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ABSTRACt. In this paper of the series, the initial value problem for par-
abolic motion is considered analytically and computationally. A
Mathematica program for this problem is established together with the
powerful modified top-down continued fraction evaluation algorithm
for the ratio of two hypergeometric functions. Numerical applications
of the program are also included.

1. Introduction

The main goal of this series of papers is to use Mathematica to solve typical
problems in space dynamics. The usages will be through the graphics
capability, and the symbolic and numerical computing features of Mathematica. 

In the present paper of the series, we consider the initial value problem for
parabolic motion throughout the solution of the generalized Barker's equation
by using continued fraction evaluation.

In general, the initial value problem of space dynamics may be formulated as:
Given position and velocity vectors  rs and vn at the initial time tn, and given a
second time tl , find rl and vl. On the other hand, the formulations in terms of
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Cartesian coordinates add an important feature from a practical standpoint. Be-
cause, the observations are lengths and velocities directly expressed in Car-
tesian coordinates.             

Many instances of parabolic orbits occur in the solar system, especially some
comets[1]. Also, the intermediate portion of interplanetary mission may be a
heliocentric parabola[2]. The initial value problem of parabolic motion will be
given in Subsection 2.3.            

For the parabolic motion, the basic equation to be solved is known as Bark-
er's equation. There are many methods to solve this equation[3]; one of the most
powerful method is that uses continued fraction evaluation. The usages of the
continued fraction expansions in modern computations are increasing, because,
they are generally far more efficient tools for evaluating the classical functions
than the more familiar infinite power series. Their convergence is typically fast-
er and more extensive than the series[4]. Barker's equation in its most con-
veniently generalized form and its continued fraction solution are considered in
Subsections 2.1 and 2.2.

There are several methods available for the evaluation of continued fractions.
Traditionally, the fraction was either computed from the bottom up, or the
numerator and denominator of the n'th convergent were accumulated separately
with three-term recurrence formulae. The drawback to the first method is, obvi-
ously, having to decide far down the fraction to begin in order to ensure con-
vergence. The drawback to the second method is that the numerator and
denominator rapidly overflow or underflow numerically even though their ratio
tends to a well defined limit. Thus, it is clear that an algorithm which works
from top down while avoiding numerical difficulties would be ideal from a pro-
gramming standpoint. Gautschi's[5] top-down algorithm with Shepperd's[6] mod-
ification is considered in Subsection 3.1.

A computational algorithm of the present problem is given with its numerical
applications in Section 3. Finally, a Mathematica program of the algorithm is
given in Appendix I.

2. Formulations

2.1 Generalized Barker's Equation

The relation between the true anomaly f  and the time t for parabolic motion
is known as Barker's equation[3] and is given as 

where
    
tan tan ,3 1

2
3

1
2

2f f H+ = (2.1)
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µ the gravitational constant, τ the time of pericenter passage, and  p is twice the
pericenter distance  qÆ

For the two epochs tl and tn (1 > n), Equation (2.1) is most conveniently ex-
pressed in terms of the variable

χ  =  σl  � σn , (2.3)

as

(2.4)

where for the position and velocity vectors rs and vs at the epoch t = ts  we have

(2.5)

fs  is the value of  f  at t = ts , and < A, B > is used to denote the scalar product
of two vectors A and B. The magnitudes of the position vectors rl and rn at the
epochs  tl and  tn are related by

(2.6)

Equation (2.4) is the generalized form of Barker's equation. Finally, since the
polar equation of a parabolic orbit is

                                         
according to equation (2.5) and the constancy of p we get

p = 2rl  �  σ 2
l  =  2rn �  σ 2

n . (2.7)

It can be shown that, the solution of the generalized form of Barker's Equa-
tion (2.4) is

(2.8)

where is the solution of

(2.9)

and

(2.10)

Equation (2.9) is exactly of the same form as the classical Barker's Equation
(2.1), so that all solution methods developed for any of them are applicable to
the other one.

(2.2)
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2.2 Continued Fraction Solution

The solution of the cubic Equation (2.9) can be written as[4],

(2.11)

with

(2.12)

where F(α, β, γ ; z)  is the hypergeometric function[8].

It is well-known[4] that the Gauss continued fraction may be written in the
following form  

where

(2.15)

and

(2.16)

Comparing Equations (2.12) and (2.13) we have

(2.17)

which together with Equation (2.11) represent the continued fraction solution of
Equation (2.9).

