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ABSTRACT. A numerical study is conducted for laminar compressible axisym­
metric jets. The outer medium into which the jet is injected is considered to be 
at rest or moving parallel to the jet. Two values of the outer medium velocity 
are investigated while four types of the injected gas are considered. namely 
carbon dioxide. oxygen. ammonia and hydrogen. An implicit finite difference 
method is used to solve the boundary layer equations governing the jet flow. A 
coordinate transformation is used to improve the efficiency and accuracy of 
the numerical scheme. Results for the velocity profiles and mixture fraction 
profiles are obtained. An analysis of these results is made and a criterion for 
comparing the velocity and mixture fraction decay rates for the considered 
gases is established. 

1. Introduction 

A considerable amount of work[l-5] has been done on jets because of their importance 
in a wide variety of engineering applications. Some of these applications are: Jet flow 
inside combustion chambers. jets in aerospace devices. jet pumps and ejectors. dis­
charge of effluents and discharges from draft tubes and certain outlets into rivers. 

A subsonic jet discharging from a tube can always be considered as fully expanded. 
For a jet cross section to remain round and the trajectory to remain straight. it is neces­
sary that there would be no force acting on the jet in the lateral direction. This also 
requires that the medium into which the jet is discharged be at rest or flowing in the 
same direction. and the body forces are negligible. 

If a primary jet of gas issues into a secondary stream which is composed of a differ­
ent gas. diffusion becomes one of the most important mechanisms in the mixing 
process. The diffusion equation must then be included in the basic equations along with 
the proper equation of state. and the properties must be evaluated using the methods 
required for gas mixtures. 
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Paj(6) discussed the jet mixing of different gases, and the basic equations for diffu­
sion are found in Rohensow et alP) and Bird et al.lB). Hornbeck(9) put forward the 
finite difference representation for the plate mixing of jets but didn't check his suggest­
ed scheme. 

The prediction of free shear flows was for a long time most commonly done by inte­
gral methods, but now the differential methods have become the center of interest for 
most researchers(9). 

In the present work, the formulation for the mixing of an asixymmetric jet of gas 
with a moving or stationary stream of air at the same temperature is considered. The 
gases considered are those of carbon dioxide, oxygen, ammonia and hydrogen. An 
implicit finite difference method is used to solve the boundary layer equations govern­
ing the jet flow and a coordinate transformation is used to improve the efficiency and 
accuracy of the numerical scheme. An analysis of the obtained results shows that they 
are sensitive to the selection of the initial conditions at the nozzle exit. 

2. Analysis 

Figure 1 shows a schematic diagram for a jet of diameter 2a issuing into the ambi­
ent. The Reynolds number is large enough so that the boundary layer approximation 
can be invoked. The general assumptions made in formulating the governing equations 
are 

1. Axisymmetric flow , (circular or round jet). 
2. Uniform-pressure. 
3. No swirl. 
4. All properties are constant except the density. 
5. Mass transfer due to diffusion involves a negligible momentum flux. 

Ue • 

• 

• NlTlAL MIXING MAIN 
REGION REGION 

FIG. I. Schematic diagram for an axisymmetric jet issuing into an ambient. 
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With these assumptions, the governing equations for the conservation of momentum, 
concentration and mass are as follows: 

momentum 

p(u du + V du) = ).L ~ (r du) 
(]x dr rdr ar (1) 

mass diffusion 

df df Dd df 
p(u (]x + V dr) = -;: dr (rp ar) (2) 

and, continuity 

d(pu) +..!. d(prv) = 0 (3) 
(]x r ar 

where u is the axial velocity, V is the lateral velocity,fis the mixture fraction given by· 
the ratio of the weight of the discharged gas to that of the mixture, p is the density, ).L is 
the viscosity, D is the diffusion coefficient, r is the radial coordinate and x is the axial 
coordinate. 

The initial conditions (x = 0) can be taken as uniform profiles except for u, where it 
is more reasonable to assume a parabolic profile at the nozzle exit. Mathematically, 
these conditions are 

r 2 
U = uin(l-(-) ), 

a 

U = ue' 

/ = 1.0, at r5, a 

/=0.0, at r>a 

The boundary conditions for axisymmetric jet flows are 

;, = ~ = v = 0.0 at r = 0.0 

U =ue • / = 0.0 at 

(4) 

(5) 

The governing equations may be put in dimensionless form by the following choice 
of dimensionless variables 

U =~,).L* =).L ,p* = L 
uin ).L 0 Po 

(6) 

V = Pooo R =!... X = x).Lo =-=-
" 2 R ).Lo a POuina a e 

For these dimensionless representations, the conditions of air at standard atmospher­
ic conditions (l atm, 298 K) have been chosen for reference values. The concentration/ 
is already dimensionless. Inserting these variables into Equations (I) to (3) gives 

*(U dU +VdU)=).L* ~(RdU) 
p dX dR R dR dR 

(7) 

* df df n d * df p (U-+V-)=--(p R-) 
dX dR R dR dR 

(8) 
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a{p*U) +~~{ *RV)=O 
aX R aR P 

(9) 

where IT = I1*RMCI Sc, Sc = III pD and RMC = Pol p. = ratio of the density of the sur­
rounding air at the reference conditions to that of the j~t at the nozzle exit. 

