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AssTrACT. In this paper of the series, the fourth step of the sectorial
regularized theory will start by establishing the exact literal analytical
expressions for g' and the doubly trigonometric series representations
of cos mg" and sin mg" where m positive integer. Moreover, some re-
currence formulae are also established to facilitate digital computa-
tions for the coefficients of the series representations of cos mg' and
sin mg'. All the formulations developed in the paper are general in the
sense that they are valid whatever the types and the number of sectors
forming the divisions situation of the elliptic orbit may be. In addition
they are also valid during any revolution of the perturbed body in its
Keplerian orbit. Finally, we include some numerical results for the co-
efficients of the trigonometric series representations of dg/d@}i) (6]@
are the sectorial variables) to provide test examples for constructing
computational algorithms .

1. Introduction

The conventional methods of general perturbations of celestial mechanics do
not yield manageable series solutions for some orbital systems, natural or
artificial. In general these systems are characterized by a highly oscillating per-
turbing force resulting in divergent, or at best weak, convergent series solutions.
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In a series of previous communications references!! 12, a regularization ap-

proach was introduced to regularize the highly oscillating functions, involved in
the above orbital systems. Our approach based on the idea of orbit segmentation
into sectors. By dividing the elliptic orbit into sectors — with a different var-
iable for each sector (which we called a sectorial variable) — the highly os-
cillating perturbation function is then segmented into fewer oscillations (one for
each sector) and every function could be developed in convergent series ex-
pansion. The aims and the developments of each paper of the series are sum-
marized in the introduction oft!2].

In the present paper, the expansions of coordinate functions of the disturbing
body are considered by establishing the exact literal analytical expressions, for
g and for the coefficients of the doubly trigonometric series representations of
cos mg' and sin mg" where m positive integer and g' the mean anomaly of the
disturbing body whose orbit is considered to be whole elliptic orbit (without
segmentation). Computational developments are also considered by establishing
some recurrence formulae to facilitate the digital computations. Numerical re-
sults for the coefficients of the trigonometric series representation of dg ‘/dt9j(i)
are included to provide test examples for constructing computational al-
gorithms. All the formulation of the present paper are valid for any number and
type of the sectors forming the divisions situation of the elliptic orbit of the
perturbed body (always segmented) during any revolution. Before starting the
analysis it is preferable to recall the representation equations for the general and
arbitrary sectorial divisions of elliptic orbits as follows.

1.1. Representation Equations for Sectorial Divisions of Elliptic Orbits

Let an elliptic orbit of semi-major axis a and of eccentricity e be divided into
NO: j=1234 elliptic sectors such that the N NP gectors are positive and
the N®), N are the negative elliptic sectors. (All elliptic sectors above the ma-
jor axis are positive, while those below the major axis are negative elliptic sec-
tors). Let these sectors be formed by the components r(’) of the four vectors R®
each of dimension N® + 1 and the independent Varlables of these sectors be de-
noted by the components 91(’) of the vector 6 each of dimension N®. Then the
representation equations for these sectorial divisions of any elliptic orbit are
given in accordance with Section 3 ofi*l as

f 2 U
31n——77/Jr {1 ) cos 9 }C082—+ 1 —sin )

Vo<l s90°;/=1,2,...,/v(1), (1.1)
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S _ Q) @ 2a@V.n/ 2/
COSE—T]/- {1—//- cos” 67 },31n5—+ 1—cos 5

v90°< 0t <180° /=1,2,... /2,

COS% = _T]Si}l {1 — /j(3) COS2 9&3)} ;Sin§ = +m

v180°< 9% <270° /=1,2,... /9,

sing = 77(/4) {1 — /(;-l)cos2 9&-4)} ;COS%I =—|1 —sinzg

v270°<6% <360°: /=1,2..... /Y,

- /2
@ __q_n]
; 77(;1):</% i e)} ;A =1or 4,

2ae

' () 12
(4) 67(1+ €) — 7 (1_ 6)} .éz =2 or 3

/D] " U /Dy /@
# a(l+e) - /,k(Z) rk(i)l # (N =

(4)

[ (4) | 1/2
/9=1-, AU Y B s
|7 —a(l-e)

u and f being the eccentric and the true anomalies.

