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ABSTRACT. The maximum entropy principle (MEP) which is frequently used in
information theory can be applied to construct most uncertain probability
distribution subject to some constraints expressed by mean values. In this
investigation, we have suggested probability distribution of possible states for
MX/G/] queueing system in a maximum entropy condition subject to the
expected number of customers. The expression for probability distribution
involves mean arrival rate, first two moments of group size and service time
distributions. We have established connections with classical queueing theory
and operational analysis.

1. Introduction

An overview of the investigations on waiting lines shows that there is considerable
amount of literature on queueing systems in steady state condition. Explicit results for
probability distribution of the number of customers for the system in transient state are
extremely difficult to obtain. Exact results for probability distribution in the possible
states is not known for M/G/1 and even M/E,/1 system. However, these results are
known only for simple M/M/1 and M/D/1 models.

Maximum entropy models have been applied with varying degree of success to vari-
ous fields including statistical mechanics, pattern recognition, operations research, eco-
nomics, thermodynamics, biological, ecological and medical modelling, ... etc.!'). Some
efforts have also been made to estimate probability distribution for various models of
queueing theory by using principle of maximum entropy. The prior information used in
these investigations are in the form of mean values, e.g., mean arrival rate, mean ser-
vice time and mean queue length.
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The principle of maximum entropy (PME), as a measure of the amount of uncer-
tainty — introduced earlier in information theory by Shannon(? — was extended by
JaynesP). Shorel) obtained axiomatic derivation of the principle of maximum entropy
and the maximum cross entropy in system modelling. The study of M/G/1 and G/M/1
queueing system at equilibrium via PME was done by El-Affendi and Kouvatsos!dl.
The G/G/1 queue was analysed by Kouvatsos(®8] in detail. Walstral®! employed the
same principle to discuss general G/G/1 queueing network. The maximum entropy
analysis for multiserver queueing system was established by Wu and Chang(!],
Kouvatsos and Aouell!!l studied G/G/1 queue with priority. They!!?} also considered
priority classes for G/G/c queue and gave approximate results based on PME for the
mean response times in steady state.

The maximum entropy analysis for queueing network was presented by Cantor!!?!

and Wull*131" A constrained entropy optimization problem was described in Ref. [16].
Guiasul'7) presented a probabilistic model for an M/G/1 queueing system in a maxi-
mum entropy condition. He obtained mean queue size distribution by using the expect-
ed number of customers given by Pollaczek Khinchine formulal'®).

Although many researchers have studied bulk queues, yet there is no analytical
expression for the probability distribution of the number of customers in the system for
even M¥X/M/1 model. In this investigation an effort has been made to present the proba-
bility distribution of the possible states for an MX/G/1 queue using a nonlinear pro-
gramme related to Jaynes’ principlel*]. We shall obtain queue size distribution in steady
state by using MEP when the constraints involve only the first two moments of the
inter-arrival and service time distribution.

2. The Principle of Maximum Entropy
We consider the finite discrete case of Shannon’s entropy.
Let

H(p)=H,(p, p2ss P) == 2, Py log 1 )
k=1

Here H(p) measures the amount of uncertainty contained by the probability distribution
p=(pl!p2""’ pn)

and is called system’s entropy function. Shannon’s entropy has the following property

11 ]
H,(p.prses P )SH (= —, ..., —)

non n
with equality iff

Py _ L (K=12,..,n)

H
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The above relation shows that the uniform distribution is the most uncertain one
when no constraint is imposed on the probability distribution. This result is equivalent
to Laplace’s principle of unsufficient reason, which states that the most reasonable
strategy consists in attaching the same probability to different outcomes when we have
no additional information about them.

Jaynesl3) extended this principle by introducing the principle of maximum entropy,
which maximizes the entropy (1) subject to constraints

Ef)= Y fi m )
k=1

where f,, k=1, 2, ..., n, are suitable functions reflecting the weights of p, . In general
the number of these functions are less than the number of possible states.

Also
n
> =l 3)
k=1

According to PME, we choose the probability distribution containing the largest
amount of uncertainty subject to constraints by the given information.

The solution of non-linear programme (1) subject to constraints (2) and (3) is given
byl3]

1
pk=¢(_ﬂo_)_exp(—ﬁkfk) , k=12,...,n

where 9(8,) =Y exp (-B; i)
k=1

and B, is the unique solution of the equation

d
gﬁ;logﬁ(ﬂk)——E(f) )

In general, there is no analytical expression for the solution of the Equation (4). But,
in case of queueing theory, we can get simple expressions for probability distribution
satisfying PME when prior information are available in terms of mean values.

Now, we give the statement of a lemma which can be proved by using Taylor’s theo-
(17
rem!' /1.

Lemma: For any t > 0, there is T depending on ¢, between 1 and ¢, such that
1 2
g(t)=tlogt=(t-—l)+-2—;(t—l) (3

This lemma enables us to prove the following theorem :
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Theorem 1: If the arrival rate is A, then the PME implies that the inter-arrival time fol-
lows an exponential distribution.
Proof : See Appendix for the proof of theorem.

This theorem shows that, if the only information available about the input of a
queueing system is the arrival rate, the most uncertain distribution for the inter-arrival
time is the exponential distribution. Similarly, we can prove that the most uncertain dis-
tribution for the service time is exponential if the only information available is the ser-
vice rate.

