On a Condition for a Graph to be a Tree

Rasheed M.S. Mahmood
Department of Mathematics, Bahrain University, Isa Town, State of Bahrain

Abstract

In this paper we show that if a group G acts on the graph X under certain generators and relations of G, then X is a tree.

1. Introduction

The presentation of groups acting on trees known as Bass-Serre theorem has been given in ${ }^{[1]}$, corollary 5.2.

The aim of this paper is to prove the converse of Bass-Serre theorem in the sense that if G is a group acting on a graph X and G has the presentation of corollary 5.2 of ${ }^{[1]}$, then X is a tree.

We begin by giving some definitions. By a graph X we understand a pair of disjoint sets $V(X)$ and $E(X)$, with $V(X)$ non-empty, together with a mapping $E(X) \rightarrow$ $V(X) x V(X), y \rightarrow(o(y), t(y))$, and a mapping $E(X) \rightarrow E(X), y \rightarrow \bar{y}$ satisfying $\bar{y}=y$ and $o(\bar{y})=t(y)$, for all $y \in E(X)$. The case $\bar{y}=y$ is possible for some $y \epsilon$ $E(X)$.

A path in a graph X is defined to be either a single vertex $v \in V(X)$ (a trivial path), or a finite sequence of edges $y_{1}, y_{2}, \cdots, y_{n}, n \geq 1$ such that $t\left(y_{i}\right)=o\left(y_{i+1}\right)$ for i $=1,2, \cdots, n-1$.
A path $y_{1}, y_{2}, \cdots y_{n}$ is reduced if $y_{i+1} \neq \bar{y}_{i}$, for $i=1,2, \cdots, n-1$, A graph X is connected, if for every pair of vertices u and v of $V(X)$ there is a path $y_{1}, y_{2}, \cdots, y_{n}$ in X such that $o\left(y_{1}\right)=u$ and $t\left(y_{n}\right)=v$.

A graph X is called a tree if for every pair of vertices of $V(X)$ there is a unique reduced path in X joining them. A subgraph Y of a graph X consists of sets $V(Y) \subseteq$ $V(X)$ and $E(Y) \subseteq E(X)$ such that if $y \in E(Y)$, then $\bar{y} \in E(Y), o(y)$ and $t(y)$
are in $V(Y)$. We write $Y \subseteq X$. We take any vertex to be a subtree without edges. A maximal connected subgraph is called a component. It is clear that a graph is connected if and only if it has only one component.

If X_{1} and X_{2} are two graphs then the map $f: X_{1} \rightarrow X_{2}$ is called a morphism if f takes vertices to vertices and edges to edges such that

$$
\begin{aligned}
f(\bar{y}) & =\overline{f(y)} \\
f(o(y)) & =o(f(y)) \\
f(t(y)) & =t(f(y)), \quad \text { for all } y \in E\left(X_{1}\right)
\end{aligned}
$$

f is called an isomorphism if it is one-to-one and onto, and is called an automorphism if it is an isomorphism and $X_{1}=X_{2}$. The automorphisms of X form a group under composition of maps, denoted by Aux (X).

We say that a group G acts on a graph X if there is a group homomorphism $\phi: G \rightarrow$ Aut (X). If $x \in X$ is a vertex or an edge, we write $g(x)$ for $\phi(g)(x)$. If $y \in E(X)$, then $g(\bar{y})=\overline{g(y)}, g(o(y))=o(g(y))$, and $g(t(y))=t(g(y))$. The case $g(y)=\bar{y}$ for some $y \in E(X)$ and $g \in G$ may occur. If $y \in X$, (vertex or edge), we define $G(y)=\{g(y)$ $\mid g \in G\}$ and this set is called an orbit. If $x, y \in X$, (vertices or edges) we define $G(x, y)$ $=\{g \in G \mid g(y)=x\}$, and $G_{x}=G(x, x)$, called the stabilizer of x. For $y \in E(X)$, it is clear that G_{v} is a subgroup of G_{u}, where $u \in\{o(y), t(y)\}$. Also if Y is a subset of X then we define $G(Y)$ to be the set $G(Y)=\{g(y) \mid g \in G, y \in Y\}$.

It is clear that if $x \in V(X)$ and $y \in E(X)$, then $G(x, y)=\phi$.
For more details about groups acting on graphs we refer the reader to ${ }^{[1,2 \text { or } 3]}$.

2. Preliminary Definitions and Notation

Throughout this paper G will be a group acting on the graph X, T a subtree of X such that T contains exactly one vertex from each G-vertex orbit, and Y a subtree of X such that Y contains T, and each edge of Y has at least one end in T, and Y contains exactly one edge $y($ say) from each G-edge orbit such that $G(\bar{y}, y)=\varphi$, and exactly one pair y and \bar{y} from each G-edge orbit such that $G(\bar{y}, y) \neq \varphi$.