2. Literal Analytical Expressions of g’

45

(1.2)

(1.3)

(1.4)

(1.5)

(1.6)

(1.7)

(1.8)

(1.9)

(1.10)

In this section, the literal analytical expressions for the Fourier expansion of

the mean anomaly g of the disturbing body will be established in terms of the
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sectorial variables 6(). Such expressions are general in the sense that they are
valid whatever the types and the number of sectors forming the divisions situa-
tion of the elliptic orbit may be. The developments of this section will be cov-
ered through the following points.

2.1 Fourier Expansions of dg'/d HJ-(i)

The mean anomaly g of the disturbing body is defined in terms of its
mean motion n° by
ag
ar
To express g' in terms of the sectorial variable @(i), Equation (2.1) is to be
written as

= . 2.1)

do ar . : '
dj?) =vln—m)ii=1234 1 /= 12,.., MY, (2.2)
J J

where v = n/n,. is the ratio between the mean motions of the disturbing and per-
turbed bodies respectively.

According to Theorem 4 ofi’?], we can get for the Fourier expansions of dg 7/
d6" the forms

o

di‘% =vY A, ,, sin256% ; V(/~1). 90°<0 <790, (2.3)
J s=1

Ay 1 EHS) (77911 : /(/1), e); Vs21; /':1,2,...,/\/(1), (2.4)

ASJ;2 E—(l—ez)3/2b’£_2) (77;2)’ /(/-2), e ; Vs=>1; /= 1,2,...,/\/(2), (2.5)

A = _(1- )2 42 (nf)] /D95 w21 212,09, (26

Aga=-H00W /Y9 vz s=12,, 89, 2.7)

where the H's functions are given for the possible values of 1's, /’s and e as

O (e1.62.8) ~ 57 (e1.8,.6) | if =1

HD (),6,,8) = 2.8)

— A(wz)l(&‘l,&‘z,g) , if S>1 ;

where for ¢ = 1, for any real number ¢ ¢ z* [z" = { 0,1,2,...}] and the possible
values of g , and &, the G''s functions are those given in Table 1 in which < >



47

Expansion Theory for...

t-D

(€-D

(z-D

(1-D

/

I Q+\A

1-7 12 vau\
- 14
rRsA {i-graevg e | EJ R W 12,19 =(2"%2") 50
I /T
: A3 :N I Tglg) 0
I-2+0+2v9 | 5], | ¢ wa D= (5%") 4o
Vo 14 ﬂl T\
NI (= (y=u
Ity ~ / ‘
T<SA ﬁlw+ﬁ+w<~?+\m~w oy 4 Q W W G@=(3 ﬁwv@wz@
._u N ﬂl 17 +4
“ . 91\ uz
{I=7++3V G 13 2g ) \ap ) ™
V4
4
‘w Ko {i-2+( :Mézm — 0 K9+ (- Dler=(6"%19) 4o
PE ) AL =
|
4
. r= o= 7
s\
EERLE W ) V) R M K QG Sl
/- =1 0=L(G)=7 (§)=«
I NN w5 -ug ;
1 PP Ruy-rt I\ m| TN Uy I?&TVWW W Wmﬂ@ U ﬁwvﬁ ¥

=% nvavoév 12)0:0 25A

=290 F12)0:0 2 5A

Z2b = Nw;vwvoév 13)0:0 T5A

220190 ;vv T1330:0 25A

suonouny S ) 9y} JO SUOISSAIAXd [eoNATeue [eI0)I]

sIo)oWeIRJ

‘s1010wrered 1101 Jo sonfea 9[qissod 9y} 10 SUOIOUNJ S ) YL '] HIEV],




48 M.A. Sharaf and S.A. Najmuldeen

denotes the largest integer > 1. [Note, although that, the only negative value of ¢
in Equations (2.4) to (2.7) is —2, we considered the developments of the general
case in which ¢ € z"]. Numerical results of the H's coefficients are listed in Ta-
ble 2 for some values of g, £ and ¢, - These results together with other experi-
mentations show very rapid convergent Fourier series representation of dg/d 91(’)
in terms of the sectorial variables 9j(’) whatever the eccentricity (=&) of the
elliptic orbit may be.

