A Canonical Matrix Representation of 2-D Linear Discrete Systems

M.S. Boudellioua
Al-Ahsa College of Technology, P.O. Box 804, Hofuf, 31982, Saudi Arabia

Abstract

In this paper, a matrix form analoguous to the companion matrix which is often encountered in the theory of one dimensional (1-D) linear control systems is suggested for a class of polynomials in two indeterminates and real coefficients, here referred to as two dimensional (2-D) polynomials. These polynomials arise in the context of the theory of 2-D linear discrete control systems. Necessary and sufficient conditions are also presented under which a matrix is equivalent to this companion form. Examples are used to illustrate the ideas developed in this paper.

1. Introduction

Canonical forms play an important role in the modern theory of linear control systems. One particular form that has proved to be very useful for 1-D linear systems is the socalled companion matrix which is associated with its characteristic polynomial. Barnett ${ }^{[3]}$ showed that many of the concepts encountered in 1-D linear systems theory can be nicely linked via the companion matrix.

It is therefore worthwhile to seek a form of matrix which is associated with 2-D polynomials and which can play a role similar to that of its 1-D counterpart.
In this paper, a matrix form which can be regarded as a 2-D companion form is presented. The characteristic polynomial of the matrix is in the form which arises from 2-D linear first order discrete equations e.g., those describing 2-D image processing systems as suggested by Roesser ${ }^{[5]}$. The condition of equivalence to the Smith form, as given by Frost and Boudellioua ${ }^{[2]}$, is used to obtain necessary and sufficient conditions for the equivalence of a matrix to the 2-D companion form.

2. Statement of the Problem

Let

$$
\begin{equation*}
d\left(z_{1}, z_{2}\right)=\sum_{i=0}^{n_{1}} \sum_{j=0}^{n_{2}} P(j, i) z_{1}^{n_{1}-i} z_{2}^{n_{2}-j} \tag{2.1}
\end{equation*}
$$

be a polynomial in the indeterminates z_{1} and z_{2} and with real coefficients $P(j, i)$. The leading monomial of $d\left(z_{1}, z_{2}\right)$ has a coefficient equal to 1 , i.e., $P(0,0)=1$ and has degress in z_{1} and z_{2} greater or equal to those of the remaining monomials of $d\left(z_{1}, z_{2}\right)$.

The problem is to find a $\left(n_{1}+n_{2}\right) \times\left(n_{1}+n_{2}\right)$ matrix (henceforth referred to as a companion matrix) in the block form:

$$
F \equiv\left(\begin{array}{ll}
F_{1} & F_{2} \tag{2.2}\\
F_{3} & F_{4}
\end{array}\right)
$$

where F_{1} is $n_{1} \times n_{1}, F_{2}$ is $n_{1} \times n_{2}, F_{3}$ is $n_{2} \times n_{1}$ and F_{4} is $n_{2} \times n_{2}$ which has a form which is similar to the 1-D companion matrix and such that the determinant of the characteristic matrix:

$$
z I_{n_{1}+n_{2}}-F \equiv\left(\begin{array}{cc}
z_{1} I_{n_{1}}-F_{1} & -F_{2} \tag{2.3}\\
-F_{3} & z_{2} I_{n_{2}}-F_{4}
\end{array}\right)
$$

is given by the polynomial $d\left(z_{1}, \mathrm{z}_{2}\right)$. Furthermore, it is required to determine the necessary and sufficient conditions for any matrix A, in the general block form of equation (2.2) to be equivalent to the companion form F.

The matrix F often presented in the literature as a 2-D companion form (see for example ${ }^{[6]}$ is one in which F_{1} and F_{2} are in companion form but F_{2} and F_{3} have no special forms. In the following, a 2-D companion form is presented in which F_{1} and F_{4} are in companion form and moreover, F_{2} is such that the overall matrix F, like its 1-D counterpart, has all the elements above the diagonal equal to zero except for the elements on the super diagonal which are equal to 1 .

3. A Companion Form for 2-D Polynomials

Proposition A.

