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ABSTRACT. The maximum entropy principle (MEP) which is frequently used in 
information theory can be applied to construct most uncertain probability 
distribution subject to some constraints expressed by mean values. In this 
investigation, we have suggested probability distribution of possible states for 
MXIGII queueing system in a maximum entropy condition subject to the 
expected number of customers. The expression for probability distribution 
involves mean arrival rate. first two moments of group size and service time 
distributions. We have established connections with classical queueing theory 
and operational analysis. 

1. Introduction 

An overview of the investigations on waiting lines shows that there is considerable 
amount of literature on queueing systems in steady state condition. Explicit results for 
probability distribution of the number of customers for the system in transient state are 
extremely difficult to obtain. Exact results for probability distribution in the possible 
states is not known for M IGII and even MI Ek/l system. However, these results are 
known only for simple M I M II and M I DII models. 

Maximum entropy models have been applied with varying degree of success to vari­
ous fields including statistical mechanics, pattern recognition, operations research, eco­
nomics, thermodynamics, biological, ecological and medical modelling, ... etc)I). Some 
efforts have also been made to estimate probability distribution for va~ious models of 
queueing theory by using principle of maximum entropy. The prior information used in 
these investigations are in the form of mean values, e.g., mean arrival rate, mean ser­
vice time and mean queue length. 

57 



58 MlIflm Jain 

The principle of maximum entropy (PME), as a measure of the amount of uncer­
tainty - introduced earlier in information theory by Shannon[2] - was extended by 
Jaynes[3]. Shore[4] obtained axiomatic derivation of the principle of maximum entropy 
and the maximum cross entropy in system modelling. The study of MIG /I and GI MI I 
queueing system at equilibrium via PME was done by EI-Affendi and Kouvatsos[51. 
The GIG/I queue was analysed .by Kouvatsos[6-81 in detail. Walstra[9] employed the 
same principle to discuss general GIGI I queueing network. The maximum entropy 
analysis for muItiserver queueing system was established by Wu and Chang[ 10J. 

Kouvatsos and Aouel[IIJ studied GIG/l queue with priority. They[I~J also considered 
priority classes for G/G/c queue and gave approximate results based on PME for the 
mean response times in steady state. 

The maximum entropy analysis for queueing network was presented by Cantor[13] 
and Wu[14.151. A constrained entropy optimization problem was described in Ref. [16]. 
Guiasu[171 presented a probabilistic model for an MIG/I queueing system in a maxi­
mum entropy condition. He obtained mean queue size distribution by using the expect­
ed number of customers given by Pollaczek Khinchine formula[ 181. 

Although many researchers have studied bulk queues, yet there is no analytical 
expression for the probability distribution of the number of customers in the system for 
even MX I M /I model. In this investigation an effort has been made to present the proba­
bility distribution of the possible states for an MX / Gil queue using a nonlinear pro­
gramme related to Jaynes' principle[3J• We shall obtain queue size distribution in steady 
state by using MEP when the constraints involve only the first two moments of the 
inter-arrival and service time distribution. 

2. The Principle of Maximum Entropy 

We consider the finite discrete case of Shannon's entropy. 

Let 

" 
H(p)=HII (PI'P2' .. ·.P,,)=- I Pk logpk 

<=1 
(I) 

Here H(p) measures the amount of uncertainty contained by the probability distribution 

P = (PI' P2 ..... p,,) 

and is called system's entropy function. Shannon's entropy has the following property 

I I I 
H"(Pl.P2' .... ' p,,):S; H,J-, -, ... ,-) 

with equality iff 

I 
Pk=-' (K=I.2, .... I1) 

11 
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The above relation shows that the uniform distribution is the most uncertain one 
when no constraint is imposed on the probability distribution. This result is equivalent 
to Laplace's principle of unsufficient reason, which states that the most reasonable 
strategy consists in attaching the same probability to different outcomes when we have 
no additional information about them. 

