Thermal Condensation of 1-Aryl/ hetaryl-3-methyl-2pyrazolin-5-ones with Aromatic Aldehydes. Synthesis of 4arylidenepyrazolones

Salem Ahmed Basaif

Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia

Abstract. Heating of 3-methyl-1-(pyrid-2-yl / 4-chlorophenyl)-2-pyrazolin-5-ones (1) and some aromatic aldehydes at 150 – 160 °C affords the corresponding 4-arylidene-2-pyrazolin-5-ones (2) as colored products with high yields. These new products were characterized by UV-*vis*, FT-IR and ¹H NMR spectro scopic techniques and elemental analysis.

Introduction

5-Pyrazolones are very important class of heterocycles due to their biological and pharmacological activities ^[1,2] which exhibit an anti-inflammatory ^[3], herbicidal ^[4], fungicidal ^[5], bactericidal ^[5], plant growth regulating properties ^[4], antipyretic ^[6] and protein kinase inhibitors ^[7], Also, they are used as key starting material for the synthesis of commercial aryl/hetarylazopyrazolone dyes ^[8,9].

On the other hand, it is well known that the most important commercial application of 4-arylidenepyrazolones that some of them have anti-fungal properties [10-13], while, others were used as photographic dyes or intermediates in pharmaceuticals [14-16].

The approach reported here deals with the synthesis of some new intensely colored 4-arylidenepyrazolones which might have new pharmacological and commercial applications.

Experimental

All melting points reported are uncorrected. IR spectra were recorded using Perkin Elmer's Spectrum RXIFT-IR spectrophotometer (v in cm⁻¹) The NMR spectra were recorded on Bruker Avance DPX400 spectrometer, using pyridine- d_5 as a solvent and TMS as an internal standard (chemical shifts in δ values in ppm). The UV-vis Spectra were recorded in ethanol using Shimadzu, Carry 50 (λ in nm). Elemental analyses were preformed on Perkin Elmer 2400, series II micro-analyzer. Pyrid-2-ylhydrazine and 4-chlorophenylhydrazine hydrochloride are an Aldrich products and they are used without any further purification.

Condensation of Ethyl Acetoacetate with Arylhydrazines. Formation of 1-aryl-3-methyl-2-pyrazolin-5-ones (1a,b)

A mixture of ethyl acetoacetate (0.024 mol) and Pyrid-2-ylhydrazine and 4-chlorophenylhydrazine hydrochloride (0.025 mol) was heated under water condenser in an oil bath at 150-160°C for 3h then cooled and triturated with diethyl ether (20 ml). The ether was removed by filtration and the solid residue was crystallized from ethanol to give 3-methyl-1-(pyrid-2-yl)-2-pyrazolin-5-one (1a) and 1-(4-chlorophenyl)-3-methyl-2-pyrazolin-5-one (1b), respectively. The physical data of 1-aryl-3-phenyl-2-pyrazolin-5-ones (1) are listed in Table 1.

Comp. No.	Mol.Formula (M.wt)	m.p.(°C) (Color)	Yield %		Elemental analysis Calculated / Found	
				С	Н	N
1a	C ₉ H ₉ N ₃ O	109	EtOH	61.70	5.18	23.99
	(175.19)	(White)	(85)	61.56	5.14	23.81
1b	C ₁₀ H ₉ N ₂ OCl	167	EtOH	57.57	4.35	13.43
	(208.65)	(white)	(90)	57.44	4.33	13.30

Table 1. Physical data of 1-aryl-3-phenyl-2-pyrazolin-5-ones (1a,b).

Knoevenagel Condensation of Aromatic Aldehydes with Pyrazolones (1a,b). Formation of 1-aryl-4-arylidene-3-methyl-4,5-dihydro-1H-pyrazol-5-ones (2, 3)

A mixture of 1-aryl-3-methyl-2-pyrazolin-5-one **(1a,b)** (0.01 mol) and aromatic aldehydes (0.012 mol) namely, benzaldehyde, 4-methylbenzaldehyde (*p*-tolualdehyde), 4-methoxybenzaldehyde (*p*-anisaldehyde), 4-chlorobenzaldehyde, 4-bromobenzaldehyde and 3,4-

methylene-dioxybenzaldehyde (piperonal) was heated in an oil bath at 150-160°C for 4h, cooled, triturated with ether (20 ml) and filtered off. The coloured residues were crystallized from the proper solvent to give the corresponding, 1-aryl-4-arylidene-3-methyl-4,5-dihydro-1*H*-pyrazol-5-ones (2a-f, 3a-f) respectively, as coloured products. The physical data of 4-arylidenepyrazolones (2, 3) are listed in Table 2 respectively.

Table 2. Physical data of 4-arylidene-1-(4-chlorophenyl)-3-methyl-4,5-dihydro-1*H*-pyrazol-5-ones (2,3).