Given a 2-D polynomial $d\left(z_{1}, z_{2}\right)$ given by equation (2.1), then a 2-D companion matrix associated with $d\left(z_{1}, z_{2}\right)$ is given by:

$$
F \equiv\left(\begin{array}{ll}
F_{1} & F_{2} \\
F_{3} & F_{4}
\end{array}\right)
$$

$$
\left(\begin{array}{cccccccc}
0 & 1 & \cdots & 0 & 0 & 0 & \cdots & 0 \tag{3.1}\\
0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \cdots & \vdots & \vdots & \vdots & \cdots & \vdots \\
0 & 0 & \cdots & 1 & 0 & 0 & \cdots & 0 \\
f_{1}\left(n_{1}, 1\right) & f_{1}\left(n_{1}, 2\right) & \cdots & f_{1}\left(n_{1}, n_{1}\right) & 1 & 0 & \cdots & 0 \\
f_{3}(1,1) & f_{3}\left(n_{1}, 2\right) & \cdots & f_{3}\left(1, n_{1}\right) & 0 & 1 & \cdots & 0 \\
f_{3}(2,1) & f_{3}(2,2) & \cdots & f_{3}\left(2, n_{1}\right) & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \cdots & \vdots & \vdots & \vdots & \cdots & \vdots \\
f_{3}\left(n_{2}-1,1\right) & f_{3}\left(n_{2}-1,2\right) & \cdots & f_{3}\left(n_{3}-1, n_{1}\right) & 0 & 0 & \cdots & 1 \\
f_{3}\left(n_{2}, 1\right) & f_{3}\left(n_{2}, 2\right) & \cdots & f_{3}\left(n_{2}, n_{1}\right) & f_{4}\left(n_{2}, 1\right) & f_{4}\left(n_{2}, 2\right) & \cdots & f_{4}\left(n_{2}, n_{2}\right)
\end{array}\right)
$$

where F_{1} and F_{4} are $n_{1} \times n_{1}, n_{2} \times n_{2}$ matrices in companion forms respectively with last rows given respectively by:

$$
f_{1}\left(n_{1}, i\right)=-P\left(0, n_{1}-i+1\right), i=1,2, \ldots, n_{1}
$$

and

$$
\begin{equation*}
f_{4}\left(n_{2}, j\right)=-P\left(n_{2}-j+1,0\right), j=1,2, \ldots, n_{2} \tag{3.2}
\end{equation*}
$$

where

$$
\operatorname{det}\left(z_{1} I_{n_{1}}-F_{1}\right)=z_{1}^{n_{1}}+P(0,1) z_{1}^{n_{1}^{-1}}+P(0,2) z_{1}^{n_{1}-2}+\ldots+P\left(0, n_{1}\right)
$$

and

$$
\operatorname{det}\left(z_{2} I_{n_{2}}-F_{4}\right)=z_{2}^{n}+P(1,0) z_{2}^{n_{2}^{-1}}+P(2,0) z_{2}^{n_{2}-2}+\ldots+P\left(n_{2}, 0\right)
$$

The matrix F_{2} is $n_{1} \times n_{2}$ and has all its columns zero except for the first one which is given by $E_{n_{1}}$ i.e., the first column of the identity $I_{n_{1}}$. The elements of F_{3} are uniquely and recursively determined from the following equation:

$$
\begin{gather*}
f_{3}(i, j)=P(i, 0) P\left(0, n_{1}-j+1\right)-P\left(i, n_{1}-j+1\right)-\sum_{k=1}^{i-1} P(i,-k, 0) f_{3}(k, j) \tag{3.3}\\
i=1,2, \ldots, n_{2}, \quad j=1,2, \ldots, n_{1} .
\end{gather*}
$$

Furthermore if $d\left(z_{1}, z_{2}\right)$ is separable i.e., can be written as a product of two 1-D polynomials, then the matrix F_{3} is taken to be the null matrix.

The proof of the proposition follows in a simple way by expanding the determinant of the matrix $z I_{n_{1}+n_{2}}-F$ and equating the result with the polynomial $d\left(z_{1}, z_{2}\right)$. A detailed proof is setout in ${ }^{[1]}$. Obviously, a similar form to F can be obtained based on the matrices F_{1}, F_{2}, F_{3} and F_{4} is such a way that the overall matrix obtained is the transposed matrix of F.

Example 1.

