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A Canonical Matrix Representation of 2-D Linear
 Discrete Systems 

M.S. BOUDELLIOUA

Al-Ahsa College of Technology,
 P.O. Box 804, Hofuf, 31982, Saudi Arabia

ABSTRACT. In this paper, a matrix form analoguous to the companion matrix
which is often encountered in the theory of one dimensional (1-D) linear con-
trol systems is suggested for a class of polynomials in two indeterminates and
real coefficients, here referred to as two dimensional (2-D) polynomials. These
polynomials arise in the context of the theory of 2-D linear discrete control
systems. Necessary and sufficient conditions are also presented under which a
matrix is equivalent to this companion form. Examples are used to illustrate
the ideas developed in this paper.

1. Introduction

Canonical forms play an important role in the modern theory of linear control systems.
One particular form that has proved to be very useful for 1-D linear systems is the so-
called companion matrix which is associated with its characteristic polynomial. Barnett[3]

showed that many of the concepts encountered in 1-D linear systems theory can be nice-
ly linked via the companion matrix.

It is therefore worthwhile to seek a form of matrix which is associated with 2-D poly-
nomials and which can play a role similar to that of its 1-D counterpart.

In this paper, a matrix form which can be regarded as a 2-D companion form is pre-
sented. The characteristic polynomial of the matrix is in the form which arises from 2-D
linear first order discrete equations e.g., those describing 2-D image processing systems
as suggested by Roesser[5]. The condition of equivalence to the Smith form, as given by
Frost and Boudellioua[2], is used to obtain necessary and sufficient conditions for the
equivalence of a matrix to the 2-D companion form.

2. Statement of the Problem

Let

(2.1)d z z P j i z zn i n j

j

n

i

n

( , ) ( , ) – –
1 2 1 2

00

1 2
21

=
==
∑∑

81

JKAU: Eng. Sci., vol. 11 No. 2, pp. 81-89 (1419 A.H. / 1999 A.D.)



M.S. Boudellioua82

be a polynomial in the indeterminates z1 and z2 and with real coefficients P(j, i). The
leading monomial of d(z1, z2) has a coefficient equal to 1, i.e., P(0, 0) = 1 and has de-
gress in z1 and z2 greater or equal to those of the remaining monomials of d(z1, z2).

The problem is to find a (n1 + n2) × (n1 + n2) matrix (henceforth referred to as a com-
panion matrix) in the block form:

(2.2)

where F1 is n1 ×  n1, F2 is n1 × n2, F3 is n2 × n1 and F4 is n2 × n2 which has a form
which is similar to the 1-D companion matrix and such that the determinant of the char-
acteristic matrix:

(2.3)

is given by the polynomial d(z1, z2). Furthermore, it is required to determine the neces-
sary and sufficient conditions for any matrix A, in the general block form of equation
(2.2) to be equivalent to the companion form F.

The matrix F often presented in the literature as a 2-D companion form (see for ex-
ample[6]  is one in which F1 and F2 are in companion form but F2 and F3 have no spe-
cial forms. In the following, a 2-D companion form is presented in which F1 and F4 are
in companion form and moreover, F2 is such that the overall matrix F, like its 1-D coun-
terpart, has all the elements above the diagonal equal to zero except for the elements on
the super diagonal which are equal to 1.

3. A Companion Form for 2-D Polynomials

Proposition A.

Given a 2-D polynomial d(z1, z2) given by equation (2.1), then a 2-D companion ma-
trix associated with d(z1, z2) is given by:
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where F1 and F4 are n1 × n1 , n2 × n2 matrices in companion forms respectively with
last rows given respectively by:

f1(n1, i) = –  P(0, n1 – i + 1), i = 1, 2, ... , n1,

and

f4(n2, j) = – P(n2 – j + 1, 0) , j = 1,2, ... , n2 (3.2)

where

det(z1 In1
 – F1) = z1

n
1 + P(0, 1) z1

n1–1 + P(0, 2)z1
n1– 2 + ... + P(0, n1)

and

det(z2In2
 – F4) = z2

n
2 + P(1, 0) z2

n
2
– 1 + P(2, 0) z2

n
2 – 2 + ... + P(n2, 0)

The matrix F2 is n1 × n2 and has all its columns zero except for the first one which is
given by En1

 i.e., the first column of the identity In1
. The elements of F3 are uniquely

and recursively determined from the following equation:

(3.3)

Furthermore if d(z1, z2) is separable i.e., can be written as a product of two 1-D poly-
nomials, then the matrix F3 is taken to be the null matrix.