The normalized initial conditions are 

U = I-R 2,j= 1.0 at R~l 

u = CO, f = 0.0 at R > I 

where 

CO= u/u ill 

The normalized boundary conditions are 

au = ()( = v = 0.0 
aR aR 
u =CO,f=O.O 

at R=O.O 

at 

(10) 

(11) 

An equation of state for the gas mixture is now required in order to express p as a 
function of j. Po and Pj" The derivation of this equation is straightforward and only the 
final result will be given here *. 

* I 
P = I+{RMC-I)f 

(\ 2) 

Therefore, Equations (7), (8), (9) and (12) are solved for U, f, V and p', respectively. 
The jets considered are those of carbon dioxide, oxygen, ammonia and hydrogen. The 
values of CO considered are 0.0, 0.5 and 0.75. The values of~', RMC and Sc number 
for these cases are obtained from Ref. [10]. These values are shown in Table 1. 

TABLE I. Values of RMC. J.l' and Sc for the tested cases . 

Type of jet RMC J.l 
. 

Sc 

Carbon dioxide into air 0.655 0.810 0.94 
Oxygen into air 0.90 1.117 0.75 
Ammonia into air 1.694 0.556 0.78 
Hydrogen into air 14.4 0.486 0.22 

3. Method of Solution 

To make the numerical calculations more efficient, two transformations are 
employed in the present study. 

3.1 Numerical Solution in (R - X) Coordinate,s (First Transformation) 

The numerical solution for Equations (7), (8) and (9) is obtained by choosing a finite 
difference representation for these equations. The finite difference grid is shown in Fig. 
(2). The difference form selected for these equations is highly implicit in that, not only 

'See Ref. [10) for more details. 
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are all R derivatives evaluated at j + I b\Jt also, the coefficients of the nonlinear con­
vective terms are evaluated at j + I. This representation is necessary if zero and small 
freestream velocities are to be considered, since the usual implicit scheme with the 
coefficients evaluated at j is inconsistent for these conditions. For zero freestream 
velocity the usual implicit form results in the U velocity profile decreasing linearly 
from the edge of the jet to whatever value of R is chosen as infinity. This result is obvi­
ously incorrect. 

R 

-

j=1 j=2 

k=n .1 

k=n 

k=2 

k:l 

k=O 

~ 
toR ... l:.X f4- • 

...... 

-

j-1 j )+1 

FI(;. 2. Finite difference grid for axisymmetric jel. 

-

- Z 

The nonlinear difference representation chosen here is valid for al\ values of CO. 
The representation of the momentum equation (7) 

U (/+Il U 
j+1.k - j.k iI) 

L1X + V,+1.k 
U iI+l ) U(/+I) 

j+I.k+1 - j+l.k-1 

2(&) J 
(13) 

U (/+I) U(/+I) U iI+ 1I 2U(/+I) U(/+I) 
• I ;+I.k+1 - ;+I.k-I + j+l.k+1 - j+l.k + j+I.k-I) 

= f.1 {Rk . 2(LlR) (&)2 

where the superscripts are used to indicate on which iteration that value was obtained; 
for example U:~u is obtained on the (l )th iteration while uj~~~I is obtained on the 
(I + I) th iteration. 

It is useful to rewrite Equation (13) as 
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aU)VU+1) + [3(/)VU+1) + Q(/)V(/+I) -l/>(/) 
k }+I.k-I k j+l.k k j+l.k+1 - k 

*U) V(I) • * 
a(1) - -Pj+l.k j+l,k J.l J.l 

k - 2(L1R) - (L1R)2 + 2(Rk )L1R 

'(/) V(I) • 
[3(/) - P j+l,k j+l.k 2J.l 

k - .1X + (L1R)2 

*U) V(I) • * 
n(1) = P;+1.k ;+I.k J.l J.l 

k 2(L1R) - (L1R)2 - 2(Rk )L1R 

P' U) V(/) V 
l/>U) _ )+I.k )+I.k j.k 

k- .1X 

(14) 

(15) 

(16) 

(17) 

( 18) 

