.11, 4.1 and 4.10 suggest that if a fuzzy matrix E is transitive and re-
flexive (idempotent), then all its sections are also transitive and reflexive (idempo-
tent). This property will apply to idempotent fuzzy matrices in the following propos-
ition. ' ;
Proposition 4.1111]

A fuzzy matrix E is idempotent if and only if all its sections are.

Proof - ,
Similar to proof of proposition 4.10.
Proposition 4.12 _
A fuzzy matrix N is nilpotent if and only if N®, a € [0,1] is nilpotent.
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Proof :
Follows directly from (N")* = (N®)".

Definition 4.13

An nxn fuzzy matrix Cis called circular if and only if (C?)’ < C, or more explicitly,
Cix Ci < € foreveryk=1,2,...n
Proposition 4.14 ¢
An nXn fuzzy matrix Cis circular and reflexive if and only if it is similarity.
Proof :
Suppose that Cis c1rcular and reflexive. Then¢; = ¢;¢; <c¢;. Also, ¢; = ¢; c; < ¢;.
So, ¢; = ¢; and hence C is symmetric.

Also, we have cg) < ¢ =¢y, i.e., Cis transitive. Hence C is similarity.

Conversely, suppose that C is similarity. Then cg) < ¢; = ¢;. Hence Cis circular.
2

Proposition 4.15
An nXn fuzzy matrix C is circular if and only if all its seétions are.
Proof

We have Cis circular if and only if (C?)’ < C if and only if ((C?’ )" < C*ifand only
if ((C)®) < Cif and only if ((C)2)’ < C°.

Proposition 4.16
Let Cbe an nXn fuzzy matrix. Then Cis compact if and only if all its sections are.
Proof

We have Cis compact if and only if C? = Cif and only if (C?)* = C*if and only if
(Ca)z = C°.

Proposition 4.17
Let A be a regular fuzzy matrix with a g-inverse G then A*® is regular with a
g-inverse G* for every a € [0 1]. .

Proof
Since A is regular with g-inverse G, we have A = A G A.
Then A* = (A G A)* = A* G* A*. Hence A® is regular and G® is a g-inverxe of it.

*

‘The following example shows that the converse of the above proposition is not true
in general.
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Example 4.18
We consider the fuzzy matrix.

07 03 0
A= 03 07 03
03 03 0.7
Let the two sections
110 1 00
A =111 1 |and A% = ‘ 0 1 0 of A be regular with g-inverses
11 1 00 1
100" 100
G =100 and I'=| 0 1 0 ,respectively. Since A%> > A
1 11 0 01
we have G > 1 ;i.e., G is reflexive
11 |
So, A" G A%® = , wich contradicts the regularity of A%3.
1

Hence A is not regular.
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