The proof of the proposition follows in a simple way by  expanding the determinant
of the matrix zIn1

 + n2
 – F and equating the result with the polynomial d(z1, z2). A de-

tailed proof is setout in[1]. Obviously, a similar form to F can be obtained based on the
matrices F1, F2, F3 and F4 is such a way that the overall matrix obtained is the trans-
posed matrix of F.

Example 1.

Let

d(z1, z2) = (z2
2 + 2) z2

1 + (z2
2 + 3z2–1) z1 + z2

2 + 2z2 + 2.

Here we have,

  n1 = n2 = 2,

P(0, 0) = 1, P(1,0) = 0, P (2, 0) = 2,

P(0, 1) = 1, P(1, 1) = 3, P(2, 1) = – 1,

P(0, 2) = 1, P(1, 2) = 2, P(2, 2) = 2.

It follows that:

f1(2, 1) = – P(0, 2) = – 1, f1(2, 2) = – P(0, 1) = – 1,

f4(2, 1) = – P(2, 0) = – 2, f4(2, 2) = – P(1, 0) = 0,
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f3(1, 1) = P(1, 0) P(0, 2) – P(1, 2) = 0 × 1 – (2) = – 2,

f3(1, 2) = P(1, 0) P(0, 1) – P(1, 1) = 0 × 1 – (3) = – 3,

f3(2, 1) = P(2, 0) P(0, 2) – P(2, 2) = 2 × 1 – 2 = 0,

f3(2, 2) = P(2, 0) P(0, 1) – P(2, 1) – P(1, 0) f3(1, 2) = 2 × 1 – (– 1) – 0 × (– 3) = 3.

Therefore,

and the overall ma-

trix F is given by the following companion matrix:

4. Algebraic Equivalence

In 1-D systems theory, two n × n matrices A and B are algebraically equivalent (similar)
if and only if their corresponding characteristic matrices SIn – A and sIn – B are equivalent
i.e., there exist unimodular n × n matrices over the ring R[s], M(s) and N(s) such that:

sIn – B = M(s)  (sIn – A)  N(s) (4.1)

In fact, it can be shown (see for example[7]) that when it exists, this transformation
can be reduced to a similarity transformation i.e., 

sIn – B = M0 (sIn – A) M0
–1 (4.2)

In 2-D systems theory, however, this result is not true i.e., two matrices zIn1+n2
 – A

and zIn1+n2
 – B in the form given by equation (2.3) may be equivalent over the ring

R[z1, z2] without implying that the matrices A and B being similar. In fact the similarity
transformation used in the literature e.g.[5] and [7] which is a block diagonal transforma-
tion is only a special case of the general equivalence. In the following, a more general
notion of algebraic equivalence is used.

Definition 1.

Two matrices A and B in the form of equation (2.2) are algebraically equivalent if
their corresponding characteristic matrices zIn1+n2

 – A and zIn1+n2
 – B are equivalent

over the ring R[z1 , z2], i.e., there exist (n1 +n2) × (n1 + n2) unimodular matrices over

R[z1, z2], M(z1, z2) and N(z1, z2) such that:

zIn1+n2
 – B  =  M(z1 , z2)  (zIn1 +n2

 – A)  N(z1 , z2) (4.3)

Using this definition of algebraic equivalence, we now present a theorem that gives
necessary and sufficient conditions under which a matrix A in the form of equation
(2.2) is algebraically equivalent to the companion matrix F given by equation (3.1).

Theorem 1

A matrix A in the form of equation (2.2) is equivalent to the companion matrix F giv-
en by equation (3.1) if and only if its characteristic matrix zIn1+n2

 – A is equivalent over
R[z1 , z2] to the Smith form:
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(4.4)

Proof:

Necessity: Suppose  that the matrix A is equivalent to the companion form F, then it
is clear from the form of the matrix zIn1+n2

 – F that it can be brought by elementary row
and column operations to the Smith form S(z1 , z2) given in equation (4.4). In follows
that the matrix zIn1+n2

 – A is equivalent to the Smith form S(z1 , z2).