The value of all) and .fil) at k = 0 (the centerline) are infinite. To overcome this 
problem, the limit of momentum equation (7) is taken as 11 --+ O. Doing this. and dis­
cretizing the resulting equation in the same manner used above. the coefficients at 
k = 0 can be calculated as 

alb) =0.0 

*(/) (/) * 
[3(1) _ Pj+l.o V i+l.o 4J.l 

o - .1X + (L1R)2 

n U) _ -4)1' 
o - (L1R)2 

P'(/) V(/) U 
l/>(I) - j+1.0 ';+1.0 i,O 

o - .1X 

The continuity equation can be discretized in the same manner to get 

*U) * U *(1+1) U(/+I) 
V (/+I) _ PJ+1.k Rk (/+1) Rk L1R P;,k ;.k - P;+l.k j+1.k 

';+I.k+1 - *(/) V;+I.k + *U) 
P}+I,k+1 Rk+1 Rk+ldX Pj+l.k+1 

This equation is valid for k > O. The continuity equation at k = 0 is 

V(/+I) - L1R [Pj,o V u(/+I) 1 
j+1.I - 2( ,tV) 1i") j,O - j+l,k 

L..1I\ p}+1.0 

(19) 

(20) 

(21 ) 

(22) 

(23) 

(24) 

Thus all values of v)iLk+' can be found in a stepwise manner by working outward 
from the centerline of the jet. 

Also, the discretized form of the mass diffusion equation may be written as 

a'(/)/(/+I) + P'(/)j{/+I) + n' 1(/+1) -l/>'lI) 
k j+l.k-1 k j+l,k k j+l,k+1 - k (25) 
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- *(/) v(/) 

a'(/) = P j +l.k j+l.k 
np *(/) np *(/) *(1) *(/) 

j+I,k + j+I,k + n P j +l.k+1 - Pj+I,k-1 

k 2(£1R) (£1R)2 2(Rk )(£1R) 4(£1R)2 

*(/) U(/) 2n *(/) 

[3'(/) = P j +l.k j+I,k + Pj+I,k 

k L1X (£1R)2 

*(/) v(/) 

Q'(/) = P j +l.k j+I,k 

k 2(£1R) 

np*(/) 
j+1.k 

(£1R)2 

*(/) U(/) j 
cp'(/) = P;+l.k ;+I.k j.k 

k L1X 

np*(/) 
j+1.k 

n *(/) - *(/) 
(P j +l.k+1 Pj+I,k-I) 

4(£1R)2 
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(26) 

(27) 

(28) 

(29) 

The value of a'il) and £2'(/) at k = 0 (the centerline) can be found by taking the limit 
of the mass equadon (8) a/ T) ~ O. This results in 

a~(/) = 0.0 

*(/) U(/) 4np *(/) 

[3/1/) = p}+1.0 }+1.0 + j+1.k 

o L1X (£1R)2 

-4n *(/) 
£2'(/) = P}+l.k 

o (£1R)2 

p*(/) U(O U 
cp/ll) = j+1.0 }+1.0 }.O 

o L1X 

Also, the finite difference form of the equation of state is 

*(/+1) I 
Pj+I,k = I+(RMC-I)j(/+Il 

}+I.k 

(30) 

(31 ) 

(32) 

(33) 

(34) 

The solution starts by guessing values for the unknown velocity and mixture fraction 
profiles. These are usually taken at the preceding step upstream. Substituting these 
guessed values into Equation (14), a new velocity profile can be calculated. Using 
Equation (23), a new lateral velocity profile can be obtained. Also, a new mixture frac­
tion profile can be obtained from Equation (25). The density can then be calculated 
from Equation (34). These calculated profiles are used, after applying underrelaxation, 
as a new guess and the iteration process continues until convergence. When conver­
gence is attained, another step downstream is moved. A flow chart that illustrates this 
method of solution is shown in Fig. (3). Of special interest is to note that the sets of 
equations resulting from Equations (14) and (25) are tridiagonal sets and may be solved 
easily using any tridiagonal solver while Equation (23) gives an explicit relation for the 
lateral velocity so that it can be calculated directly by working outward from the center 
of the jet. 

The values of step sizes used in the solution are L1R = 0.05 and .1X = O.OOI.The 
accuracy of the obtained results has been checked by running the computer code for 
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(1)t1R = 0.025 and .1X = 0.0005 and (2)t1R = 0.1 and .1X = 0.002. The results in both 
cases were comparable with the original results at least up to three significant figures. 

I START I 
INPUT DATA I 

USE VAUJES FOR 
V,U & f 

PROFILES OF THE 
PREVIOUS STEP 

AS INlTlAL GUESS 

• CALCULATE NEW V 
FROM THE 

MOMENTUM EQUATION 

~ 
CALCULATE NEW U 

FROM THE 
CONTINUITY EQUATION 

~ 
CALCULATE NEW f 

FROM THE MASS 
DIFFUSION EQUATION 

.1 
IS 

USE CALCULATED 
DIFFERENCE 

~ BETWEEN GUESSED 
PROFILES AS AND CALCULAT ED 
NEW GUESSES VALUES LESS THAN 

THE SET ACCURACY 

TVES 

MOVE ANOTHER 
STEP FORWARD , 

I 

~:J 
FIG. 3. Row chart showing the method of solution. 