Properties of T and Y

(1) $G(Y)=X$.
(2) $G(V(T))=V(X)$.
(3) If $u, v \in V(T)$ such that $G(u, v) \neq \varphi$, then $u=v$.
(4) $G(\bar{y}, y)=\varphi$, for all $y \in E(T)$.
(5) If $y_{1}, y_{2}, \in E(Y)$ such that $G\left(y_{1}, y_{2}\right) \neq \varphi$, then $y_{1}=y_{2}$ or $y_{1}=\bar{y}_{2}$

Given this we can now introduce the following notation.
(1) For each $v \in V(X)$ let v^{*} be the unique vertex of $T \operatorname{such} G\left(v, v^{*}\right) \neq \phi$. In particular $v^{*}=v$ if $v \in V(T)$ and in general $\left(v^{*}\right)^{*}=v^{*}$. Also if $G(u, v) \neq \phi$, then $v^{*}=$ v^{*} for $u, v \in V(X)$. If $v \in V(T)$, let $<G_{v} \mid$ rel $G_{v}>$ stand for any presentation of G_{v}, and \widetilde{G}_{v} be the set of generating symbols of this presentation.
(2) For each edge y of $E(Y)$ we have the following
(a) Define $[y]$ to be an element of $G\left(t(y), t(y)^{*}\right)$, that is, $[y]\left(t(y)^{*}\right)=$ $t(y)$, to be chosen as follows.

If $o(y) \in \dot{V}(T)$ then $(i)[y]=1$ if $y \in E(T)$, (ii) $y=\bar{y}$ if $G(\bar{y}, y) \neq \phi$.
If $o(y) \notin V(T)$ then $[y]=[\bar{y}]^{-1}$ if $G(\bar{y}, y)=\varphi$, otherwise $[\bar{y}]=[\bar{y}]$.
If is clear that $[y][\bar{y}]=1$ if $G(\bar{y}, y)=\varphi$, otherwise $[y][\bar{y}]=[y]^{2}$.
(b) Let $-y=[y]^{-1}(y)$ if $o(y) \in V(T)$, otherwise let $-y=y$. Now define $+y$ $=[y](-y)$.

It is clear that $t(-y)=t(y)^{*}, o(+y)=o(y)^{*}$ and $(+y)=-(\bar{y})$.
(c) Let S_{y} be a word in $G_{o(y)^{*}}$ of value $[y]\left[\bar{y}\right.$. It is clear that $S_{\bar{y}}=S_{y}$.
(d) Let E_{y} be a set of generators of G_{-y} and \widetilde{G}_{y} be a set of words in $G_{t(y)^{*}}$ mapping onto E_{y}.
(e) Define $\phi_{y}: G_{-y} \rightarrow G_{+y}$ by $\phi_{y}(g)=[y] g[y]^{-1}, g \in G_{-y}$ and define $\psi_{y}: \widetilde{G}_{y}$ $\rightarrow \widetilde{G}_{\bar{y}}$ by taking the word which represents the element g of E_{y} to the word which rep$\rightarrow G_{\bar{y}}$ rest the element $[y] g[y]^{-1}$.
(f) Let $y G_{y} y^{-1}=G_{\bar{y}}$ stand for the set of relations $y w y^{-1}=\psi_{y}(w), w \in \widetilde{G}_{y}$.
(3) Let $P(Y)$ stand for the set of generating symbols
(i) \widetilde{G}_{v}, for $v \in V(T)$
(ii) \boldsymbol{y}, for $\boldsymbol{y} \in E(Y)$
and $R(Y)$ stand for the set of relations
(i) $\operatorname{rel} G_{v}$, for $v \in V(T)$
(ii) $y G_{y} y^{-1}=G_{\bar{y}}$, for $y \in E(Y)$
(iii) $y=1$, for $y \in E(T)$
(iv) $y \bar{y}=S_{y}$, for $y \in E(Y)$
(v) $y^{2}=S_{y}$, for $y \in E(Y)$ such that $G(\bar{y}, y) \neq \phi$.

Note that if $G(\bar{y}, y) \neq \phi$ then $y \& E(T)$.
(4) Let $\delta(Y)$ be the $\operatorname{set}\left\{G_{v},[y]: v \in V(T)\right.$ and $\left.y \in E(Y)\right\}$.

2.1 Theorem (Bass-Serre Theorem)

(i) If X is connected, then $\delta(Y)$ generates G.
(ii) If X is a tree, then G has the presentation $<P(Y) \mid R(Y)>$ via $\widetilde{G}_{v} \rightarrow G_{v}$ and $y \rightarrow[y]$, for all $v \in V(T)$ and all $y \in E(Y)$.

Proof

See ${ }^{[3]}$, Corollary 5.2.

3. The Converse of Bass-Serre Theorem

Let G, X, Y and T be as in section two. In this section we prove the converse of Theorem 2.1 in the sense that if $\delta(Y)$ generates G, then X is connected, and if G has the presentation of Theorem 2.1 - (ii), then X is a tree.