Jaynes[3] extended this principle by introducing the principle of maximum entropy, 
which maximizes the entropy (I) subject to constraints 

n 

EU)~ L fk Pk (2) 
k=1 

where f k, k = I, 2, ... , n, are suitable functions reflecting the weights of Pk' In general 
the number of these functions are less than the number of possible ~tates. 

Also 
n 

L Pk =1 (3) 
k=1 

According to PME, we choose the probability distribution containing the largest 
amount of uncertainty subject to constraints by the given information. 

The solution of non-linear programme (I) subject to constraints (2) and (3) is given 
by[3] 

1 
Pk = -- exp (-13k fk) , k = 1,2, ... , n 

CP(/3o) 
n 

where CP(/3o) = L exp (-/3dk) 
k=1 

and 13k is the unique solution of the equation 

d a-- log 0 (13k) = - EU) 
dPk 

(4) 

In general, there is no analytical expression for the solution of the Equation (4). But, 
in case of queueing theory, we can get simple expressions for probability distribution 
satisfying PME when prior information are available in terms of mean values. 

Now, we give the statement of a lemma which can be proved by using Taylor's theo­
rem[l?). 

Lemma: For any t> 0, there is rdepending on t. between I and t. such that 

I 
g(t)=t logt=(t-l)+-(t-1)2 

2r 

This lemma enables us to prove the following theorem: 

(5) 
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Theorem 1: If the arrival rate is A, then the PME implies that the inter-arrival time fol­
lows an exponential distribution. 

Proof: See Appendix for the proof of theorem. 

This theorem shows that, if the only information available about the input of a 
queueing system is the arrival rate, the most uncertain distribution for the inter-arrival 
time is the exponential distribution. Similarly, we can prove that the most uncertain dis­
tribution for the service time is exponential if the only information available is the ser­
vice rate. 

Theorem 2 : Let L be the expected number of customers in the system. Then by using 
the MEP, the probability distribution of state N of the system is 

L" 
Pn = Prob. (N = II) = +1 

(I+Lt 

(n = 0, 1,2, ... ) 

3. Maximum Entropy in Single Server Bulk Queueing Models 

3.1 The MX/MII Model 

(6) 

Consider MXIMIl queue with mean arrival rate A and mean service time I/J.l. The 
customers are assumed to arrive in group of random size with mean a and finite vari­
ance O',~ .The average number of customers in steady state is given by[18) 

L = ~[(O'; +a2 +a)] 
2J.l a(l-p) 

=~[(O'~ +a~ +a)] 
J.l-a 2a 

Applying the MEP, the probability distribution of the system states in steady state is 

Ln 

Pn =(I+L)n 

_ 2a(l-8a)(0',; +a2 +a)9n 
- 2a + (0';a 2 +a,)n+1 

(7) 

A 
where8 =-

J.I. 

In case of geometrically distributed batches, we have 

I 2 I 
a=--,O' ---'0;" 

I-a ,,- (I-a)2 
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where a is the parameter of the geometric distribution so that (7) reduces to 

A. 0 n 

Pn = I-(l_a) (I-a) 
(8) 

The probability of having no customer in the system can be obtained by substituting 
n = 0 in (8) and is given by 

2a (l-Oa) 
P = ---'-,;,..--;;'--
o 2a +O(a; _a2 +a) 

In the classical MX/Mil model, we have 

- ,1.a 
Po = I --;; 

(9) 

(10) 

which is independent of the choice of batch size distribution. When a; is small, then 

Po =Po 

3.2 The MX/G/1 Model 

The mean queue length L of MX/G/l queue is given by Pollaczek-Khinchine formu­
lallO] 

(II) 

where C,; and C; are the square coefficients of variation of group size and service time 
distributions, respectively. 

,1.a 
Herep=-

f..l 
The expression (II) can be put in the form 

L=L(F+pG) 
I -p 

h F a(C; + 1)+1 
were = , 

2 

C; -I 
G=--

2 

Using theorem 2, the probability of n customers in the system is 

2n+1 ,1.n+l J1 (f..l- A.) (f..lF + A.G)n 

4. Some Particular Cases 

4.1 M/G/1 Model 

(12) 

In this case C; =0, a = I. Substituting these values and C; = ai 1-12 , where al is the vari­
ance of service time distribution, in Equation (12), we have 
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which is the same result obtained by Guiasu[17] using the MEP. 