3.2 Numerical Solution in the (TJ - ') Coordinates (Second Transformation) 
In order to remove the jet growths, Kee and Miller[ll] used the following transfor­

mation 

r 
TJ(r, x) = -, '(x) = x (35) 

r. 

In the present study, 11 and' are defined by 
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(36) 

Using the chain rule, the governing equations in the (T] -0 plane can be obtained as: 

momentum 

p" V (dV +.Yt. dV = L ~ (T] dV ) 
d( T] dT] T]( dT] dT] 

(37) 

mass diffusion, 

"I'df \IIdf nd .df p V.,,-+--=--(T]P -) 
d( T] dT] 1]( d1] d1] 

(38) 

and, continuity 

(dP'V +.!. d\ll +2p'V=O 
d( 1] 1] 

(39) 

where 

VI = 1]P* V - 1]2 p' V (40) 
and the boundary conditions become 

dV df 
-;-11)=0 = -:;-1 = V(O,() = 0 aT] 01] q=O 

(41) 

V(1],() = CO at 1]~oo 

The momentum and the mass diffusion equations (37) and (38) can be expanded as 

"IV " '"1 '"12 
p"V(_a +(2_E-)!!!:!..=~5!.J!... (42) 

d( 1] 1]( dT] (d1]2 

p'V( df +(.Yt._ np') df = np* d2f + n df dP" (43) 
d( 1] 1]( d1] (d1]2 (d1] d1] 

The governing equations (42), (43) and (39) may be finite differenced in the same 
way used for the first transformation. Only the results will be given here. The momen­
tum equation (42) may be written as 

Al(/) V(/+I) + BI(l) V(/+I) + Cl(l)V. = DI(l) 
k )+I.k-I k )+I.k k )+I,k+1 k (44) 

where 

(45) 

(46) 

(47) 

(48) 
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At k = 0, the coefficients are obtained by taking the limit of Equation (42) as 1} ~ O. 
The result is 

Al~) = 0.0 (49) 

r p*(l) u(/) 4 * 
81~) = ':>;+1 j+I.O j+I.O + /-J 2 

.1; ;j+1 (,11}) 

Cl (/) - - 4/-J* 
0-2 

;j+1 (,11}) 

r *(1) U u(/) 
DI(I) = ':>;+1 Pj+l.o j,O J+I.O 

o ,1; 

Also, the mass diffusion equation (43) may be written as 

where 

A2(/) 1(/+1) + 82(/) 1(/+1) + C2(/) 1 - D2(/) 
k j+I,k-1 k j+l.k k j+l.k+1 - k 

P*U) f U(/) ; 
D2(/) = J+l.k J.k J+1.k J+I 

k .1; 

np*(/) *(/) *(/) 
j+l.k n Pi+I,k+1 - Pj+I,k-1 

;j+1 (,11})2 - ;j+1 4(,11])2 

(50) 

(51) 

(52) 

(53) 

(54) 

(55) 

(56) 

(57) 

At k = 0, the coefficients are obtained by taking the limit of Equation (43) as 1} ~ O. 
The result is 

A2~) = 0.0 

r p*U) UU) 4np*U) 
82~) = ':> J+I )+1.0 )+1.0 + j+1.02 

,1; ;j+1 (,11}) 

4np*U) 
C2(l) _ - j+I,O 
0-2 

;j+1 (,11]) 

r p*(l) f UU) 
D2U) = ':>J+I J+I.O j.O j+I.O 

o ,1; 

and the finite difference form of the continuity equation (39) is 

11,(/+1) - v,(i+l) {;j +1 ( *U) UU) • U ) + 2 (I) U(I) } ,1 
IJ+I.t+1 - IJ+I.t - ,1; Pj+l.k j+l.k - Pj.k j,k Pj+I,k j+I,k Tit 1} 

(58) 

(59) 

(60) 

(61) 

(62) 
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At the centerline k = 0, the continuity equation yields. 

v,(/+I) - {'j+1 ( *(1) U(/) • U + 2 (I) U(I) } (L11])2 
I}+I.I - - L1' Pj+I,o j+I.O - Pj.o ),0) P)+I,O j+I,O -2- (63) 

The procedure of solution to the problem in this domain (1] - ,domain) is similar to 
that used in the previous section for the (R - X) coordinates. 

The ;:tdvantage of the second transformation is that in the first transformation 
increasing the number of grid points due to jet growth is necessary. In the second trans­
formation, the number of grid points remains constant. Moving downstream, the radial 
step size (L1R) effectively increases since L1R = L11]'. 

There is a problem with the second transformation whereby it cannot be started at 
X = 0 since 1] is infinite at this position. To solve this problem, the initial conditions for 
this transformation are taken at some location after the nozzle. The problem was solved 
in the (R - X) coordinates for the first few steps. The solutions obtained are used as ini­
tial conditions to the solution of the problem in the second transformation. 