Compd. No.	Mol.Formula (M.wt)	m.p.(°C) (Color)	Solvent of crystallization (Yield %)	Elemental analysis Calculated/Found		
				C	Н	N
2a	$C_{16}H_{13}N_3O$	153	P.E.	72.99	4.98	15.96
	(263.30)	(Pink)	(63)	72.83	4.95	15.79
2b	$C_{17}H_{15}N_3O$	70	P.E.	73.63	5.45	15.15
	(277.33)	(Yellow)	(61)	73.55	5.41	15.02
2c	$C_{17}H_{15}N_3O_2$	Oily	P.E.	69.61	5.15	14.33
	(293.33)	(Orange)	(43)	69.47	5.13	14.19
2d	$C_{16}H_{12}N_3OC1$	86	P.E.	64.54	4.06	14.11
	(297.74)	(Yellow)	(65)	64.40	4.02	14.02
2e	$C_{16}H_{12}N_3OBr$	88	P.E.	56.16	3.53	12.28
	(342.19)	(Yellow)	(64)	56.05	3.50	12.11
2f	$C_{17}H_{13}N_3O_3$	222	EtOH	66.44	4.26	13.67
	(307.31)	(Orange)	(67)	66.32	4.21	13.54
3a	C ₁₇ H ₁₃ N ₂ OCl	141	EtOH	68.81	4.42	9.44
	(296.76)	(Orange)	(62)	68.64	4.38	9.29
3b	C ₁₈ H ₁₅ N ₂ OCl	186	EtOH	69.57	4.86	9.01
	(310.78)	(Orange)	(69)	69.43	4.83	8.88
3c	C ₁₈ H ₁₅ N ₂ O ₂ Cl	140	EtOH	66.16	4.63	8.57
	(326.78)	(Brown)	(68)	66.03	4.60	8.43
3d	$C_{17}H_{12}N_2OCl_2$	203	EtOH	61.65	3.65	8.46
	(331.20)	(Red)	(76)	61.50	3.61	8.33
3e	$C_{16}H_{12}N_2OClBr$	196	EtOH	52.85	3.33	7.70
	(363.64)	(Red)	(72)	52.69	3.31	7.56
3f	$C_{18}H_{13}N_2O_3C1$	198	EtOH	63.44	3.85	8.22
	(340.77)	(Orange)	(80)	63.26	3.81	8.09

Results and Discussion

Heating of ethyl acetoacetate and hydrazine derivatives, namely, pyrid-2-ylhydrazine or 4-chlorophenylhydrazine hydrochloride at 150 – 160 °C underwent cyclocondensation to give the corresponding 3-

methyl-1-(pyrid-2-yl)-2-pyrazolin-5-one **(1a)** and 1-(4-chlorophenyl)-3-methyl-2-pyrazolin-5-one **(1b)**, respectively, which are used as key starting of the synthesis of the new 4-arylidene-5-pyrazolones.

The 1-aryl-3-methyl-2-pyrazolin-5-ones (1 a,b) exist in two tautomeric forms (I and II) due to their keto-enol tautoumerism, The spectral data proved that pyrazolone (1a) exists mainly in enol form due to interamolecular chelation by H-bond while (1b) exists in keto form [17,18] (Scheme 1).

This phenomenon is confirmed by ¹H NMR IR absorption spectra as shown in Table 3.

Table 3. The spectral data of 1-aryl-3-methyl-2-pyrazolin-5-ones (1a,b).

Comp.	Structure	IR (v in cm ⁻¹)	¹ H-NMR in CDCl3		
No			(δ in ppm)		
1a	Me N N O	1614(C=O cyclic lactam) 3050 (CH aromatics). 3420 (enolic OH).	2.26 (s,3H,C3-C <u>H</u> ₃),5.43 (s,1H,C4- <u>H</u>),7.11-8.53(m, 4H,Ar <u>H</u>),12.80 (b,1H, O <u>H</u>).		
1b	Me N N CI	1669(C=O cyclic lactam) 3059 (CH aromatics).	2.20 (s,3H,C3-C <u>H</u> ₃),3.44 (s,2H,C4- <u>H</u>),7.26-7.95(m, 4H ,Ar <u>H</u>),		

Fusion of an equimolar amounts of Ethyl acetoacetate with pyrid-2-ylhydrazine or 4-chlorophenylhydrazine hydrochloride at 150-160 °C

afforded 3-methyl-1-(pyrid-2-yl)-2-pyrazolin-5-one **(1a)** and 1-(4-chlorophenyl)-3-methyl-2-pyrazolin-5-one **(1b)**, respectively in high yields.

The most characteristic behavior of 2-pyrazolin-5-ones is the outstanding reactivity of the methylene group at C-4. Therefore, this position undergoes the characteristic condensation and substitution reactions of the active methylene group^[19-21].

Fusion of an equimolar amounts of 1-aryl-3-methyl-2-pyrazolin-5-ones **(1a,b)** with aromatic aldehydes, namely:, benzaldehyde, 4-methylbenzaldehyde, 4-methoxy- benzaldehyde, 4-chlorobenzaldehyde, 4-bromobenzaldehyde and 3,4-methylenedioxy- benzaldehyde (piperonal) at 150-160°C afforded 1-aryl-4-arylidene-3-methyl-4,5-dihydro-1H-pyrazol-5-ones **(2a-f, 3a-f)** respectively, as intense coloured products in high yields (Scheme 2).