3.1 Definition

For each $v \in V(Y)$ let X_{v} be an edge of $E(Y)$ such that $o\left(X_{v}\right) \in V(T)$ and $t\left(X_{v}\right)$ $=v$. Let $e_{v}=0$ if $v \in V(T)$, otherwise $e_{v}=1$.

Concerning the edge X_{v} we see that X_{v} exists since Y is a subtree and X_{v} is unique if $v \notin V(T)$ and not necessarily unique if $v \in V(T)$.

The following proposition will be fundamental for the main theorem.

3.2 Proposition

Any element g of $G(u, v)$, where $u, v \in V(Y)$ can be written as $\left.g=X_{u}\right]^{e_{u}} g_{o}\left[\bar{X}_{v}\right]^{e_{v}}$ where $g_{o} \in G_{u^{*}}$.

Proof

Since $g \in G(u, v)$, therefore $g(v)=u$.
We consider the following cases :
Case 1. u and v are in $V(T)$.
In this case we have $u^{*}=v^{*}=v$ so that $G(u, v)=G_{v}$ and, X_{u} and \bar{X}_{u} are in $E(T)$ Since $\left[X_{u}\right]=\left[\bar{X}_{u}\right]=1$ and $e_{u}=e_{v}=0$, therefore the proposition holds.

Case 2. $u \in V(T)$ and $v \notin V(T)$.
In this case $u^{*}=v^{*}=u,\left[X_{u}\right]=1, e_{u}=0$, and $e_{v}=1$.
Now $g \in G(u, v) \Rightarrow g(v) u$

$$
\begin{aligned}
& \Rightarrow g\left[X_{v}\right]\left(v^{*}\right)=v^{*}, \text { since }\left[X_{v}\right]\left(v^{*}=v, \text { and } v^{*}=u\right. \\
& \Rightarrow g\left[X_{v}\right] \in G_{v^{*}} \\
& \Rightarrow g\left[X_{v}\right]=h, h \in G_{v^{*}} \\
& \Rightarrow g=h\left[X_{v}\right]^{-1} \\
& \Rightarrow g=\left[X_{u}\right]^{e_{u}} h\left[X_{v}\right]^{-1}
\end{aligned}
$$

If $G\left(\bar{X}_{v}, X_{\imath}=\phi\right.$, then $\left[X_{v}\right]^{-1}=\left[\bar{X}_{v}\right]$ We take $h=g_{o}$

If $G\left(\bar{X}_{v}, X_{v}\right) \neq \phi$, then $\left[\bar{X}_{v 1}=\left[X_{v}\right]\right.$ and $\left[X_{v}\right]^{2} \in G_{x_{v}}$. Hence $\left[X_{v}\right]^{-1}=$ $k\left[X_{v}\right]$, where $k \in G_{x_{v}}$. We take $g_{o}=h k$.

Case 3. $u \notin V(T)$ and $v \in V(T)$.
In this case $u^{*}=v^{*}=v, e_{u}=1, e_{v}=0$ and $\left[X_{v}\right]=1$.
Now $g \in G(u, v) \Longrightarrow g(v)=u$

$$
\Rightarrow g(v)=\left[X_{u}\right]\left(u^{*}\right)
$$

$$
\Rightarrow g(v)=\left[X_{u}\right](v), \text { since } u^{*}=v
$$

$$
\Longrightarrow\left[X_{u}\right]^{-1} g(v)=v
$$

$$
\Rightarrow\left[X_{u}\right]^{-1} g \in G_{v}
$$

$$
\Rightarrow\left[X_{u}\right]^{-1} g=g_{o}, \text { for } g_{o} \in G_{v}
$$

$$
\Rightarrow g=\left[X_{u}\right]^{e} u g_{o}\left[\bar{X}_{v}\right]^{e} v \text {, since } e_{u}=1 \text {, and }\left[X_{v}\right]=1,
$$

Case 4. u and v are not in $V(T)$
This case is similar to cases 2 and 3 above.
This completes the proof.
Since Y is a subtree of X, therefore any edge y of $E(Y), o(y) \in V(T)$ can be written as $y=X_{v}$, where $v \in V(Y)$. Therefore by defining $e_{y}=e_{v}-1$, where $v=o(y)$, for all $y \in E(Y)$, the following can be easily proved:
(1) $e_{y}+e_{u}=0$ if $y \& E(T)$, where $u=t(y)$
(2) $[y]^{e^{u}+e_{v}}=[y]$, where $u=t(y)$ and $v=o(y)$
(3) $[y]^{e} y+e_{u}=[y]$, where $u=t(y)$
(4) $\left[X_{u}\right]^{e} u=[y]^{e} u$, where $u=t(y)$
(5) $\left[\bar{X}_{v}\right]^{e_{v}}=\left[y^{e}{ }^{e}\right.$, where $v=o(y)$

3.3 Proposition

Let y_{1} and y_{2} be two edges of $E(Y), u_{i}=t\left(y_{i}\right)$ and $v_{i}=o\left(y_{i}\right)$ for $i=1,2$ such that $G\left(u_{1}, v_{2}\right) \neq \phi$. Then any element $g \in G\left(u_{1}, v_{2}\right)$ can be written as
$g=\left[y_{1}\right]^{e_{u_{1}}} g_{o}\left[y_{2}\right]^{e_{v_{2}}}$, where $g_{o} \in G_{u_{1}^{*}}$.
Proof
The proof easily follows from proposition 3.2 and (5) above.