4.2 MX/E,jl Model 

2 I 
Here Ch =-, so that 

k 

(13) 

( 14) 

The expression for PI! in explicit form is not known by using classical birth death ap­
proach. 

4.3 M B /G/ 1 Model 

In this model, customers are assumed to arrive in constant batch size B and the result 
can be, obtained by substituting C,; = 0 and a = B in(l2) 

4.4 M x/D/l Model 

If service time is constant, then C,; = 0 and (12) reduces to 

2p(p- A) A" (2pF - A)" 
PII = [2p 2 + Ap[a(C,7 + I) -I} - A? ]"+1 

( 15) 

For single arriving customers, i.e .. for MIDI I model, by putting C,7 = 0, our resul ts 
becomes 

2p(p- A) An (2p- A)" 
Pn = (2p 2 _A2)n+1 

(16) 

which is the same result given by Guiasu[17] for MIDI 1 model. 

5. Discussion 

In this investigation, we have constructed the most uncertain probability distribution 
for MXICI 1 model subject to constraints expressed in terms of mean values, and vari­
ances of batch size and service time distributions. The extension of the MEP to CXI CI I 
is currently the subject of further study. The MEP can also be used to obtain the proba­
bility distribution of the number of customers and servers in double ended queueing 
systems. 

Since exact results for the probability distribution of the number of customers in the 
system are not available for even the simple M xlMII bulk model, therefore a compari­
son can be made by taking approximate results based on diffusion approximation tech­
nique. 
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Appendix A 

Proof of Theorem 1 

Supposej;, be the probability density function (p.d.f.) of the inter-arrival time Ta' We have to determinej;, 
by using the PME such that 

MaxH=-r~I(t)logf(t)dt (AI) J() (/ a 

subject to the following constraints 

i) The normalizing constraints 

j;,(I) dt = I (A2) 

ii) The mean arrival rate satisfies 

I ~ 

- = r I I (I)dl 
A. J" (/ 

(A3) 
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By introducing Lagrange's multipliers a> 0, {3 > 0 and using (S), we have 

I J,~ i~ - H + a.1 + {3. - = 1 (t)[log t (I) + a + nlj dl = exp (-a - nt) [I (t) exp (a +{3t)-lj dl A. 0 CI o(J p, 0 P' a 

f.~ I i~ + exp(-a-{3t)--[IU)exp(a+{3I)- lj2 dl ? exp(-a-{3I)[/U)exp(a+{3t)-ljdl 
o 2r(t) a () II 

= I - r~ exp ( - a - {3t) dl Jo 

with equality iff 

1;,(1) = exp (-a - {31) (I> 0) 

Using (A2) and (AS), we get 

exp (a) = f.~ exp ( - {31) £II = J... 
() {3 

or a = - log {3 

So that (A5) becomes 

1;,(1) = {3exp (- {31) 

By (A3) and (A6). we havtl 

{3 = J... 
A 

Therefore (A6) gives 

I 
f" (1) = ;: exp (- II A) 

A.2 Proof of Theorem 2 

We have to maximize the discrete countable entropy 

H = - L P" log P" 
1/=0 

~ 

Subject to L Pn = I 
n=() 

and L = " lip .t.....11 
n=O 

Solving (A7) subject to (A8) and (A9). (Similar to the proof of theorem I). we get 

P" = exp (- (X - {31i) 

(II = O. I .... ) , ( a > O. {3 > 0) 

L 
and exp (- {3) =--

I +L 

Using (AS) and (A 10). we get 

exp(-a)=[:i exp(-{3n) ]-' 
n::O 

= l-exp(-{3) 

Now from (AJO) - (AI2). we get result (6). 

(A4) 

(A5) 

(A6) 

(A7) 

(AS) 

(A9) 

(AIO) 

(All) 

(AI:!) 
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