2.3   Initial Value Problem for Parabolic Motion

Let (rn , vn) and (rl , vl) be the position and velocity vectors at t = tn and t = tl
respectively. Then the transition matrix Φl, n ,  needed to extrapolate rl , vl from
rn , vn  is given by

where its elements are known as Lagrangian coefficients. Although that these
coefficients are of different forms for the different types of conic motion, the
transition matrix for all types satisfies the same two properties
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1 � Its determinant is equal to one.
2 � For any three points on an orbit rk, rm, rs                                 

Φsk  = Φsm  Φmk . (2.18)

The Lagrangian coefficients for parabolic motion are given[3] by

   

3. Computational Developments

3.1. Top-Down Continued Fraction Evaluation

Gautschi[5] proposed very concise algorithm to evaluate continued fraction
from the top down and may be summarized as follows. If the continued fraction
is written as

then initialize the following parameters

and iterate (k = 1,2,) according to 
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In the limit, the c sequence converges to the value of the continued fraction.
However, the complexity of the coefficients given by Equations (2.21) and
(2.22) make it somewhat inefficient to use Gautschi's algorithm directly. Shep-
pered[6], instead, with the introduction of a couple of additional parameters,
Gautschi's method may be reformatted into a form more suitable for digital
computers.

The method proceeds as follows, first initialize

k =  1  � 2(a � b),

l =  2(c � 1),

d =  4c(c � 1),

n =  4b(c � a),

A =  1,

B = 1,

U = 1,

then evaluate these parameters recursively using

3.2 Computational Algorithm

● Purpose: To solve the initial value problem for parabolic motion.

● Input:    rn(xn , yn , zn) , vn (x
.
n , y

.
n ,  

.
zn) , µ , tn , tl . 

●   Output:   rl(xl , yl , zl) , vl (
.
xl ,  

.
yl ,  

.
zl) .

    

k k

l l

d d l

n n k l

A
d

d nAz

B A B

U U B

←

← +

← +

← + +

←

←

← +

–  ,

,

,

( ) ,

( – )
,

( – ) ,

,

2

4

1

1



Space Dynamics with... 59

●   Computational Sequence: 

The Mathematical coding IVPPM of the above algorithm is listed in Ap-
pendix I.

3.3 Numerical Applications

The purpose of this subsection is to illustrate the numerical computing fea-
tures of Mathematica program IVPPM to solve the problem of the present paper.

3.3.1. Test orbits

We consider six orbits all with the eccentricity e = 1 (parabolic orbits) and
µ = 1, while the other orbital elements are listed for each orbit in the first col-
umn of Tables 1 to 6, where q, e, τ  have their meaning as mentioned
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previously, i   ≡ orbital inclination, Ω  ≡ longitude of the ascending node, w  ≡
argument of the pericenter. The corresponding initial position and velocity vec-
tors rn and vn at t = tn are given in the second columns of the tables. These vec-
tors are obtained by the classical transformations[3] from the orbital elements to
r and v vectors for parabolic orbits.

TABLE 1. (rn , vn) and (rl , vl) with their check for the Test orbit no. 1.

         rn , vn ; tn = 1180          rl , vl ; tl = 1185            Check

    q = 2 x = + 08.472708887852480 x = + 06.487780921114990 |∆q| = 0

    e = 1 y = � 03.889171171426470 y = � 03.99518874359456 |∆e| = 0

    τ  = 1200 z = � 04.891720757166960 z = � 03.74572206124905 |∆τ| = 0

    i = 150º x
.
 = � 00.376464633037897 x

.
 = � 00.420267180735975 |∆i| = 0

    Ω = 270º y
.
 = � 00.031620986067439 y

.
 = � 00.008169836661225 |∆Ω| = 0

    w = 60º z
.
 = + 00.217351957224803 z

.
 = + 00.24264136992948 |∆w| = 1.98952 * 10�13

TABLE 2. (rn , vn) and (rl , vl) with their check for the Test orbit no. 2.