3.4 Lemma

If G is generated by the set $\delta(Y)$, then X is connected.

Proof

Let C be a component of X such that C contains Y. We need to show that $X=C$.

Since $Y \subseteq C$, we have $G(Y) \subseteq G(C)$. By the definition of Y we have $G(Y)=X$. Therefore $G(C)=X$. To show that $C=X$ we need to show that $G_{C}=G$, where G_{C} $=\{g \in G \mid g(C)=C\}$ which is a subgroup of G. Define $\Delta(Y)=\{g \in G \mid Y \cap g(Y)$ $\neq \phi\}$. Similarly $\Delta(C)$ is defined. Therefore $\Delta(Y) \subseteq \Delta(C)$.

Now we show that $\Delta(Y$) generates G, i.e. $<\Delta(Y)>=G$. Since $\delta(Y)$ generates G, therefore we need to show that the elements of $\Delta(Y)$ can be written as a product of the elements of $\delta(Y)$.

$$
\begin{aligned}
\text { Now } g \in \Delta(Y) & \Rightarrow Y \cap g(Y) \neq \phi \\
& \Rightarrow \text { there exists } u, v \in V(Y) \text { such that } u=g(v) \\
& \Rightarrow g \in G(u, v) \\
& \Longrightarrow g=\left[X_{u}\right]^{e} u g_{o}\left[\bar{X}_{v}\right]^{e} v, \text { where } g_{o} \in G_{u^{*}} \text { (Proposition 3.2) } \\
& \Rightarrow<\delta(Y)>=<\Delta(Y)>=G \\
& \Rightarrow<\Delta(C)>=G
\end{aligned}
$$

Since $<\Delta(C)>=G_{C}$, therefore $G_{C}=G$.
Therefore $G_{C}(C)=G(C)$, which implies that $C=X$. Hence X is connected.
This completes the proof.
To prove the main result of this paper we shall therefore assume the following condition on the elements of G.

Condition I

If $g_{o}\left[y_{1}\right] g_{1}\left[y_{2}\right] g_{2} \cdots\left[y_{n}\right] g_{n}, n \geq 1$ is the identity element of G, where
(1) $y_{i} \in E(Y)$, for $1 \leq i \leq n$
(2) $t\left(y_{i}\right)^{*}=o\left(y_{i+1}\right)^{*}$, for $1 \leq i \leq n-1$
(3) $g_{o} \in G_{o\left(y_{1}\right)^{*}}$
(4) $g_{i} \in G_{t\left(y_{i}\right)^{*}}$, for $1 \leq i \leq n$
then for some $i, 1 \leq i \leq n$
(a) $y_{i+1}=\bar{y}_{i}$ and $g_{i} \epsilon G_{-y_{i}}$ or
(b) $y_{i+1}=y_{i}$ and $g_{i} \in G_{y_{i}}$ if $G\left(\bar{y}_{i}, y_{i}\right) \neq \phi$.

The main result of this paper is the following theorem.

3.5 Theorem

If $\delta(Y)$ generates G, and G satisfies condition I, then X is a tree.

Proof

By Lemma 3.4, X is connected.
To show that X contains no circuits, that is, no reduced closed paths, we first show
that X contains no loops. Suppose that x is a loop in X. Then $o(x)=t(x)$. Since $G(Y)=X, x=g(y)$ for $g \in G$ and $y \in E(Y)$ and so $g(o(g))=g(t(y))$, hence $o(y)=t(y)$ contradicting the assumption that Y is a subtree. Hence X contains no loops.

Let $x_{1}, \cdots, x_{n}, n \geq 1$ be a close path in X. We need to show that this path is not a circuit, or equivalently, this path is not reduced. Now $o\left(x_{1}\right)=t\left(x_{n}\right)$ and $t\left(x_{i}\right)=$ $o\left(x_{i+1}\right)$ for $1 \leq i \leq n-1$. Since $G(Y)=X$, therefore, $x_{i}=g_{i}\left(y_{i}\right)$, for $g_{i} \in G$ and $y_{i} \epsilon$ $E(Y), 1 \leq i \leq n$. Let $u_{i}=t\left(y_{i}\right)$ and $v_{i}=o\left(y_{i}\right)$ for $1 \leq i \leq n$. From above we have $g_{1}\left(v_{1}\right)=g_{n}\left(u_{n}\right)$ and $g_{i}\left(u_{i}\right)=g_{i+1}\left(v_{i+1}\right)$ for $1 \leq i \leq n-1$.