Let

$$
d\left(z_{1}, z_{2}\right)=\left(z_{2}^{2}+2\right) z_{1}^{2}+\left(z_{2}^{2}+3 z_{2}-1\right) z_{1}+z_{2}^{2}+2 z_{2}+2
$$

Here we have,

$$
\begin{gathered}
n_{1}=n_{2}=2, \\
P(0,0)=1, P(1,0)=0, P(2,0)=2, \\
P(0,1)=1, P(1,1)=3, P(2,1)=-1, \\
P(0,2)=1, P(1,2)=2, P(2,2)=2 .
\end{gathered}
$$

It follows that:

$$
\begin{gathered}
f_{1}(2,1)=-P(0,2)=-1, f_{1}(2,2)=-P(0,1)=-1 \\
f_{4}(2,1)=-P(2,0)=-2, f_{4}(2,2)=-P(1,0)=0
\end{gathered}
$$

$$
\begin{gathered}
f_{3}(1,1)=P(1,0) P(0,2)-P(1,2)=0 \times 1-(2)=-2, \\
f_{3}(1,2)=P(1,0) P(0,1)-P(1,1)=0 \times 1-(3)=-3, \\
f_{3}(2,1)=P(2,0) P(0,2)-P(2,2)=2 \times 1-2=0, \\
f_{3}(2,2)=P(2,0) P(0,1)-P(2,1)-P(1,0) f_{3}(1,2)=2 \times 1-(-1)-0 \times(-3)=3 .
\end{gathered}
$$

Therefore,

$$
F_{1}=\left(\begin{array}{cc}
0 & 1 \\
-1 & -1
\end{array}\right), F_{2}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), F_{3}=\left(\begin{array}{cc}
-2 & -3 \\
0 & 3
\end{array}\right) \text {, and } F_{4}=\left(\begin{array}{cc}
0 & 1 \\
-2 & 0
\end{array}\right) \text { and the overall ma- }
$$

trix F is given by the following companion matrix:

4. Algebraic Equivalence

In 1-D systems theory, two $n \times n$ matrices A and B are algebraically equivalent (similar) if and only if their corresponding characteristic matrices $S I_{n}-A$ and $s I_{n}-B$ are equivalent i.e., there exist unimodular $n \times n$ matrices over the ring $R[s], M(s)$ and $N(s)$ such that:

$$
\begin{equation*}
s I_{n}-B=M(s)\left(s I_{n}-A\right) N(s) \tag{4.1}
\end{equation*}
$$

In fact, it can be shown (see for example ${ }^{[7]}$) that when it exists, this transformation can be reduced to a similarity transformation i.e.,

$$
\begin{equation*}
s I_{n}-B=M_{0}\left(s I_{n}-A\right) M_{0}^{-1} \tag{4.2}
\end{equation*}
$$

In 2-D systems theory, however, this result is not true i.e., two matrices $z I_{n_{1}+n_{2}}-A$ and $z I_{n_{1}+n_{2}}-B$ in the form given by equation (2.3) may be equivalent over the ring $R\left[z_{1}, z_{2}\right]$ without implying that the matrices A and B being similar. In fact the similarity transformation used in the literature e.g. ${ }^{[5]}$ and ${ }^{[7]}$ which is a block diagonal transformation is only a special case of the general equivalence. In the following, a more general notion of algebraic equivalence is used.

Definition 1.

Two matrices A and B in the form of equation (2.2) are algebraically equivalent if their corresponding characteristic matrices $z I_{n_{1}+n_{2}}-A$ and $z I_{n_{1}+n_{2}}-B$ are equivalent over the ring $R\left[z_{1}, z_{2}\right]$, i.e., there exist $\left(n_{1}+n_{2}\right) \times\left(n_{1}+n_{2}\right)$ unimodular matrices over $R\left[z_{1}, z_{2}\right], M\left(z_{1}, z_{2}\right)$ and $N\left(z_{1}, z_{2}\right)$ such that:

$$
\begin{equation*}
z I_{n_{1}+n_{2}}-B=M\left(z_{1}, z_{2}\right)\left(z I_{n_{1}+\mathrm{n}_{2}}-A\right) N\left(z_{1}, z_{2}\right) \tag{4.3}
\end{equation*}
$$

Using this definition of algebraic equivalence, we now present a theorem that gives necessary and sufficient conditions under which a matrix A in the form of equation (2.2) is algebraically equivalent to the companion matrix F given by equation (3.1).