4. Results and Discussion 

The results obtained are shown in Fig. 4-29. The first set of results begins with Fig. 4 
and ends with Fig. 15. These figures show the velocity and mixture fraction profiles for 
all the considered gases at different normalized axial differences. Figures 4~ 7 are for 
CO = 0.0, Fig. 8-11 are for CO = 0.5 and Fig. 12-15 are for CO = 0.75. The mixture 
fraction profiles for the hydrogen jet aren't included because these values were too .low 
that it was very difficult to show them on the same figu~e. This can be explained by 
noting that the hydrogen has the highest diffusion coefficient (lowest Sc number) and 
the lowest density (highest RMC) among the four considered jets. These two reasons 
give a high rate of decay for both the velocity and concentration of the hydrogen jet. 

The second set of results aims to show the effect of changing the jet type on both the 
centerline velocity and mixture fraction. This effect has been shown for all values of 
CO considered. This set begins with Fig. 16 and ends with Fig. 21. 

The last set of results aims to show the effect of changing the velocity ratio between 
the surrounding and the jet (CO) on both the centerline velocity and mixture fraction. 
This effect has been shown for all the jets considered. This set begins with Fig. 22 and 
ends with Fig. 29. 

Inspection of the first set of results yields the following observations: 
1. For CO = 0.5 and 0.75, there are dips in the velocity profiles close to the nozzle. 

Moving downstream, these dips disappear. This is due to interference between the jet 
and the moving surrounding. When the jet emerges from the nozzle, the particles of 
fluid that are close to the wall of the nozzle move at a very low velocity relative to the 
surrounding. When these particles mix with the moving surrounding, they retard it. 
Further downstream, these particles will continue to be accelerated by the surrounding 
until these dips disappear. This is consistent with the note that these dips don't appear 
when the surrounding is stagnant. These dips become deeper as the velocity of the sur­
rounding increases. 
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FIG. 4. Non·dimensional axial velocity and mixture fraction profiles at CO = 0.0 for the laminar CO2 air jet. 
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FIG. 5. Non·dimensional axial velocity and mixture fraction profiles at CO = 0.0 for the laminar O2 air jet. 
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FI(;. 6. Non-dimensional axial velocity and mixture fraction profiles at CO = 0.0 for the laminar NHI air jet. 
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FI(;. 7. Non-dimensional axial velocity profiles at CO = 0.0 for the laminar Hz air jet. 
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FIG. 8. Non-dimensional axial velocity and mixture fraction profiles at CO = 0.5 for the laminar CO2 air jet. 
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FIG. 9. Non-dimensional axial velocity and mixture fraction profiles at CO = 0.5 for the laminar O2 air jet. 
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FIG. 10. Non-dimensional axial velocity and mixture fraction profiles at CO = 0.5 for the laminar NH 3 air jet. 
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FIG. II. Non-dimensional axial velocity profiles at CO = 0.5 for the laminar H2 air jet. 



50 N.A. Ghazz(lwi .1 (II. 

x=o·os 
.............. X=0·10 

----- X= 0·30 

0·2 

0·4 

_....,.,..._4=:=-:=-_-4 0.6 

0·8 

0.60L------~------2:----......;-~31.0 

R 

FI(;.12. Non-dimensional axial velocity and mixture fraction profiles at CO = 0.75 for the laminar CO2 air jet. 

::> 0·8 

R 

X=0·05 

.............. X=0·10 

----- X = 0·30 

0·2 

0·4 

0·6L------~-----:_----~ 1·0 
o 2 3 

R 

Flu. 13. Non-dimensional axial velocity and mixture fraction profiles at CO = 0.75 for the laminar O2 air jet. 



SO/IIlion for Laminar Compre.<.,ib/e ... 51 

R 

1.03~ ...... -_""",!,,:, .. ~ .. ~ .. .;;.2_~----.,.------.... OO.O 

0·2 
---- X=O·05 

.............. X=0·10 

----- X=0·30 0·4 

... 

0·8 

0·6L------.L...------~----~1·0 o 2 J 
R 

FI(j. 14. Non-dimensional axial velocity and mixture fraction profiles at CO = 0.7S for the laminar NHJ air jet. 

1.0~------------------------------~ 

x = 0·05 
............ X = 0·1 

----- X =0·3 

:J 0·8 

0·6 "-" ____ oi-____ -'-____ .... 

o 2 3 
R 

Fit,. 15. Non-dimensional axial velocity protiles at CO = 0.75 for the laminar H2 air jet. 



52 N.A. Ghazzawi el at. 

----C02 

........... °2 
----- NH3 

--.--H2 

0·4 

0·2 

0·0-----....... -----........ ----_ 
0·0 0·3 0·6 O·g 

x 
FIG. 16. Decay of centerline velocity for CO2, °2, NHl and H2jets at CO = 0.0. 

