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On a Condition for a Graph to be a Tree 

RASHEED M.S. MAHMOOD 
Department of Mathematics, Bahrain University, 

Isa Town, State of Bahrain 

ABSTRACf. In this paper we show that if a group G acts on the graph X 
under certain generators and relations of G, then X is a tree. 

1. Introduction 

The presentation of groups acting on trees known as Bass-Serre theorem has been 
given in(1

), corollary 5.2. . 

The aim of this paper is to prove the converse of Bass-Serre theorem in the sense 
that if G is a group acting on a graph X and G has the presentation of corollary 5.2 
ofl), then X is a tree. 

We begin by giving some definitions. By a graph X we understand a pair of disjoint 
sets V( X ) and E( ' X ), with V( X ) non-empty. together with a mapping E( X ) ~ 
V( X)x V( X ).Y~ ( o( Y ). t( Y )). andamappingE( X )~E( X ).y~ ysatisfy
ing y = Y and o( y ) = t( Y ), for all ye E( X ). The case y = Y is possible for some ye 
E(X). 

A path in a graph Xis defined to be either a single vertex veV( X) (a trivial path), 
or a finite sequence of edges Yl 'Y2 ' .... Yn' n ~ 1 such that t( Yi ) = 0 ( Yi + 1 ) for i 
= 1,2, ... , n-1. 

A pathYl 'Y2';" Yn is reducedifYi + 1 ~ YP fori = 1,2,,,, ,n-1, A gi\phXis con
nected, if for every pair of vertices u and v of V( X ) there is a path Yl 'Y2 ' ... ,Y n in 
X such that o( Y 1 ) = u and t( Y n ) = v. 

A graph X is called a tree if for every pair of vertices of V( X) there is a unique re
duced path in X joining them. A subgraph Yof a graph X consists of sets V( Y) ~ 
V( X) and E( Y) ~ E( X) such that if ye E( Y), then ye E(Y), o( Y ) and t( y ) 
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are in V( Y ). We write Y k X. We take any vertex to be a subtree without edges. A 
maximal connected subgraph is called a component. It is clear that a graph is con
nected if and only if it has only one component. 

If Xl and X 2 are two graphs then the map f: Xl ~ X 2 is called a morphism iff takes 
vertices to vertices and edges to edges such that ' . 

and 

f(y) = fey) 

f( o( y» = o( f( y » 
f( t( y» = t( f( y », for allYE E( XI ) ; 

f is called an isomorphism if it is one-to-one and onto, and is called an automorph
ism if it is an isomorphism andXI = X 2 • The automorphisms of X form a group under 
composition of maps, denoted by Aux ( X). 

Wesay that a group G acts on a graph X if there is a group homomorphism <I> : G ~ 
Aut (X).lfxEXis a vertex or im edge, we writeg(x) for <I>(g) (x ).IfYE E(X), then 
g( y) = g( y ), g( o(y» = o(g(y », andg( t(y» = t(g(y ». The caseg(y) = y for 
some yE E( X) and gE G may occur. If yE X, (vertex or edge), we define G( y ) = {g( y ) 
I gE G} and this set is called an orbit. If x; yE X, (vertices or edges) we define G( x,y ) 
= {gE G I g( y ) = x}, and Gx = G( x, x ), called the stabilizer ofx. For yE E( X), it 
is clear that G v is a subgroup of G u' where UE {o( Y ), t( y ) }. Also if Y is a subset of 
X then we define G( . Y ) to be the set G( Y ) = {g( y ) I gEG , yE Y}. 

It is clear that ifxE V( X) and yE E( X), then G( x,y ) = <1>. 

For more details about groups acting on graphs we refer the reader to[t,2 or 3 I. 

2. Preliminary Definitions and Notation 

Throughout this paper G will be a group acting on the graph X, T a subtree of X 
such that T contains exactly one vertex from each G-vertex orbit, and Ya subtree of 
X such that Y contains T, and each edge of Yhas at least one end in T, and Y contains 
exactly one edge y(say) from each G-edge orbit such that G(y, y ) = <p, and exactly 
one pair y' and y from each G-edge orbit such that G( y, Y ) ¥- <po . 

Properties of T and Y 

(1) G( Y) = X. 

(2) G( V( T» = V( X ). 

(3) If U, VE V( T) such that G( u, v) ¥- <p, then U = v. 

(4) G( y, y) = <p, for allYE E( T). 

(5) If YI , Y2 ' E E( Y) such that G( y, ' Y2 ) ¥- <p , then y, = Y2 or y, = Y2 
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Since Y ~ C, we have G( Y ) ~ G( C). By the definition of Ywe have G( Y) = X. 
Therefore G( C ) = X. To show that C = X we need to show that G c = G, where G c 
= {gE G I g( C ) = C} which is a subgroup of G. Define a( Y) = {gE G I Y n g ( Y) 
¥- <I>}. Similarlya( C) is defined. Therefore a( Y ) ~ a( C). 