By proposition 3.3 we have $g_{n}^{-1} g_{1}=\left[y_{n}\right]^{e_{u_{n}}} h_{n}\left[y_{1}\right]^{e_{v_{1}}}$ and $g_{i}^{-1} g_{i+1}=\left[y_{i}\right]^{e_{u_{i}}}$ $h_{i}\left[y_{i+1}\right]^{e_{i+1}}$, where $h_{i} \in G_{u_{i}^{*}}$ for $1 \leq i \leq n-1$.
Now $1=g_{1}^{-1} g_{2} g_{2}^{-1} \cdots g_{n-1} g_{n-1}^{-1} g_{n} g_{n}^{-1} g_{1}$

$$
=\left[y_{1}\right]^{\alpha_{1}} h_{1}\left[y_{2}\right]^{\delta_{2}}\left[y_{2}\right]^{\alpha_{2}} h_{2} \cdots\left[y_{n-1}\right]^{\alpha}{ }_{n-1} h_{n-1}\left[y_{n}\right]^{\alpha_{n}} h_{n}\left[y_{i}\right]^{\delta_{1}}
$$

where $\alpha_{i}=e_{u_{i}}$ and $\delta_{i}=e_{v_{i}}$ for $1 \leq i \leq n$.
Conjugating the above equation by $\left[y_{1}\right]^{\delta_{1}}$ we get

$$
\begin{aligned}
& \left.=\left[y_{1}\right]^{\gamma_{1}} h_{1}\left[y_{2}\right]^{\gamma_{2}} h_{2} \cdots y_{n-1}\right]^{\gamma_{n-1}} h_{n-1}\left[y_{n}\right]^{\gamma_{n}} h_{n} \text {, where } \gamma_{i}=\delta_{i}+\alpha_{i}, 1 \leq i \leq n . \\
& =\left[y_{1}\right] h_{1}\left[y_{2}\right] \text { in } \cdots
\end{aligned}
$$

n, where $e_{i}=e_{y_{i}}$.
From condition I.we have
(1) $y_{i+1}=\bar{y}_{i}$, and $h_{i} \in G_{-y_{i}}, 1 \leq i \leq n-1$
or
(2) $y_{i+1}=y_{i}$, and $h_{i} \in G_{y_{i}}, 1 \leq i \leq n-1$, where $G\left(\bar{y}_{i}, y_{i}\right) \neq \phi$.

If (1) holds then we have $\left[\bar{y}_{i+1}\right]=\left[y_{i}\right]$. We consider the following cases
Case 1. $G\left(\bar{y}_{i}, y_{i}\right)=\phi$. Therefore we have

$$
\begin{aligned}
g_{i}^{-1} g_{i+1}= & {\left[y_{i}\right]^{\alpha_{i}} h_{i}\left[y_{i+1}\right]^{\alpha_{i}+1} } \\
& {\left[y_{i}\right]^{\alpha_{i}} h_{i}\left[y_{i}\right]^{-\alpha_{i}}, \text { since } \bar{y}_{i+1}=y_{i} } \\
= & {\left[y_{i}\right]^{e_{i}+\alpha_{i}} k_{i}\left[y_{i}\right]^{-e_{j}-\alpha_{i}}, \text { where } k_{i} \in G_{y_{i}} \text { such that } } \\
& h_{i}=\left[y_{i}\right]^{e_{i}} k_{i}\left[y_{i}\right]^{-e_{i}} \\
\text { wii }= & k_{i}, \text { since }[y]^{e_{y}+e_{i(}(y)}=1, \text { for all } y \in E(Y) .
\end{aligned}
$$

This implies that $g_{i}^{-1} g_{i+1} \in G_{y_{i}}$. That is,

$$
\begin{array}{ll}
g_{i}^{-1} g_{i+1}\left(y_{i}\right) & =y_{i} \\
\Rightarrow g_{i+1}\left(y_{i}\right) & =g_{i}\left(y_{i}\right) \\
\Rightarrow g_{i+1}\left(\bar{y}_{i+1}\right) & =g_{i}\left(y_{i}\right) ; \text { since } y_{i+1}=\bar{y}_{i} \\
\Rightarrow g_{i+1}\left(y_{i+1}\right) & =g_{i}\left(y_{i}\right)
\end{array}
$$