Theorem 1

A matrix A in the form of equation (2.2) is equivalent to the companion matrix F given by equation (3.1) if and only if its characteristic matrix $z I_{n_{1}+n_{2}}-A$ is equivalent over $R\left[z_{1}, z_{2}\right]$ to the Smith form:

$$
S\left(z_{1}, z_{2}\right)=\left(\begin{array}{cc}
I_{n_{1}+n_{2}-1} & 0 \tag{4.4}\\
0 & \operatorname{det}\left(z I_{n_{1}+n_{2}}-A\right.
\end{array}\right)
$$

Proof:

Necessity: Suppose that the matrix A is equivalent to the companion form F, then it is clear from the form of the matrix $z I_{n_{1}+n_{2}}-F$ that it can be brought by elementary row and column operations to the Smith form $S\left(z_{1}, z_{2}\right)$ given in equation (4.4). In follows that the matrix $z I_{n_{1}+n_{2}}-A$ is equivalent to the Smith form $S\left(z_{1}, z_{2}\right)$.

Sufficiency: Suppose that the matrix $z I_{n_{1}+n_{2}}-A$ is equivalent to the Smith form $S\left(z_{1}, z_{2}\right)$. By Proposition 1, there exists a companion form F associated with the characteristic polynomial given by $\operatorname{det}\left(z I_{n_{1}+n_{2}}-A\right)$. Now since both $z I_{n_{1}+n_{2}}-A$ and $z I_{n_{1}+n_{2}}-F$ are equivalent to the same Smith form $S\left(z_{1}, z_{2}\right)$, they are equivalent to each other i.e., the matrices A and F are algebraically equivalent.

Theorem 2.

A matrix A in the form of equation (2.2) is equivalent to the companion matrix F given by equation (3.1) if and only if there exists $\left(n_{1}+n_{2}\right)$ column vector $b\left(z_{1}, z_{2}\right)$ which has no zeros such that the matrix:

$$
\left(z I_{n_{1}+n_{2}}-A \quad b\left(z_{1}, z_{2}\right)\right)
$$

has no zeros.
The definition of a zero of a matrix over $R\left[z_{1}, z_{2}\right]$ is the value of the complex pair $\left(z_{1}, z_{2}\right)$ such that the matrix is rank deficient, see for example ${ }^{[4]}$.

Proof:

Necessity: Suppose that the matrix A is equivalent to the companion form F, then there exist $\left(n_{1}+n_{2}\right) \times\left(n_{1}+n_{2}\right)$ unimodular matrices over $R\left[z_{1}, z_{2}\right], M\left(\mathrm{z}_{1}, z_{2}\right)$ and $N\left(z_{1}, z_{2}\right)$ such that:

$$
\begin{equation*}
z I_{n_{1}+n_{2}}-A=M\left(z_{1}, z_{2}\right)\left(z I_{n_{1}+n_{2}}-F\right) N\left(z_{1}, z_{2}\right) \tag{4.5}
\end{equation*}
$$

it follows that:

$$
\begin{equation*}
M\left(z_{1}, z_{2}\right)\left(z I_{n_{1}+n_{2}}-F \quad E_{n_{1}+n_{2}}\right) N\left(z_{1}, z_{2}\right)=\left(z I_{n_{1}+n_{2}}-A b\left(z_{1}, z_{2}\right)\right) \tag{4.6}
\end{equation*}
$$

It is clear that the matrix $\left(z I_{n_{1}+n_{2}}-F E_{n_{1}+n_{2}}\right)$ has no zeros since it has one highest order minor equal to 1 . Therefore the matrix $\left(z I_{n_{1}+n_{2}}^{2}-A b\left(z_{1}, z_{2}\right)\right)$ has also no zeros. It remains to prove that the vector $b\left(z_{1}, z_{2}\right)$ has no zeros. This follows from the fact that $b\left(z_{1}, z_{2}\right)=M\left(z_{1}, z_{2}\right) E_{n_{1}+n_{2}}$.