TasLe 2. Values of H'9 (g, &,,&) ;s = 1(1) 10 for some val-
ues of g, &, & 5.

£ =0.8000 & =0.2000 £=0.9000 g =-2.0000

s H
1 0.44065860272E + 00
2 0.62158646779E — 01
3 0.87095936939E — 02
4 0.64476352879E — 03
5 0.72846741385E — 04
6 0.25660026556E — 05
7 0.51891471211E - 06
8 —0.15548915660E — 07
9 0.54042357971E — 08

10 —0.57576085479E — 09

TaBLE 2. (continued)

=0.3000 & =1.0000 £=0.3000 g =-0.4000

H

)

0.69545295267E + 00
—0.28885735804E — 02
0.86258328202E — 03
—0.76190931124E — 04
0.10474024131E - 04
—0.32849644080E — 06
0.43801277008E — 07
—0.38660788371E — 08
0.34767083583E — 09
—0.22022276435E — 10

O 0 9 O L B W N =

—
(e}
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TaBLE 2. (continued)

£ =0.5000 & =0.2000 £=0.0100 g =1.5000

H

)

0.22212117726E + 00
—0.32926854543E — 02
0.16024031152E - 03
—0.54394097924E — 05
0.22779572851E — 06
—0.92014298699E — 08
0.38734360100E — 09
—0.16361872805E — 10
0.69997206128E — 12
—0.30122159870E — 13

S O 00 N DN AW~

—_—

TaBLE 2. (continued)

£ =0.3000 & =0.8000 £=0.4000 g =-6.0000

H

)

030643843522E - 01
—0.54946288369E — 02
0.13214084682E — 02
—0.15600753053E — 03
0.20854576278E — 04
—0.18226477965E — 05
0.17275195878E — 06
—0.12052361102E - 07
0.91379948229E — 09
—0.56209221270E — 10

S O 0 3N N KW

—_—

TaBLE 2. (continued)

£ =0.3000 & =0.7000 £=10.2000 g =0.9000

H

)

0.35733724803E + 00
-0.70672444442E - 02
0.10444687298E — 02
-0.27121910022E - 04
0.24064352426E — 05
—0.10635706309E — 06
0.77060812663E — 08
—0.41042100434E - 09
0.27396291890E — 10
—0.15962420706E — 11

S O 02N DN B W

—_—




M.A. Sharaf and S.A. Najmuldeen

TaBLE 2. (continued)

£ =0.0500 & =0.0300 £=10.9000 =-0.3000
1 2 q

H

)

0.59167089022E — 02
0.10212033767E — 05
—0.34376576208E — 08
—0.32077118542E - 11
0.41269026988E — 14
0.78754156951E — 17
—0.32695097357E - 20
—0.17117596518E — 22
0.00000000000E + 00
0.00000000000E + 00

S O 00 N DN AW~

—_—

TaBLE 2. (continued)

£ =0.8000 & =0.0700 £=10.9000 g =2.7000

S H

—_—

0.27287282119E + 00
—0.31705040275E - 01
0.19239292663E — 02
—0.93033766220E — 04
0.45335953378E - 05
—0.23705642801E — 06
0.12982124095E —- 07
—0.72873940980E — 09
0.41544321939E - 10
—0.23943022256E — 11

S O 0 N DN bW

—_—

TaBLE 2. (continued)

£ =0.7000 & =0.0700 £=0.2000 g =-1.9000

H

)

0.13747639819E + 00
—0.33513030170E - 03
0.41309866159E — 04
—0.14093014201E - 05
0.44428539143E - 07
—0.15521302413E - 08
0.54363282344E - 10
—0.19176943458E — 11
0.68293184065E — 13
—0.24472014023E - 14

S O 02N DN B W

—_—
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2.2 Fourier Expansions of g’
Integrating Equations (2.3) we get

Al < (/ - . o) e (2.9)
g=BY, .+ &¥ cos250Y ; ¥(i-1).90°<0Y <790 ;
s=1
i=1,2,3,4; ;=12,.., N
where
g(i)Z—vA /2s (2.10)

S,j,1
B( ) . 1s the constant of integration during the xth revolution when the perturbed
body in the jth sector that uses 9() for its description. Before determining the

constants of integration it is 1mp0rtant to illustrate the following two types of
the separating points between the elliptic sectors of the sectorial divisions of el-
liptic orbits.