$\Rightarrow x_{i+1} \quad=x_{i}$
\Rightarrow the path $x_{1}, x_{2}, \cdots x_{n}$ is not reduced.
Case 2. $G\left(\bar{y}_{i}, y_{i}\right) \neq \phi$. Then $\left[y_{i}\right]^{2} \in G_{y_{i}}$ and $\left.\bar{y}_{i}\right]=\left[y_{i}\right]=\left[y_{i+\ldots,}\right.$, since $y_{i+}=\bar{y}_{i}$
Therefore $g_{i}^{-1} g_{i+1}=\left[y_{i}\right]^{\alpha_{i}} h_{i}\left[y_{i}\right]^{\alpha_{i}}, h_{i} \in G_{y_{i}}$.
So $g_{i}^{-1} g_{i+1}\left(y_{i}\right)=\left[y_{i}\right]^{\alpha_{i}} h_{i}\left[y_{i}\right]^{\alpha_{i}}\left(y_{i}\right)$

$$
=\left[y_{i}\right]^{\alpha_{i}+e_{i}} k_{i}\left[y_{i}\right]^{\alpha_{i}-e_{i}}\left(y_{i}\right),
$$

$$
\text { where } k_{i} \in G_{y_{i}} \text { such that } h_{i}=\left[y_{i}\right]^{e_{i}} k_{i}\left[y_{i}\right]
$$

$$
\begin{cases}k_{i}\left(y_{i}\right) & \text { if } t\left(y_{i}\right) \in V(T) \\ k_{i}\left[y_{i}\right]^{2}\left(y_{i}\right) & \text { if } t\left(y_{i}\right) \notin V(T)\end{cases}
$$

Since k_{i} and $\left[y_{i}\right]^{2}$ are in $G_{y_{i}}$, therefore $k_{i}\left(y_{i}\right)=k_{i}\left[y_{i}\right]^{2}\left(y_{i}\right)=y_{i}$
Thus $g_{i}^{-1} \cdot g_{i+1}\left(y_{i}\right)=y_{i}$

$$
\begin{aligned}
& \Rightarrow g_{i+1}\left(y_{i}\right)=g_{i}\left(y_{i}\right) \\
& \Rightarrow g_{i+1}\left(\bar{y}_{i+1}\right)=g_{i}\left(y_{i}\right), \text { since } y_{i+1}=\bar{y}_{i} \\
& \Rightarrow g_{i+1}\left(y_{i+1}\right)=g_{i}\left(y_{i}\right) \\
& \Rightarrow \bar{x}_{i+1}=x_{i} \\
& \Rightarrow \text { the path } x_{1}, x_{2}, \cdots, x_{n} \text { is not reduced. }
\end{aligned}
$$

Finally if (2) holds then we have $y_{i+1}=y_{i}$ and hence $\left[y_{i+1}\right]=\left[y_{i}\right]$.
Now $g_{i}^{-1} g_{i+1}\left(y_{i}\right) \quad\left[y_{i}\right]^{\alpha_{i}} h_{i}\left[y_{i}\right]^{\delta_{i}}\left(y_{i}\right)$
$\left.\cdot y_{i}\right]^{\alpha+e_{i}} k_{i}\left[y_{i}\right]^{\delta_{i}-e_{i}}\left(y_{i}\right)$, where $k_{i} \in G_{y_{i}}$ such that
$h_{i}=\left[y_{i}\right]^{e_{i}} k_{i}[\ldots$.
$k_{i}\left[y_{i}\right]^{\delta_{i}-e_{i}}\left(y_{i}\right)$, since $\alpha_{i}+e_{i}=0$
$k_{i}\left[y_{i}\right]\left(y_{i}\right)$, since δ_{i}
$=k_{i}\left(\bar{y}_{i}\right)$, since $[y,(y)=\bar{y}$ for all $y \in E(Y$ such that $G(\bar{y}, y) \neq \phi$
$=\bar{y}_{i}$, since $k_{i} \in G_{y_{i}}$ and $G_{\bar{y}}=G_{y}$ for all $y \in E(Y)$
Hence $g_{i}^{-1} g_{i+1}\left(y_{i}\right)=\bar{y}_{i}$
$\Rightarrow g_{i+1}\left(y_{i}\right)=g_{i}\left(\bar{y}_{i}\right)$
$\Rightarrow g_{i+1}\left(y_{i+1}\right)=g_{i}\left(y_{i}\right)$, since $y_{i+1}=y_{i}$
$\Rightarrow x_{i+1}=\bar{x}_{i}$
\Rightarrow the path $x_{1}, x_{2}, \cdots, x_{n}$ is not reduced.

This completes the proof of the main theorem.
We remark that if X is a tree then G satisfies condition I of Theorem 3.5 , $\left({ }^{[4]}\right.$, Corollary 1). In fact Corollary 1 of ${ }^{[2]}$ has been proved in case $\delta(Y)$ generates G and G has the presentation $<P(Y) \mid R(Y)$ without using the assumption that X is a tree. This leads us to the following corollary of Theorem 3.5.

3.6 Corollary (The Converse of Bass-Serre Theorem)

If $\delta(Y)$ generates G, and G has the presentation $<P(Y) \mid R(Y)>$ via the map $\widetilde{G}_{v} \rightarrow G_{v}$ and $y \rightarrow[y]$ for all $v \in V(T)$ and all $y \in E(Y)$, then X is a tree.

4. Applications

In this section we give examples of groups acting on graphs and satisfying condition I of the main theorem. Free groups, free products of groups, free products of groups with amalgamation and HNN groups are examples of groups acting on trees in which condition I is the reduced form of the elements of these groups. For more details about the above groups we refer the reader $\mathrm{to}^{[4]}$.