...... 
u ..... 

1·0----------------........ 

0.8 

\ 
\. 
\. . .... ······02 

\'. , .... 
\ '. ,". 

\ ". 
\ " . , ' . " ". , '. " .... 

...... 
"- ....... 

----- NH3 

--._- Hz 

.......... --_ ..... . - ...... . ---
0·2 0·4 

X 
0·6 0·8 

FIG. 17. Decay of centerline mixture fraction for CO2, °2, NH 3 and H2 jets at CO = 0.0. 



u -

Solution for Laminar Compressible ... 

C02 
•.. , ..... ,. O2 

----- NH3 

-_._- H2 

0,6 

\ --.------.,,---.--.-.-.-.-,-.-=~~ 

0·4 ..... ____ ....... ___________ ---1 

0·0 0·3 0·6 0·9 
x 

FIG. 18. Decay of centerline velocity for CO2 , °2 , NH3 and H2 jets at co = 0.5. 

1·0-----------------.., 

0.8 

0,2 

. 

\ 
\ 
t 
('. 
r. 
r.. 
\ ". 
\ ". 
\ '. 
\ ". 

\ ". 
\ 

\. 
"-

0·0 '--. 
0·0 02 

C02 
........ ,., O2 

----- NH3 

--·--H2 

....... 

.............. - ", 
.......... ---. -- ... ------. ..... 

0·4 0,6 0·8 
X 

FIG. 19. Decay of centerline mixture fraction for CO2' °2, NH3 and H2 jets at CO = 0.5. 

53 



54 

-u -

N.A. Ghazzawi et al. 

1·0.-----------------------------------~ 

---- C02 

." ........ 02 

----- NH3 

--._- H2 

0·6~----------~----------~----------~ 
0·0 0·3 0·6 0·9 

x 
FIG. 20. Decay of centerline velocity for CO2, °2, NH, and H2 jets at CO = 0.75. 

1.0~~------------------------------~ 

0·8 

0·2 
. 

\ 
\ 
\. 
\". 
\ .... 
\ '. 
\ ". 
\ '. 

\ .... 
\ '. 
\ ". 

\ ". 

" "-" 
0·0 "-._. 

0·0 0·2 

---- C02 

....... , ... O2 

--- -- NH3 

-_.-- H2 

........ '. '........... . .... . 
.......... --- ......... . __ _______ ·.0 •. 

0·4 
X 

0·6 

---
0·8 

FIG. 21. Decay of centerline mixture fraction for CO2, °2, NH3 and H2 jets at CO = 0.75. 



\ ". 
\ ". 

S(lfllfi(JlI}i)I' Lllill/I1Ur C()/J/pres\lh/e ... 

co = 0·0 

.. · ........ ·CO=0·5 

co = 0 ·75 

~ 0·6 \ ". 
\ , 

.£ 
:J 

,..... 
CII 

:J 
I 

\ 
0·4 \ 

\ 
\ 

~ 0·2 \ 
\ 

u -

0·0 

\ 
\ 

\, 
...... 

. '. '" . . ... " 

,~---------------0·2 ...... __ ~ ___ -J-___ L--__ .....J.._....I 

0·0 0·4 0·6 0·8 
X 

Fu;. 22. De~ay of the centerline velocity for the CO, air jet. 

1·0~'IIIC"'---------------
~ 

0·8 

0·6 

0.4 

0·2 

" CO=O·O 
\. 

'" ............ CO = 0·5 
\ 

"-. ------ CO=0·75 
'\: 

\. 
"-.. ". '-:. 

"'-. "". ", .. 
""-:....:...;,. 

". -....:.... . ...:..., .. 
-.......:,., .. 

0·0 ...... __ .....I.. ___ ..I.-__ ....I. ___ ..J...---1 
0·0 0·2 0·4 0·6 0·8 

X 

FI<i. 23. Decay of the centerline mixture fnction for the CO2 air jet. 



56 

-
I 
. ~ 
::J 

N.A. GIu.;:zawi el al. 

----CO=o·o 

............ CO.:: 0·5 

------ CO=0·75 

':::' 0·4 

I'· . , '. , . -., 
::J 
I 

\ 

~ 0·2 

, 
\ 
\ 
\ 
\ 

". " ...... ' .. ........ .. ..................... .... 
0·0 

\ -------, ...-.---'------
-0·2---........ ---....... ---------

u -

0·0 0·2 0·4 
X 

0·6 0·8 

FIG. 24. Decay of the centerline velocity for the 02 air jet. 

1·0,1""Ir'----------------. 
---- CO=O·O 

co = 0·5 
0.8 

------ CO=0·75 

0·6 

0·4 

0·2 

O·O:':----:!-::-_~:__-~~--_'__--I 
0·0 

FIG. 25. Decay of the centerline mixture fraction for the 02 air jet. 