2.2.1 The Types of Separating Points

(1) The first type of separating points (denoted symbolically as spl) are
those points on the elliptic orbit corresponding to the boundaries of elliptic sec-
tors using the same representation equation (i.e., of the same i in 6 for their

descriptions. These spl occur at r,((i) between the elliptic sectors formed by

A rDyand D, A ), k=23, N0 ;i =12,3,4. Clearly the sp1 are the
boundaries of elliptic sectors of unique sign. For the case in which M) = 1 for

any i = 1,2,3, or 4, the sp1 does not exist for that value of i. The values of 8's at
sp1 points are

09 =790°; 0Y) = (4-1).90°) ; /=12,3,4; #=23,., /9 . (211

(2) The second type of the separating points (denoted symbolically as sp2)
are the four points on the elliptic orbit, each point corresponding to the common
boundary between two consecutive elliptic sectors using different representation
equations (i.e., of different i in 8% for their descriptions. These sp2 for any N()

2 3 4 3
> 1 occur at r( ) = ‘({\f)‘”ﬂ q (say) ; r( ) = (]\7)(2) e =a(l +e); r( ) = g\f)@)H =
q’ (say) and r(l) = ”(]\3«0 . a(l —e), Wthh are the common boundaries of the el-

liptic sectors formed by [(rN(l) , q) (q, )] [(r (2) ,a(l +e)), (a(l + e),

3 3 \ \ 1
AON L e ) @ * D T and [, all =) (a1 = ) , 1)) ], re-

spectively.
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These pairs of sectors (each pair in square bracket) are respectively: two pos-
itive elliptic sectors; one positive and one negative elliptic sectors; two negative
elliptic sectors; one negative and one positive elliptic sectors. The values of 0’s
at the four sp2 points are

6" =00 ; 6%, =360°) , (), =90° ; 6 =90),
| 2.12)

(6@

o . 3 _ 0 3 _ 0 . 4 _ 0
), =180° ; 6 =180°) , (8%}, =270° ; 6{* =270°) .

2.2.2 Determination of The Constants ﬁ(gjyx

In order to determine the constants ﬂ(gJ . the following two conditions are to
be considered ’ _

(1) The initial value of g'. From the relation between g and 91(-’) given by
Equations (2.9) it is clear that, during a given revolution of the perturbed body
the initial value could be considered as the value of g at any arbitrary moment
(corresponding to certain value of a sectorial variable). In this respect we shall
adopt for this moment the perifocus passage of the perturbed body during the
given revolution. Consequently, the initial value is the value of g¢* must have at

951) = (° (the beginning of the first sector in the direct orbital sense) during the
xth revolution, let this value be denoted by c/.. This means that, ¢"is a constant
for each revolution of the perturbed body but varies from revolution to revolu-
tion.

(2) The second condition is the continuity condition at both types of separ-
ating points (sp1 and sp2 referred to the above) between the elliptic forming the
the sectorial divisions situation.