4.1 Free Groups

Let G be a group of base A.
Define the graph X as follows

$$
\begin{aligned}
& V(X)=G \\
& E(X)=G x\left(A \cup A^{-1}\right)
\end{aligned}
$$

For $(g, a) \in E(X)$ we define

$$
\begin{aligned}
\overline{(g, a)} & =\left(g a, a^{-1}\right) \\
t(g, a) & =g a \\
\text { and } o(g, a) & =g
\end{aligned}
$$

G acts on X as follows :

$$
\begin{aligned}
g\left(g^{\prime}\right) & =g g^{\prime}, \text { for all } g, g^{\prime} \in G \\
g\left(g^{\prime}, a\right) & =\left(g g^{\prime}, a\right) \text { for all } g, g^{\prime} \in G \text { and all } a \in A \cup A^{-1}
\end{aligned}
$$

It is clear that the stabilizer of each $g^{\prime} \in G$ is trivial. We take $T=\{1\}$ and Y as $V(Y)=\{1\} \cup\{\dot{a} \mid a \in A\}$, and $E(Y)=\{(1, a) \mid a \in A\} \cup\left\{\left(a, a^{-1}\right) \mid a \in A\right\}$. It is clear that Y is a subtree of $X, T \subseteq Y$ and $G(Y)=X$. Now we need to show that X is a tree. If u is a vertex of Y then $u^{*}=1$ and if $a \in A$ then the edge $y=(1, a)$ is in Y, and, $o(y)=1, t(y)=a$ and $[y]=a$. Therefore the set of $\delta(Y)$ of Lemma 3.4 is just the set $A \cup A^{-1}$ and the condition I is the reduced form of the elements of G. Consequently by Theorem $3.5, X$ is a tree.

4.2 Free Products of Groups

Let $G={ }_{i \in I} G_{i}, G_{i}$ non-trivial, $|I|>1$, be a free product of the groups G_{i}

Define the graph X as follows :

$$
\begin{aligned}
& V(X)=G \cup\left\{g G_{i} \mid g \epsilon G, i \in I\right\} \\
& E(X)=(G x I) \cup(I x G)
\end{aligned}
$$

For $g \epsilon G$ and $i \epsilon I$ we define

$$
\begin{aligned}
\overline{(g, i)} & =(i, g),(i, g)=\overline{(g, i)} \\
t(g, i) & =g G_{i}, t(i, g)=g \\
\text { and } o(g, i) & =g, o(i, g)=g G_{i}
\end{aligned}
$$

We define the action of G on X by

$$
\begin{aligned}
g\left(g^{\prime}\right) & =g g^{\prime}, \text { for all } g, g^{\prime} \in G \\
g\left(g^{\prime} G_{i}\right) & =g g^{\prime} G_{i}, \text { for all } g, g^{\prime} \in G \text { and all } i \epsilon I \\
g\left(g^{\prime}, i\right) & =\left(g g^{\prime}, i\right), \text { for all } g, g^{\prime} \in G \text { and all } i \in I \\
g\left(i, g^{\prime}\right) & =\left(i, g g^{\prime}\right), \text { for all } g, g^{\prime} \in G \text { and all } i \in I
\end{aligned}
$$

Let T be defined as follows :

$$
\begin{aligned}
V(T) & =\{1\} \cup\left\{G_{i} \mid i \epsilon I\right\} \\
\text { and } E(T) & =\{(1, i) \mid i \epsilon I\} \cup\{i, 1) \mid i \epsilon I\}
\end{aligned}
$$

It is clear that T is a subtree of $X, Y=T$ and $G(Y)=X$. Therefore if v is a vertex of Y and y is an edge of Y then $v^{*}=v$ and $[y]=1$. Also it is clear that the stabilizer of each edge is trivial, and the stabilizer of each vertex $g G_{i}$ of X is the group G_{i}. Therefore the set $\delta(Y)$ of Lemma 3.4 is just the set $\cup i_{i} G_{i}$ and the condition I is the reduced form of the elements of G. Consequently by Theorem $3.5, X$ is a tree.

4.3 Free Products of Groups with Amalgamation

Let $G={ }_{A} G_{i}, i \in I,|I|>1, A$ non-trivial, be a free product of the groups G_{i} with amalgamated subgroup A.