     rn , vn ; tn = 1180      rl , vl ; tl = 1190        Check

   q = 3 x = + 06.322692305028100 x = + 03.79921539196239 |∆w| = 1.02141 * 10�14

   e = 1 y = � 06.744186230117650 y = � 02.42769413144328 |∆e| = 0

  τ  = 1200 z = � 03.856510613020800 z = � 04.08274796329054 |∆τ| = 0

   i = 64.28º x
.
  = � 00.209010213428531 x

.
 = � 00.312683041576236 |∆i| = 0

   Ω = 121.56º y
.
 = � 00.391070377884770 y

.
  = � 00.47960235539925 |∆Ω| = 0

   w = 318.94º z
.
  = � 00.055193843742839 z

.
   = + 00.03200193755009 |∆w| = 0

TABLE 3. (rn , vn) and (rl , vl) with their check for the Test orbit no. 3.

        rn , vn ; tn = 1180          rl , vl ; tl = 1195            Check

    q = 4 x = + 05.032890490439500 x = � 03.65646695547321 |∆q| = 0

    e = 1 y = � 02.022899299973510 y = � 04.02593638772547 |∆q| = 0

    τ  = 1210 z = � 11.92238686576550 z = � 05.82601657179870 |∆τ| = 0

    i = 71.71º x
.
 = � 00.067174384911609 x

.
 = � 00.128146409099325 |∆i| = 0

    Ω = 248.49º y
.
 = � 00.149367259977560 y

.
 = � 00.10166283237762 |∆Ω| = 0

    w = 39.44º z
.
  = + 00.354779670796995 z

.
 = + 00.4734820117564 |∆w| =9.9476 * 10�14

Orbital
elements

Orbital
elements

Orbital
elements
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TABLE 4. (rn , vn) and (rl , vl) with their check for the Test orbit no. 4.

         rn , vn ; tn = 1180          rl , vl ; tl = 1200            Check

     q = 5 x = � 12.635055870473000 x = � 05.07285913130296 |∆q| = 0

     e = 1 y = + 02.865497787435040 y = � 01.01697056570985 |∆e| = 0

     τ  = 1215 z = � 06.099886579216900 z = � 06.22318246544142 |∆τ| = 0

     i = 62.85º x
.
 = + 00.320597480273014 x

.
 = + 00.453789981558589 |∆i| = 0

     Ω = 333.25º y
.
 = � 00.186915433326709 y

.
 = � 00.19348546708922 |∆Ω| = 0

      w =316.16º z
.
 = � 00.044091080915244 z

.
 = + 00.061369005164287 |∆w| = 0

TABLE 5. (rn , vn) and (rl , vl) with their check for the Test orbit no. 5.

     rn , vn ; tn = 1180      rl , vl ; tl = 1225        Check

    q = 6 x = � 13.3462851499139 x = + 05.015759601461220 |∆q| = 0

    e = 1 y = + 02.40121603068125 y = � 03.48881849117271 |∆e| = 0

   τ  = 1220 z = � 07.53256517109402 z = � 01.67279606461874 |∆τ| = 0

    i = 62.85º x
.
  = + 00.31230839096072 x. = + 00.354437575700268 |∆i| = 0

    Ω = 333.25º y
.
 = � 00.174630187259768 y. = + 00.0686189170411564 |∆Ω| = 0

    w = 316.16º z
.
  = � 00.02997113230710 z. = + 00.430567853146194 |∆w| = 0

TABLE 6. (rn , vn) and (rl , vl) with their check for the Test orbit no. 6.

     rn , vn ; tn = 1180      rl , vl ; tl = 1230           Check

     q =7 x = � 15.730098191062700 x = + 01.94170524933400 |∆q| = 0

     e = 1 y = + 03.275550095550990 y = � 06.67810022702522 |∆e| = 2.9976*10�15

     τ  = 1225 z = + 04.481143778551210 z = � 02.04523909038297 |∆τ| = 0

     i = 18.5º x
.
 = + 00.193392621818427 x

.
 = + 00.509846367177894 |∆i| = 0

     Ω = 44.7º y
.
 = � 00.265845093885484 y

.
 = + 00.073902601440295 |∆Ω| = 0

     w = 221.4º z
.
 = � 00.108741437343389 z

.
 = � 00.102417386748446 |∆w| = 0

3.3.2. Numerical Results

The IVPPM program was applied to the six test orbits for the position and
velocity vectors  rl and vl at t = tl .   The results are listed for each orbit in the
third column of Tables 1 to 6. To check the accuracy of the computed vectors,

Orbital
elements

Orbital
elements

Orbital
elements
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we make use of the fact that, in the Keplerian motion the position and velocity
vectors at any instant can produce the constant elements of the orbital motion.
In this respect, we utilize rl and vl in the basic Equations[3] for the conversion to
the orbital elements, and the absolute difference of each of the resulting element
and the corresponding initial element (the first columns of the Tables) is listed
in the fourth columns of Tables 1 to 6.