Sufficiency: Suppose that there exists a $\left(n_{1}+n_{2}\right)$ column vector $b\left(z_{1}, z_{2}\right)$ which has no zeros such that the matrix $\left(z I_{n_{1}+n_{2}}-A \quad b\left(z_{1}, z_{2}\right)\right)$ has also no zeros. Then, since the vector $b\left(z_{1}, z_{2}\right)$ has no zeros, there exists a $\left(n_{1}+n_{2}\right) \times\left(n_{1}+n_{2}\right)$ unimodular matrix $M_{1}\left(z_{1}, z_{2}\right)$ over $R\left[z_{1}, z_{2}\right]$ such that:

$$
\begin{equation*}
M_{1}\left(z_{1}, z_{2}\right) b\left(z_{1}, z_{2}\right)=E_{n_{1}+n_{2}} \tag{4.7}
\end{equation*}
$$

i.e.,

$$
M_{1}\left(z_{1}, z_{2}\right)\left(z I_{n_{1}+n_{2}}-A \quad b\left(z_{1}, z_{2}\right)=\left(\begin{array}{ll}
T_{1}\left(z_{1}, z_{2}\right) & 0 \tag{4.8}\\
T_{2}\left(z_{1}, z_{2}\right) & 1
\end{array}\right)\right.
$$

where $T_{1}\left(z_{1}, z_{2}\right), T_{2}\left(z_{1}, z_{2}\right)$ are $\left(n_{1}+n_{2}-1\right) \times\left(n_{1}+n_{2}\right)$ and $1 \times\left(n_{1}+n_{2}\right)$ polynomial matrices respectively. Now since the matrix on the RHS of equation (4.8) has no zeros, the matrix $T_{1}\left(z_{1}, z_{2}\right)$ must also have no zeros. Therefore there exists a unimodular $\left(n_{1}+n_{2}\right)$ $\times\left(n_{1}+n_{2}\right)$ matrix $N\left(z_{1}, z_{2}\right)$ such that:

$$
T_{1}\left(z_{1}, z_{2}\right) N\left(z_{1}, z_{2}\right)=\left(I_{n_{1}+n_{2}} 0\right)
$$

i.e.,

$$
M_{1}\left(z_{1}, z_{2}\right)\left(z I_{n_{1}+n_{2}}-A \quad b\left(z_{1}, z_{2}\right)=\left(\begin{array}{ccc}
N\left(z_{1}, z_{2}\right) & 0 \tag{4.9}\\
0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
I_{n_{1}+n_{2}-1} & 0 & 0 \\
T_{3}\left(z_{1}, z_{2}\right) & t_{4}\left(z_{1}, z_{2}\right) & 1
\end{array}\right)\right.
$$

Premultiplying the matrix on the RHS of equation (4.9) by the $\left(n_{1}+n_{2}\right) \times\left(n_{1}+n_{2}\right)$ unimodular matrix:

$$
M_{2}\left(z_{1}, z_{2}\right)=\left(\begin{array}{ccc}
I_{n_{1}+n_{2}} & 0 & 0 \\
-T_{3}\left(z_{1}, z_{2}\right) & t_{4}\left(z_{1}, z_{2}\right) & 1
\end{array}\right)
$$

yields the matrix:

$$
\left(\begin{array}{ccc}
I_{n_{1}+n_{2}} & 0 & 0 \tag{4.10}\\
0 & t_{4}\left(z_{1}, z_{2}\right) & 1
\end{array}\right)
$$

where $t_{4}\left(z_{1}, z_{2}\right)=\lambda \cdot \operatorname{det}\left(z I_{n_{1}+n_{2}-A} A\right), \lambda \in R^{*}$. It follows that the matrices $z I_{n_{1}+n_{2}}-A$ and $S\left(z_{1}, z_{2}\right)$ are related by the following unimodular transformation:

$$
M_{2}\left(z_{1}, z_{2}\right) M_{1}\left(z_{1}, z_{2}\right)\left(\begin{array}{cc}
I_{n_{1}+n_{2}-1} & 0 \tag{4.11}\\
0 & \lambda^{-1}
\end{array}\right)\left(z I_{n_{1}+z_{2}}-A\right) \quad N\left(z_{1}, z_{2}\right)=S\left(z_{1}, z_{2}\right)
$$

i.e., the matrix is $z I_{n_{1}+n_{2}}-A$ equivalent to its Smith form $S\left(z_{1}, z_{2}\right)$. Therefore, by Theorem 1, the matrix A is algebraically equivalent to the companion form F. This completes the proof.

Example 2.