Define the graph X as follows :

$$
\begin{aligned}
V(X) & =\{g A \mid g \epsilon G\} \cup\left\{g G_{i} \mid g \epsilon G_{i}\right\}, \\
E(X) & =\{(g A, i) \mid g \epsilon G\} \cup\{i, g A) \mid g \epsilon G\} \text { such that } \\
\overline{(g A, i)} & =(i, g A),(i, g A)=(g A, i) \\
o(g A, i) & =g A, o(i, g A)=g G_{i}, \text { and } \\
t(g A, i) & =g G_{i}, t(i, g A)=g A .
\end{aligned}
$$

We define the action of G on X by

$$
\begin{aligned}
g\left(g^{\prime} A\right) & =g g^{\prime} A, g\left(g^{\prime} G_{i}\right)=g g^{\prime} G_{i} \\
g\left(g^{\prime} A, i\right) & =\left(g g^{\prime} A, i\right) \text { and } g\left(i, g^{\prime} A\right)=\left(i g g^{\prime} A\right.
\end{aligned}
$$

for all $g, g^{\prime} \in G$ and $i \in I$.
Let T be defined as follows :
$V(T)=\left\{A, G_{i} \mid i \in I\right\}$ and $E(T)=\{(A, i),(i, A) \mid i \in I\}$ and $Y=T$.
It is clear that T is a subtree of X and $G(Y)=X$. If y is the edge (A, i) or (i, A), then $[y]=1$.

It is clear that the stabilizer of the edge (A, i) is the group A and the stabilizer of the vertices A and G_{i} are the groups A and G_{i} respectively. Therefore the set $\delta(Y)$ of Lemma 3.4 is just the set $U_{i \in I} G_{i}$ and the condition I is the reduced form of the elements of G. Consequently by Theorem $3.5, X$ is a tree.

4.4 HNN Groups

Let $G=<H, t_{i}|\mathrm{re}| H, t_{i} A t_{i}^{-1}=B_{i}>, i \in I$ be HNN group of base H and associated subgroups A_{i} and B_{i} of H.

Define the graph X as follows:

$$
\begin{aligned}
V(X) & =\{g H \mid g € G\} \\
E(X) & =\left\{\left(g B_{i}, t_{i}\right) \mid g \in G\right\} \cup\left\{g A_{i}, t_{i}^{-1} \mid g \epsilon G\right\} \text { such that } \\
\left(g B_{i}, t_{i}\right) & =\left(g t_{i} A_{i}, t_{i}^{-1}\right),\left(g A_{i}, t_{i}^{-}\right)=\left(g t_{i}^{-1} B_{i}, t_{i}\right) \\
t\left(g B_{i}, t_{i}\right) & =g t_{i} H, t\left(g A i, t_{i}^{-1}\right)=g t_{i}^{-1} H \\
\text { and } o\left(g B_{i}, t_{i}\right) & =g H, o\left(g A_{i}, t_{i}^{-1}\right)=g H .
\end{aligned}
$$

Let T and Y be defined as follows :

$$
\begin{aligned}
& T=\{H\}, V(V)=\{H\} \cup\left\{t_{i} H \mid i \in I\right\} \text {, and } E(Y)=\left\{\left(B_{i}, t_{i}\right) \mid i \in I, \cup\right. \\
& \left\{\left(t_{i} A_{i}, t_{i}^{-1}\right) \mid i \in I\right\} .
\end{aligned}
$$

We define the action of G on X as follows:

$$
g\left(g^{\prime} H\right)=g g^{\prime} H, g\left(g^{\prime} B_{i}, t_{i}\right)=\left(g g^{\prime} B_{i}, t_{i}\right) \text { and } g\left(g^{\prime} A_{i}, t_{i}^{-1}\right)=\left(g g^{\prime} A_{i}, t_{i}^{-1}\right)
$$

for all $g, g^{\prime} \in G$.
It is clear that the stabilizer of the vertex $g H$ is the group H, and the stabilizer of the edges $\left(g B_{i}, t_{i}\right)$ and $\left(g A_{i}, t_{i}^{-1}\right)$ are the groups B_{i} and A_{i} respectively.

Also Y is a subtree of X and $G(Y)=X$. If y is the edge $\left(B_{i}, t_{i}\right)$ then $o(y)=H$, $t(y)=t_{i} H$, and $[y]=t_{i}$. Therefore the set $\delta(Y)$ of Lemma 3.4 is $H \cup\left\{t_{i} \mid i \in I\right\}$, and the condition I is the reduced form of the elements of G. Consequently by Theorem 3.5, X is a tree.

References

[1] Mahmud, R.M.S., Presentation of groups acting on trees with inversions, Proceedings of the Royal Society of Edinburgh 133A(1989), pp. 235-241.
[2] Khanfar, M.I. and Mahmud, R.M.S., A note on groups acting on connected graphs, J. Univ. Kuwait (Sci) 16: 205-207 (1989).
[3] Mahmud, R.M.S., The normal form theorem of groups acting on trees with inversions, J. Univ Kuwait (Sci) 8: 7-15 (1991).
[4] Lyndon, R.C. and Schupp, P.E., Combinational group theory, Springer-Verlag (1977).

رئيد عمود صالح عمود
قسم الرياضيات ، كلية العلوم ، جامعة البحرين ، مدينـــة عيسى ، دولة البحرين
الستخلص . في هذا البحث نبرهن علم إنه إذا أثرت الزمرة G علم البيان X Xتحت شرط معين عل مولدات وعلاقات G فإن البيان X يكون شجرة .