Finally, it should be mentioned that, if the time difference T = tl � tn is suf-
ficiently large, we might have to repeat the process by decrementing T several
times. The transition matrices thus sequentially generated are, of course, multi-
plied together [according to Equation (2.18)] to produce the final desired ma-
trix.

In concluding the present paper, an accurate Mathematica program for the
initial value problem for parabolic motion is established together with the pow-
erful modified top-down continued fraction evaluation algorithm for the ratio of
two hypergeometric functions.
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Appendix I

Mathematica Program IVPPM

%EVALUATION OF B GIVEN BY EQUATION (2.10)

%Notation : rn  → rn , xn → xn , xnd →    .
xn etc.

rn =  Sqrt  [xn^2+yn^2+zn^2] ;

sn  = (1/ Sqrt  [mu] )*(xn*xnd+yn*ynd+zn*znd) ;

p = 2*rn-sn^2 ;

BB = N[p^(-3/2)*(sn*(rn+p)+3*Sqrt[mu]*(tl-tn)),15]
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% CONTINUED FRACTION SOLUTION

tol = 10^(-14) ;

AL = 2/3 ;

BE = 1/3 ;

GA = 1/2

X = -B^2 ;

AK = 1-2*(AL-BE) ;

BL = 2*(GA-1) ;

AD = 4*GA*(GA-1) ;

AN = 4*BE*(GA-AL) ;

A = 1;

BB = 1;

G = 1;

(Label[20]; AK=-AK;BL=BL+2;AD=AD+4*BL;\

AN = AN+(1+AK)*BL; A=AD/(AD-AN*A*X);\

BB = (A-1)*BB; G=G+BB; If [Abs [BB]>tol,Go to[20]])

Y1 = (2/3)*BB*G  

%POSITION AND VELOCITY VECTORS AT  TIME t  =  tl

x = Sqrt [p]*Y1-sn

r1 = rn+sn*X+X^2/2

F = 1-(X^2/(2*rn))

G = X/(2*Sqrt [mu])*(2*rn+sn*X)

Ft = -Sqrt [mu]/(r1*rn)*X

Gt = 1-(X^2/(2*r1))

x1 = F*xn+G*xnd

y1 = F*yn+G*ynd

z1= F*zn+G*znd

x1d = Ft*xn+Gt*xnd

y1d = Ft*yn+Gt*ynd

z1d = Ft*zn+Gt*znd
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(MATHEMATICA)   Â«b���U� WOzUCH�« UJO�UM�b�«
W���UJ*« W�d�K� WOz«b��ô« WLOI�« W�Q�� −±

·d� e�eF�« b�� ËdL�  Ë  bF� w�M�« b��  Ë  ·d� e�eF�« b�� ��U� bL��
Í�UI�« s�b�« r$ �U�� tK�« b�� W�OL�  Ë

r�� , W��uF��« WO�dF�« WJKL*« − �b� , e�eF�« b�� pK*« WF�U� , WOJKH�« ÂuKF�« r��
W�bMN�« r�� , dB� , �d�UI�« , WOzU�eOH�«Ë WOJKH�« Àu��K� w�uI�« bNF*« , pKH�«

,  UO{U�d�«Ë ÂuKF�« r��  Ë  dB� , �d�UI�« WF�U� W�bMN�« WOK� , WOzU�eOH�«Ë WO{U�d�«
W��uF��« WO�dF�« WJKL*« − W�dJ*« WJ� ,  ULKF*« �«b�≈ WOK�

WL?OI�« W�Q?��  b=O?Ô� Àu���« WK�K� s?� Y���« «c� w� ÆhK���*«
Æ UÎO�U��Ë UÎOKOK% T�UJ*« lDI�« w� W�d�K� WOz«b��ô«

− wKH��«® WI�d?� l� W�Q�*« ÁcN� (MATHEMATICA)  Âb�?��« b�Ë
, 5�O�bM� �u?� 5��«� 5� W��MK� qB�*« d�J�« »U?�( W�bF*« ©ÍuKF�«

Æ Z�U�d�K� W��b�  UIO�D� vK� UÎC�√  u��«Ë