Theorem 2 : Let L be the expected number of customers in the system. Then by using
the MEP, the probability distribution of state N of the system is

Ln
(1 + L)n+l
(n=0,1,2,..)

p, =Prob.(N=n)= (6)

3. Maximum Entropy in Single Server Bulk Queueing Models
3.1 The M*/M/I Model

Consider M*/M/1 queue with mean arrival rate A and mean service time 1/u. The
customers are assumed to arrive in group of random size with mean agand finite vari-
ance o'2.The average number of customers in steady state is given by!!8!

s (2 +a’+a)
2u

a(l-p)
_ A |(cl+@i+ad)

H-a 2a

Applying the MEP, the probability distribution of the system states in steady state is
Ln
(T
_2a(l-0a)ol+a’+a)" D
2a+(cla’ +ay™"

where 6 = A

In case of geometrically distributed batches, we have

1 2 1
’ Ga = 2
-« (1-a)

a=
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where « is the parameter of the geometric distribution so that (7) reduces to

A 8
=1—- v 8
Pr (l—a)(l—a) ®)

The probability of having no customer in the system can be obtained by substituting
n =0in (8) and is given by

27 (1-83a)

= 9
Po = 2aret-at+a) ©)
In the classical MX/M/1 model, we have
— V¥4
P=1-=7 (10)

which is independent of the choice of batch size distribution. When 62 is small, then
Py =P,
3.2 The MX/G/1 Model

The mean queue length L of MXIGI1 queue is given by Pollaczek-Khinchine formu-
1al10]

_ Aa
2ul-p)

where Cf and CZ are the square coefficients of variation of group size and service time
distributions, respectively.

[acc2 +n+p(c -1+1] (1n

Here p = _A_g_
u
"The expression (11) can be put in the form
L=—_(F+pG)
I-p

a(C:+1)+1 G_cg—l
2 ’ 2

Using theorem 2, the probability of n customers in the system is

where F =

_ 2””%”“[4(#—1)([”7‘")»6)”
24’ +{Apa (CE +1) -1+ A% (C} -

Pn (12)
4. Some Particular Cases
4.1 M/G/1 Model

In this case C2 =0, =1.Substituting these values and C =a} u?, where 67 is the vari-
ance of service time distribution, in Equation (12), we have
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_2up-MA QU+’ -4y

n QUi -2+ Ruloly (13)
which is the same result obtained by Guiasul!” using the MEP.
4.2 MX/E,/1 Model
Here C,f =71<— ,so that
2 ~ WA RUF + A0 - k) k)"
p, = P = DA 2pF + A0 - K)/ k) (14)

TR+ M@ k+ ) =1+ A0 k=1
The expression for p,, in explicit form is not known by using classical birth death ap-
proach.

4.3 MB/G/1 Model

In this model, customers are assumed to arrive in constant batch size B and the result
can be obtained by substituting C2 =0 and @ = Bin(12)

4.4 MX/D/1 Model
If service time is constant, then C,f =0 and (12) reduces to

p = 2u(u—A) A" QuF - A"
"opd + auact -1y - 2

(15)

For single arriving customers, i.e., for M/D/| model, by putting C‘% = (), our results
becomes

= 2#(#(2—#/1;_115;{]— A) (16)
which is the same result given by Guiasu!!”) for M/D/| model.

5. Discussion
In this investigation, we have constructed the most uncertain probability distribution
for M*/G/1 model subject to constraints expressed in terms of mean values, and vari-
ances of batch size and service time distributions. The extension of the MEP to G*/G/1
is currently the subject of further study. The MEP can also be used to obtain the proba-
bility distribution of the number of customers and servers in double ended queueing
systems.

Since exact results for the probability distribution of the number of customers in the
system are not available for even the simple M*/M/1 bulk model. therefore a compari-
son can be made by taking approximate results based on diffusion approximation tech-
nique.
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Appendix A

Proof of Theorem I

Suppose f, be the probability density function (p.d.f.) of the inter-arrival time T,. We have to determine f,
by using the PME such that

Max H = [ 'f, (1) log £, (1) di (AD)
subject to the following constraints

1) The normalizing constraints

fanydr=1 (A2)
ii) The mean arrival rate satisfies

| 00

== [, (A3)
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By introducing Lagrange’s multipliers @ > 0, 8> 0 and using (5), we have
-H+a.l+ ﬁ.%: J:fa(r)[log £, +a+ B dt=.[: exp(-a-Pr)[f,(exp(a+pfr)-11dr

oo 1 oo
+j'0 exp(—a—ﬁr)m[fu(l)exp(aJrﬁr) -17? dtzf“ exp(-a-B[f,(expla+f)~11dr

=I~LTexp (~a-pfr)dt (A4)
with equality iff
L) =exp(-a-Br) , (>0 (A5)
Using (A2) and (AS5), we get
1

exp(a):_[: exp (- fr)dt= 5

oro=-logf
So that (AS) becomes

f()=Bexp(-B1n (A6)
By (A3) and (A6), we have

B=

> —

Therefore (A6) gives
1
" (N=—exp(=1/A
£, 1 p( )

A.2 Proof of Theorem 2
We have to maximize the discrete countable entropy

H=-3% p,logp, (A7)
n=0

Subjectto Y p, =1 (A8)
n=l)

andL= 2, (A9)

n=0

Solving (A7) subject to (A8) and (A9). (Similar to the proof of theorem 1), we get

P, =€xp (-0 —fin) (A10)
(n=0,1,..),(a>0 >0
andexp(—ﬁ)=——L— (All)
I+L

Using (A8) and (A 10), we get

-1
exp(—a):l:Zcxp(—ﬂn) :I (A12)

n=()
=1-exp(-f)
Now from (A10) - (A12), we get result (6).
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