Solution for L4lminar Compressible ... 

1·0---------------------------------, 

0·8 

co = 0·0 
............ co = 0·5 

----- CO=0·75 

~ 0·6 
I 
c 
~ 

::: 0·4 

\ .... 

\ 
\ ...." 

CII 
~ 

I 
\ 

'. 
~0·2 

\ 
\ 

u .... 

\ 
\ 

' .. 
' ... 

•••••• ••••••••• •••• 0 ••••• 

a-a \ 
\ -------" --- --------

....... ---0·2 L-____ .....;;I;. ______ -'-______ .L...-________ _ 

0·0 0·2 0·4 
X 

0·6 0·8 

FIG. 26. Decay of the centerline velocity for the NHJ air jet. 

1. O~-------------------_______ _ 

08 

0·6 

0.4 

0·2 

t 
\ 
\ 
\ 
\ 
\ 
\ 
\. 
\. 
\ 
\ 

---- CO=O·O 

\. , . 
....... ,. 

........ -----

co = 0·5 

co = 0·75 

-----
O·O ...... --.....I..---_..I..-__ ......I.. ___ ..L....--J 

0·0 0·4 
X 

0-6 o·a 

FIG. 27. Decay of the centerline mixture fraction for the NHJ air jet. 

57 



58 

1·0 

0·8 

0·6 
QI 

::J 
I 

.!: 0·4 ::J 

'"' QI 0.2 ::J 
I -U 

::J ...... 

N.A. Ghazzawi el al. 

co = 0·0 
............ CO = 05 

------ CO=0·75 

00 0 ••• 0000 ••••• 0.0 ••••••• 0 ••••••••• 0 •••••••• 

/' 
\ /' 

"..­
/ 

------------
v/ -0·4L-;.....--.....L ___ .....&.. ___ """"-___ """-_ 

u -

0·0 0·2 0·4 
X 

0·6 0·8 

FI(;. 28. Decay of the centerline velocity for the He air jet. 

1.0...-----------------, 

0.8 

0.6 

0·4 

0.2 

CO = 0·0 

............ CO = 0·5 

------ CO= 0·75 

O·OL-.....::I---........ ....;;-;;;..;;;==--=~----_ 
0·0 0·1 0·2 0·3 

X 
FI(;. 29. Decay of the centerline mixture fraction for the H2 air jet. 



Solution for Laminar Comprenible ... 59 

2. When the surrounding is stagnant, the jet spreads very fast. As the surrounding 
moves, it gives a resistance to the spreading of the jet and thus limits its width. This can 
be seen by noting that at CO = 0.0, the jet width is approximately three times the jet 
width of CO = 0.5. 

3. Comparison of the velocity and mixture fraction profiles for each gas considered 
shows that mass diffuses faster than momentum, because at any axial distance, the dif­
fusion boundary layer is thicker than the momentum boundary layer. This can be 
explained by noting that Sc = vi D where v is the kinematic viscosity and D is the diffu­
sion coefficient. Since Sc number for all the studied jets is less than unity, hence the 
diffusion of momentum is slower than the diffusion of mass . . 

A look into the second set of results shows the following points: 
1. The jets are classified according to the rate of decay of their centerline velocities 

in a descending manner as follows: Hydrogen, oxygen, ammonia and carbon dioxide. 
Oxygen and ammonia have approximately the same rate of decay. This can be 
explained on the basis of the ratio between the kinematic viscosity of the jet and that of 
the surrounding. When this ratio is small, then momentum will diffuse slowly and 
hence the jet will move a large distance before its velocity decays completely. A large 
value of the aforementioned ratio causes the momentum to diffuse rapidly so that the jet 
velocity decays with a relatively high rate. This ratio can be calculated for all the con­
sidered jets by multiplying ~* by RMC for each jet. These values are given in Table 1. 
The results are shown in Table 2. 

TABLE 2. Value ofv/vs for each jet. 

jet CO2 °2 NH3 H2 

V/Vs 
. 

0.531 1.005 0.943 6.998 

This behavior is independent of the surrounding velocity. 

2. The jets are classified according to the rate of decay of their centerline mixture 
fraction in a descending manner as follows: Hydrogen, oxygen, ammonia and carbon 
dioxide. The explanation of this is somewhat different from that used for the centerline 
velocity. In this case, the controlling parameter is n A small value of n means a slow­
ly-diffusing gas, while a large one means a rapidly diffusing gas. This parameter will 
act in the same way mentioned in the previous point. Table 3 shows the value of n for 
all the considered jets. This behaviour is independent of the value of the surrounding 
velocity. 