Let us define the following constants

My’) =y gg)j , (2.13.1)
s=I

Qy) = —Z(—I)Sgsf)/- (2.13.2)
s=1

By the first of the above conditions we get for the constant g )l,x the formula

1 N
ﬁ(O?l,x =c,— Mgy, (2.14)

while by the second of the conditions (continuity condition) together with Equa-
tions (2.11) and (2.12) we get for the remaining constants the expressions

B, =B, 1+ VA5 s }i=12345 w=23.,00 21

0,72,x 0,72-1,x ”
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1 if /7 odd
5, = . , (2.16)

0 if 7 even

where the initial values for Equations (2.15) is given for ﬂ(al . by Equation
(2.14), while for i > 2 these values are given by

B . ﬁo pYup -y + 0

B+ = ﬁoﬁv() +Mﬁ3)(z) -1, (2.17)
B = ﬁ((f;v@) e Qﬁa)@) + oY

By successive use of Equations (2.15) we get for ﬂ((i)) . In terms of ¢ the ex-
pressions

B =Y ZQ, +ZM L =23, N (2.18.1)
; A ED
1=t X YOV +arfY)  for 1=2,3,4
DY #=2 i / (2.18.2)

¢, ; for 7=1.

By these equations we finally obtain for the constants of integration ﬁ(&.x
during the xth revolution the formula

. 1 :
ﬁ((),])/;x=cx+§g((f)j , 7=1,2,3,4; /’=1,2,---va(1) , (2.19)

where g((l))J are known in terms of M's and Q's constants.

It should be noted that c | is related to ¢, by
c,=copt2mxv, (2.20)

X
which enables us to express the constants of integration in terms of ¢, which is
the value of g" must have at 9(1)2 0° during the zero-th revolution.

From the above analysis, we finally deduce for g the Fourier expansions
g=c,+ ),
(2.21)
W(’ g0/+2gsjcos oV . j=1234; ;=12,.., N/,

s=1
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whatever the types and the number of sectors forming the divisions situation of
the elliptic orbit may be.

2.2.3 Computational Algorithm

In what follows general broad lines of the computational algorithm for the co-
efficients gff )/ & 880 [ of Equations (2.21)] are illustrated. For a given division
situation of the elliptic orbit the computational steps are

1 — compute the n°s and /s parameters using Equations (1.7) to (1.10).

2 — By the aid of Table 1, compute for the possible values of 1°s and /s the
G's functions, then H's functions from Equation (2.8) and hence the A’s co-
efficients from Equations (2.4) to (2.7).

3 — compute gfvl} Vs21; 7=1,2,3,4; /= 1,2,..., M from Equation (2.10).
4 — compute M@ and Q(Ji-) from Equations (2.13).
5 — compute g((’))d using Equations (2.18).

3. Expansions of cos mg' and sin mg’

In this section, cos mg' and sin mg' are completely developed from the an-
alytical and the computational points of views.

3.1 Analytical Developments

In what follows, the literal analytical expressions for the trigonometric series
representations of cos mg' and sin mg" where m is positive integer will be de-
veloped in terms of Q(Jl-)and c¢ .- The materials of the present subsection will be

established in the following theorem:

Theorem 5. The trigonometric series representations of cos mg' and sin mg’
in terms of 9(’) and ¢, for all (i-1). 90° < 9(’) <i90°;i=1234;;=12,.,N?
and x >0 are

0,/,m
s=1

COS 7¢ = COS mc, {— /) +z Vol Y mC0S 250 )}sin me,. X

(3.1)

x{— ’}m+z S(’/)m cos 2595{')} :

=1
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sin #7g = cos méx {%PO(’} m+2@(’/) 1, COS 259y)}+sin méx X
=1
’ (3.2)
1 ) .~ -
AL 5 o2l
s=1
where m 1s positive integer,
' oo (_l)r er ,
ﬁé”}’m:2+Z;WA((f)/;2r , (33.1)
=
' oo (_l)r er
=Y o5 AV, sz, (33.2)
r=1 '
oo 2r-1
P N & ) ,
];(’j;m_zi(zr—_l)!/ﬂj;z _1 Vs20, (3.3.3)
=
AV =g¥, V520, (3.4.1)
© 2p =1\ - 1 © n-1+0
), =232 2f”[ J]‘[{zz@ USRS (—D”g,(?,{ i j( y ’fj x
=5 P58 )= Di=0 =146, =0 #
(3.4.2)
0 n=1+ p,._
o« [2221]1 RSNy (_1)@}(7{)/{ ! j[ o 1] V1, 520,
277 =l4p,, = Pr 2ﬁ;«_1

Or = Pr1 — P> Do = p» and g's coefficients are those defined by Equation
(2.21).