Let $A=\left(\begin{array}{ccc}0 & 1 & 1 \\ 6 & 1 & -2 \\ 2 & 1 & 2\end{array}\right)$, then it can be easily verified that the vector $b=\left(\begin{array}{l}1 \\ 3 \\ 0\end{array}\right)$ satisfies
the conditions in Theorem 2. Furthermore here we have $\operatorname{det}\left(z_{3}-A\right)=\left(z_{1}^{2}-z_{1}-6\right)\left(z_{2}\right.$ $-2)$ i.e., the determinant is separable. In fact by premultiplying the matrix $z I_{3}-A$ by the unimodular matrix:

$$
\left(\begin{array}{ccc}
-3 & 1 & -1 \\
3 z_{1}-6 & -z_{1}+2 & z_{1}-1 \\
-3 z_{1} z_{2}+6 z_{1}+12 z_{2}-34 & z_{1} z_{2}-2 z_{1}-4 z_{2}+3 & -5 z_{1}+15
\end{array}\right)
$$

and postmultiplying it by the unimodular matrix:

$$
\frac{1}{25}\left(\begin{array}{ccc}
z_{1}^{2} z_{2}-7 z_{1}^{2}-2 z_{1} z_{2}+14 z_{1}-8 z_{2}+41 & -5 & z_{2}-7 \\
z_{1}^{2} z_{2}-7 z_{1}^{2}-2 z_{1} z_{2}+14 z_{1}-8 z_{2}+36 & -15 & -3 z_{2}+21 \\
5 z_{1}^{2}-10 z_{1}-40 & 0 & -5
\end{array}\right)
$$

yields the characteristic matrix:

$$
z I_{3}-F \equiv\left(\begin{array}{ccc}
z_{1} & -1 & 0 \\
-6 & z_{1}-1 & -1 \\
0 & 0 & z_{2}-2
\end{array}\right)
$$

corresponding to the companion form:

$$
F \equiv\left(\begin{array}{lll}
0 & 1 & 0 \\
6 & 1 & 1 \\
0 & 0 & 2
\end{array}\right)
$$

Notice that because the determinant of the matrix $z I_{3}-A$ is separable, the matrix F_{3} is zero.

Conclusion

In this paper, a canonical form which may be considered as a 2-D companion matrix is presented. By introducing a more general notion of equivalence, some of the conditions of equivalence to the companion form existing in 1-D systems theory are extended to the 2-D case. This work can be taken further by considering the usefulness of this 2D companion matrix in the solution of problems such as realisation, controllability, observability, pole assignability, etc. of 2-D linear systems.

References

[1] Boudellioua, M.S., Matrices associated with multivariable multidimensional linear control systems, PhD thesis, Nottingham Trent University, U.K. (1986).
[2] Frost, M.G. and Boudellioua, M.S., Some further results concerning matrices with elements in a polynomial ring, Int. J. of Control, 43(5): 1543-1555 (1984).
[3] Barnett, S., A matrix circle in linear control theory, I.M.A., Bulletin, 12: 173-176 (1976).
[4] Youla, D.C. and Gnavi, G., Notes on n-Dimensional system theory, I.E.E.E. Trans. on Circuits and Systems, CAS-26(2): 105-111 (1979).
[5] Roesser, R.E., A discrete state space model for linear image processing, I.E.E.E. Trans. on Autom. Control, AC-20(1): 1-10 (1975).
[6] Hinamoto, T. and Maekawa, S., A canonical state space realisation for 2-D systems, Int. J. Control, 13: 1083-1094 (1982).
[7] Rosenbrock, H.H. and Storey, C., Mathematics of dynamical systems, Nelson (1970).

تثـــل الأنظمـة المتقطعـة ثنائيـــة البــــد بواسطـة مصفوفـة في الشـكل القــنوني

محمد الصالح بودليوة
الكلية التنقية بالأحساء ، الهنوف - المملكة العربية السعودية

المستخخلص . في هذا البحـث نتـرح شكلاً لصففوفة تعتبر إمتـدادًا

 ومعاملات حقيقية . نطلق في هذا البحث تسمية كثيرات الحـي الحدود ثنـائية البعد على هذا القسم من كثيرات الحدود التي تستعمل في نظرية أنظمة الئمة

البحث أمثلة توضح الأفكار التي طرحت .