TABLE 3. Value of n foreachjet. 

jet CO2 °2 NH3 H2 

n 0.564 1.34 1.208 31.811 

3. It is noted that a dip in the centerline velocity becomes very apparent when 
CO = 0.75. This dip doesn't appear when CO = 0.0 and it has a low depth when CO = 0.5. 
This can be explaine~ on the basis of the high sensitivity of the flow to 

'Note thai v;l v.I for NH3 and 02 jets is approximately the same which explains the obtained result of the same rate of decay. 
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the selection of conditions at the nozzle exit. This explanation is supported by the result 
obtained after the same computer code had been run to the case when the initial veloci­
ty profile is uniform (i.e .. U = 1.0 at R ~ 1.). The result was that all the dips that 
appeared in the velocity profiles before disappeared. This can be seen from considera­
tion of the momentum equation (7). Applying this equation at the centerline and using 
L'Hopital's rule give. 

• U aUeI _ 2 • a2UeI I 
P c/ c/ ax - J1 aR2 R=O.O (64) 

The right hand side of this equation represents the momentum dissipation of the center­
line velocity resulting from the shear stress. When the initial velocity profile is parabol-

ic, then a2u2 IR=oohas a finite value which is relatively large while when the initial pro-
. aR . 
file is uniform, this value is equal to zero. Based on this result, it can be concluded that 

aU,·1 for the parabolic profile is higher than that for the uniform one. This means that in 
ax 

the region close to the nozzle, the centerline velocity decays faster when the initial pro-
file is parabolic. The ce~terline velocity cannot continue decaying forever because 
finally, the jet has to move with the surrounding as one unit. So, after it had reached its 
absolute minimum, the centerline velocity increases until it reaches the surrounding 
velocity. As the surrounding velocity increases, this dip becomes deeper to cope with 
the high momentum dissipation rate caused by the parabolic initial condition. 

Investigation of the last set of results reveals the following observations 
I. Increase of surrounding velocity tends to enhance the decay of the centerline 

velocity and mixture fraction. The effect of the surrounding velocity on the centerline 
velocity is very clear and this effect increases as it increase. The effect on the centerline 
mixture fraction seems to be less apparent as the surrounding velocity increases beyond 
half the initial centerline velocity of the jet. 

2. Remark 3 mentioned for the second set of results appears here again. It can be 
explained based on the same argument made there. 

3. It is noted that the dip in the hydrogen centerline velocity is the deepest. This can 
be explained using Equation (64) where it implies that low density causes a high aUel 
ax. Since the hydrogen has the lowest density (highest RMC) among the considered 
jets, then this magnified dip can be expected. 

5. Conclusion 

In this work, a numerical study is conducted for laminar jets. An implicit finite dif­
ference method is used to solve the boundary-layer equations governing the jet flow. A 
coordinate transformation is used to improve the efficiency and accuracy of the numeri­
cal scheme. 

The computations are obtained for carbon dioxide, oxygen, ammonia and hydrogen 
jets issuing into air at the same temperature. The results are obtained for stagnant and 
co-flowi~g surroundings. The major conclusions are: 
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I. The flow is very sensitive to the initial conditions used for the solution, so one 
should be very careful when specifying these conditions. 

2. Changing the jet gas can sometimes have a large effect on the decay of the jet. 
This depends on the ratio between the kinematic viscosity of the jet and that of the sur­
rounding and also on the Sc number. 

3. Increasing the surrounding velocity reduces the rate of growth of the jet and there­
fore reduces its rate of decay. 
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A I,81, CI,D I 
A1• 82, C2, D2 
CO 
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r 
R 
Re 
RMC 
Sc 
u 
U 
v 
V 
x 
X 

Greek Symbols 
a.j3,w,ctJ 
ai, (3'. w', cP l 

Nomenclature 

initial radius of the jet (m): 

coefficients (Equation (44»; 

coefficients (Equation (53»; 
co-flowing parameter. CO = u/u j ,,; 

diameter of the exit nozzle, d = 2(1 (III): 

diffusion coefficient; 
ratio of the weight of the injected gas to thaI of the 1l11xture: 
radial distance (m): 

dimensionless radial distance r. (R = ria I: 
Reynolds number: 
ratio of the ambient density to the jet density: 

Schmidt number, Sc = t1lpDj: 
axial velocity (mlsec): 
normalized u; 

lateral velocity (mlsec): 
normalized v; 
axial coordinate (m): 
normalized x (Ill): 

coefficients (Equation ( (4»: 
coeffIcients (Equation (25)); 
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11 
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Subscripts 
in 
j 
k 
o 
00 
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Superscripts 
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nondimensional step size in the radial direction; 
nondimensional step size in the axial direction; 
transfonned radial coordinate in the second transfonnation; 
nondimensional step size in the '1 direction; 
viscosity (N. sec/m2); 
laminar kinematic viscosity (m2/sec); 
parameter = 11* RMC/Sc; 
density (kg/mJl; 
transfonned axial coordinate in the second transfonnation; 

initial centerline value; 
axial node index; 
radial node index; 
reference quantity; 
ambient air; 
jet edge; 

normalized quantity 
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