Proof. Recalling Equation (2.21) as

. 1 . > . .
4% - ,40({)/.’1+2;,4§,’)]’1 cos256) (3.5)
Ki—
where
A9, =g (3.6)

Let us first convert Equation (3.5) into power polynomial in cos 9(}), and this
in accordance with Section 4 of Paper V could be written as
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7y = 3B leos0) 17 G7)
5s=0
where
B =02 10 AN /A(")( / )(/H_l) .
yal 5 0/1+( )/zét_l( ) L\ 7, o (3.8)

Second, let us find the expansion of [W(})]r in powers of cos Q(i-), r being a pos-
itive integer. Now

ZB(’, COSH )2 z SJICOSQ 2

Lets +s5;= s then

:o
that is
) = iﬁﬁ,’},z [cos0{) 1>, (3.9)
where ~
5@;2 = iﬁ( )sl /15;)/1 : (310)
=0
Next

5=0
5=0 =45
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that is
OP =Y B feost) (3.11)
s=0
where
S5
BA(",])/S - Zﬁf_)sl,/,l Bg?/;z : (3.12)
S =0
We now assume for » positive integer
7 =3 B lcos8 D>, (3.13)
s=0
where
S5
BA(“,l)jJ’ = ZBA("I—)SI,],I BA("IZ,)/',/”—I : (3-14)
S =0

and shall show that this form holds also for the expansion of [W(’) L

From Equation (3.14) we have

W(z ]r+1 zb)( ),

1=

— 21515 . Zﬁﬁ?sl,/;l [COSG )12
51=0

7

2A )12
COSG ! z Sjl COSG ]

S—S]
:Z[COSQ( Zb’ Cs/l BX)/r ,
=0 =8
that 1s
Y= 3 8, Teost )P (3.15)
5=0
where
S
BA(",I)],/’H = ZBA("I—)SI,],I BA("IZ?/',/” ’ (3.16)
A‘1=0

which shows that B( i) i is of the same form as B(;) G

We shall now express B() . In terms of B() 1- Using Equation (3.14) as a re-
curring formula, we have
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S S
7) 7) 7) 7)
BA(",j,/’ z s—5,/,1 Ba("l—sz,j,lli("],j,r—Z (3-17)
S]ZO SZZO
= SleZJ'lSzjlz s2s3/1s3/r3
S= y3_

q

:E: §=81./.1 IEZ Si—$..1 IEZ ‘é% 10/ 1S, Al’jﬁ ’

finally we have for the coefficients B(;)j . [of Equation (3.13)] in terms of B(Qj,l
the expression

, r=10 S
lgd(“,l)],/’:H z 1%(";)_1—&/{,],1 195("11/1 > sy =8 (3.18)
=1 SA,=0

Now, by using the identity

(Cosw)zszzzs{( )4-22( )cos (25— 2/)\|I}

Equation (3.13) reduces to

) = 140 ﬂ+z 4, cos2s0) (3.19)

where

. _222-2/( ) ). Y 520, r>1 (3.20)

Using Equations (3.8) and (3.18) into Equation (3.20), Equation (3.4.2) fol-
lows directly.

From Equation (2.21) we have

COs mg’ = €OS mc,. COS mw(J’-)— sin mcy sin mw(j-). (3.21.1)
sin mg’ = cos mc, sin mw(j’-) + sin mc,. cos mw(J’-) (3.21.2)

Using Equation (3.19) into the Taylor’s series, expansions of cos mw(j-) and

sin mw(}) we get

cos ) = m .+ Zﬁ}(’/)m COSZSHy) , (3.22.1)

1
7 2
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' N > ; :
sin mwy) ZEPO(’} ot ZF;’/) ” Cos259§-l) , (3.22.2)

s=1

where F's and P’s coefficients are those given by Equations (3.3)

Finally, by Equations (3.22) into Equations (3.21), Equations (3.1) and (3.2)
follows immediately. Q.E.D.