Now w~ show that a( Y) generates G, i.e. <a( Y) > = G. Since 8( Y) generates 
G, therefore we need to show that the elements of a( Y) can be written as a product 
of the elements oH( Y ). 

Now gE a( Y) =;:. Y n g( Y) ¥- <I> 

=;:. there exists u, VE V( Y) such that u = g( v ) . 

=;:. gE G( U, v ) 

=;:. g = [Xu tu go[ Xv tv ,where go E Gu*· (Proposition 3.2) 

=;:. < 8( Y ) > = < a( Y) > = G 

=;:. < a( C ) > == G 

Since < a( C) > = Gc ' therefore Gc = G. 

Therefore Gc( C) = G( C), which implies that C = X. Hence Xis connected. 

This completes the proof. 

To prove the main result of this paper we shall therefore assume the following con
dition on the elements of G. 

Condition I 

If go[ Y1 ] g1 [ Y2 ] g2 ... [ Yn ] gn' n;:=: 1 is the. identity element of G, where 

(1) Y.-E E( Y), for 1 ~ i ~ n 

(2) t( Yi )* = o( Yi + 1 )* , for 1 ~ i ~ n-1 

(3) goE Go( y )* 
1 

(4) g.-E Gt(Yi)* ,for 1 ~ i ~ n 

then for some i, 1 ~ i ~ n 
(a) Yi + 1 =Yi and g.-E G _ y. 

or • 
(b) Yi + 1 = Yi and g.-E Gy)f G( Yi' Yi) ¥- <1> . 

• 
The main result of this paper is the following theorem. 

3.5 Theorem 

If 8( Y ) generates G, and G satisfies condition I, then X is a tree. 

Proof 

By Lemma 3.4, X is connected. 

To show that X contains no circuits, that is, no reduced closed paths, we first show 
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This completes the proof of the main theorem .. 

We remark that if X is a tree then G satisfies condition lof Theorem 3.5, ([4), 

Corollary 1). In fact Corollary 1 Op2) has been proved in case B( Y) generates G and 
G has the presentation < P( Y) I R( Y) without using the assumption that X is a 
tree. This leads us to the following corollary of Theorem 3.5. 

3.6 Corollary (The Converse of Bass-Serre Theorem) 

_ If B( Y ) generates G, and G has the presentation < P( Y) I R( Y) > via the map 
Gv - Gv and y - [ y ] for all VE V( T) and all yE E( Y), then X is a tree. 

4. Applications 

In this section we give examples of groups acting on graphs and satisfying condition 
I ofthe main theorem. Free groups, free products of groups, free products of groups 
with amalgamation and HNN groups are examples of groups acting on trees in which 
condition I is the reduced form of the elements of these groups. For more details 
about the above groups we refer the reader to(4). 

4.1 Free Groups 

Let G be a group of base A. 

Define the graph X as follows 

V( X) = G 

E( X) = Gx( A U A-I ) 

For ( g, a ) EE( X ) we define 

( g, a ) ( ga, a - I ) 

t( g, a) = ga 

and o( g, a) = g 

G acts on X as follows : 

g( g') = gg' , for all g, g' E G 

. ': . \ " , 

g( g', ~) = (gg' , a ) for all g, g' E G and all aE A U A-I . 

It is clear thai the stabiliZer of each g' EGis trivial. We take T = { 1 } and Yas 
V( Y) = { 1 } U { a I aE A }, andE( Y ) = {( 1, a ) I aE A } U { ( a, a-I ) I aE A }. It is 
clear that Yis & subtree of X, Tk Yand G( Y) = X. Now we need to show thatXis 
a tree. If u is a vertex of Y then u* = 1 and if aE A then the edge y = ( 1, a ) is in Y, 
and, o( y ) = 1, t( y ) = a and [ y ] = a. Therefore the set of B( Y) of Lemma 3.4 is 
just the set A U A -1 and the condition I is the reduced form of the elements of G. 
Consequently by Theorem 3.5, X is a tree. 

4.2 Free Products of Groups 

Let G = *;E/G;. G; non-trivial, III > 1, be a free product of the groups G; 







101' R.M.S. Mahmood 

[3) Mahmud, R.M.S., The normal form theorem of groups acting on trees with inversions, 1. Univ 
Kuwait (Sci) 8: 7-15 (1991). 

(4) Lyndon, R.C. and Schupp, P.E., Combinational group theory, Springer-Verlag (1977). 