Sufficiency: Suppose that the matrix zIn1+n2
 – A is equivalent to the Smith form

S(z1 , z2). By Proposition 1, there exists a companion form F associated with the charac-
teristic polynomial given by det(zIn1+n2

 – A). Now since both zIn1+n2
 – A and zIn1+n2

 – F
are  equivalent to the same Smith form S(z1 , z2), they are equivalent to each other i.e.,
the matrices A and F are algebraically equivalent.

Theorem 2.

A matrix A in the form of equation (2.2) is equivalent to the companion matrix F
given by equation (3.1) if and only if there exists (n1 + n2) column vector b(z1 , z2)
which has no zeros such that the matrix:

(zIn1+n2
 – A    b(z1 , z2))

has no zeros.

The definition of a zero of a matrix over R[z1 , z2] is the value of the complex pair
(z1 , z2) such that the matrix is rank deficient, see for example[4].

Proof:

Necessity: Suppose that the matrix A is equivalent to the companion form F, then
there exist (n1 + n2) × (n1 + n2) unimodular matrices over R[z1 , z2], M(z1 , z2) and N(z1, z2)
such that:

zIn1+n2
 – A = M(z1 , z2)  (zIn1+n2

 – F) N(z1, z2) (4.5)

it follows that:

M(z1, z2) (zIn1+n2
 – F   En1+n2

) N(z1, z2)  =  (zIn1+n2
 – A  b(z1 , z2)) (4.6)

It is clear that the matrix (zIn1+n2
 – F  En1+n2

) has no zeros since it has one highest
order minor equal to 1. Therefore the matrix (zIn1+n2

 – A  b(z1 , z2)) has also no zeros. It
remains  to prove that the vector b(z1 , z2) has no zeros. This follows from the fact that
b(z1 , z2) = M(z1 , z2) En1+n2

.

Sufficiency: Suppose that there exists a (n1 + n2) column vector b(z1 , z2) which has
no zeros such that the matrix (zIn1+n2

 – A   b(z1 , z2)) has also no zeros. Then, since the
vector b(z1 , z2) has no zeros, there exists a (n1 + n2) × (n1 + n2) unimodular matrix
M1(z1 , z2) over R[z1 , z2] such that:

M1(z1 , z2)  b(z1 , z2) = En1+n2
(4.7)
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i.e.,

(4.8)

where T1(z1 , z2), T2(z1 , z2) are (n1 + n2 – 1) × (n1 + n2) and 1 × (n1 + n2) polynomial
matrices respectively.  Now since the matrix on the RHS of equation (4.8) has no zeros,
the matrix T1(z1 , z2) must also have no zeros. Therefore there exists a unimodular (n1 + n2)
× (n1 + n2) matrix N(z1 , z2) such that:

T1(z1 , z2) N(z1 , z2) = (In1+n2  
 0)

i.e., 

(4.9)

Premultiplying the matrix on the RHS of equation (4.9) by the (n1 + n2) × (n1 + n2)
unimodular matrix:

yields the matrix:

(4.10)

where t4(z1 , z2)  =  λ.det(zIn1+n2 
_ A), λ ∈  R*. It follows that the matrices zIn1+n2

– A
and S(z1, z2) are related by the following unimodular transformation:

(4.11)

i.e., the matrix is zIn1+n2 
– A equivalent to its Smith form S(z1 , z2). Therefore, by Theo-

rem 1, the matrix A is algebraically equivalent to the companion form F. This completes
the proof.

Example 2.

Let A = xxxxxxxxxxxxx then it can be easily verified that the vector b = xxxxx satisfies

the conditions in Theorem 2. Furthermore here we have det(zI3 – A) = (z2
1 – z1 –6) (z2

–2) i.e., the determinant is separable. In fact by premultiplying the matrix zI3 – A by the
unimodular matrix:
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and postmultiplying it by the unimodular matrix:

yields the characteristic matrix:

corresponding to the companion form:

Notice that because the determinant of the matrix zI3 – A is separable, the matrix F3
is zero.

Conclusion

In this paper, a canonical form which may be considered as a 2-D companion matrix
is presented. By introducing a more general notion of equivalence, some of the condi-
tions of equivalence to the companion form existing in 1-D systems theory are extended
to the 2-D case. This work can be taken further by considering the usefulness of this 2-
D companion matrix in the solution of problems such as realisation, controllability, ob-
servability, pole assignability, etc. of 2-D linear systems.
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