3.2 Computational Developments

In this subsection, some recurrence formulae will be established to facilitate the
computations of the coefficients included in the above analytical formulations.

3.2.1 Recurrence Formulae for A'S Coefficients

For » > 1, Equation (3.19) could be written as
Py = oyt

that 1is

1 . >, . 1 .
z 8, )7 C052J0 9 - {2 A((){)/,l +Z§)/,1 COSZYQ}I)} ) {5‘4(()?)/;/”—1"'
s=1

z 5 /-1 COSZJQ()}
from which we deduce the recurrence formulae
(N _ (/) ) ()
AJ"’]/V_EAOTJFI ' »V.] -1t _E k71 " { K+, 77— 1+Aé+s/r 1} ' (3.23)

This equation is to be used with the following conditions

2 if /=0, m=0,

/4}’}’ =10 ( ')if /#0,m=0, (3.24)
7/
AY ., I>0.

3.2.2 Recurrence Formulae for F's and P’s Coefficients
Let R, ; . Stands for F m OT Py i s then by the aid of the identities

cos k¥ =2cos(k— 1) W cos ¥ — cos(k—2) ',
sin k¥ =2sin(k— 1) ¥ cos ¥ —sin(k—2) ¥
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and Equations (3.22) we deduce the recurrence formulae
) _ A7) l / 7)
RA@;M_FS?],I j/771+2 //m //;ﬂl"'f‘)( /j,ﬂl} }‘)A(",j,m—z . (3.25)

In order to apply these formulae we have to take into account the following
conditions

(2 if £#=0, m=0
0 if £420, =0

N
Fk(,/;m“ﬁ‘k)m Y £>0. (3.26)
P
0 if m=0, V £
VA Ve I V) (327)
A vk

3.2.3 Recurrence Formulae for B's Coefficients

Recalling Equations (3.7) and (3.13) as

Z AR (3.28)

Z o (3.29)

where z = [cos 9(;)]2 , and r positive integer.
From these equations with z = 0 we get
B, =150,1 (3.30)
From Equation (3.29) we have
rin® (z)=1InF(z) ,
then on differentiating this equation with respect to z we get

r®'(2) F(z) = D) F'(2) . (3.31)
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Differentiating Equation (3.31) & times with respect to z and then applying
Leibnitz’s rule for the kth derivative of a product we deduce that

”i(/f) (1) (2 =0 (2 z(/f)ﬁuﬂ)(z)q)(/f—z)(z) (332)
pary / / ’ '

/=0
where for example
7'®(2)
.

Equation (3.32) is valid at any z, consequently at z = 0 we deduce by using
Equations (3.28), (3.29) and

oV (2=

@ +1)! (f=)! = (/+1) A

that

£ £
P ) BB =) B, B (333)
/=0 /=0

At this stage it 1s required to relate Bg)rl j.r. In terms of B(’) q.r» 4 =k, and this
could be performed by writing Equation (3.33) as

-1
) )
(£+1) b)(()ljl A’+1/r_r2 (/+1) /j—l/l B(l F=Ljr = 2 (/+1) Bgfl,j,l E}j—l,j,r : (334)

=0
From this equation we have

-1
/fg(’jl 5(’ —rZZ //1 B(’ZN -0 8 QW,
/=1

ya!

then by adding the zero value {—(k — k) B(IQJ-’I (6) i } to the right hand side of

the above equation, we deduce for the B's coefficients the recurrence formulae
2 =10
(3.35)

Conclusions

In conclusion, in the present paper the literal analytical express10ns of the
mean anomaly g of the disturbing body are established in terms of 9( and c,
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Also, cos mg' and sin mg" were completely developed from the analytical and
the computational points of views. For the analytical developments, the exact
literal expressions of the coefficients for the doubly trigonometric series repre-
sentations of these functions were established while for the computational de-
velopments, recurrence formulae were also established to facilitate digital com-
putations. All the formulations developed in the present paper are general in the
sense that they are valid whatever the types and the number of sectors forming
the divisions of the elliptic orbit may be. In addition they are also valid during
any revolution of the perturbed body in its Keplerian orbit.
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