1a)
$$Ar' = Pyrid-2-yl$$
,

2 a-f)
$$Ar' = pyrid-2-yl$$
.

1b)
$$Ar' = 4$$
-chlorophenyl,

$$3 \text{ a-f}$$
Ar' = 4-chlorophenyl.

$$Ar = a)$$

$$b)$$

$$Me$$

$$c)$$

$$OMe$$

$$O$$

$$O$$

$$O$$

Scheme 2

The structure of 4-arylidenepyrazolones (2,3) have been established by IR, HNMR and UV-vis spectral data which are listed in Tables 4 and 5, respectively, and elemental analysis of Table 2.

Table 4. The spectral data of 4-arylidene-1-(pyrid-2-yl)-3-methyl-4,5-dihydro-1*H*-pyrazol-5-ones (2a-e).

Compd.	UV-vis	IR (v in cm ⁻¹)			¹H-NMR in CDCl ₃ 0
No.	$(\lambda \text{ in nm})$				$(\delta \text{ in ppm })$
		C=N C=C	C=O	СН	
2a	334	1566	1636	2933	2.18(s,3H,C3-C <u>H</u> ₃), 7.14-8.25(m,9H,
				3022	Ar <u>H</u> +1H,C4=C <u>H</u>).
2b		1565	1644	2925	2.12(s,3H,C3-C <u>H</u> ₃), 2.35(s,3H,ArC <u>H</u> ₃)
				3052	6.9-8.5 (m,8H,Ar <u>H</u> +1H, C4=C <u>H</u>).
2c	336	1578	1669	2934	2.11(s,3H,C3-C <u>H</u> ₃),3.82(s,3H,OC <u>H</u> ₃),
				3064	6.79-8.60(m,8H, Ar <u>H</u> +1H,C4=C <u>H</u>).
2d	360	1569	1676	2935	2.12(s,3H,C3-C <u>H</u> ₃), 7.0 8.6(m,8H,
				3062	Ar <u>H</u> +1H,C4=C <u>H</u>).
2e	335	1559	1666	2931	2.12(s,3H,C3-C <u>H</u> ₃),7.09-8.2(m,8H,
				3060	Ar <u>H</u> +1H,C4=C <u>H</u>).
2f	377	1578	1685	2924	2.40(s,3H,C3-C <u>H</u> ₃),6.11(s,2H, O ₂ C <u>H</u> ₂),
				3072	6.92-8.7(m,7H,Ar <u>H</u> +1H, C4=C <u>H</u>).
		L			

Table 5. The spectral data of 4-arylidene-1-(4-chlorophenyl)-3-methyl-4,5-dihydro-1H-pyrazol-5-ones (3a-e).

Compd.	UV-vis	IR (v in cm ⁻¹)			¹ H-NMR in CDCl ₃
No.	(λ in nm)				$(\delta \text{ in ppm })$
		C=N	C=O	СН	
		C=C			
3a	335	1591	1680	3074	2.36(s,3H,C3-C <u>H</u> ₃),7.17-8.48(m,9H,
					Ar <u>H</u> +1H,C4=C <u>H</u>).
3b	340	1595	1690	2928	2.34(s,3H,C3-C <u>H</u> ₃), 2.45(s,3H,Ar
				3058	C <u>H</u> ₃), 7.26-8.42 (m,8H,Ar <u>H</u> +1H,
					C4=C <u>H</u>).
3c	371	1583	1677	2945	2.34(s,3H,C3-CH3), 3.91(s,3H,OCH3)
				3079	6.99-8.59(m,8H, Ar <u>H</u> +1H,C4=C <u>H</u>).
3d	330	1582	1676	2924	2.34(s,3H,C3-C <u>H</u> ₃), 7.25-8.46(m,8H,
				3084	Ar <u>H</u> +1H,C4=C <u>H</u>).
3e	334	1585	1673	2928	2.36(s, 3H,C3-C <u>H</u> ₃), 7.26-8.27(m,8H,
				3086	Ar <u>H</u> +1H,C4=C <u>H</u>).
3f	383-325	1489	1680	2923	2.32(s, 3H,C3-C <u>H</u> ₃), 6.09 (s, 2H,
		1582		3072	$O_2C_{\underline{H}_2}$), 6.91-8.63(m,8H, Ar \underline{H} +1H,
					C4=C <u>H</u>).

It was observed from UV-vis absorption spectra in ethanol (*Table 2,3*) of 4-arylidenepyrazolones that λ_{max} ranges from 334 to 383 nm proved that 4-arylidene substituents with electron donating groups 4-OMe and 3,4 –O-CH₂-O results in bathochromic shifts.

References

- [1] Scheibye, S., El-Barbary, A.A., Lawesson, S.O., Fritz, H. and Rihs, G., Tetrahedron 38: 3753 (1982).
- [2] Weissberger, A., Wiley, R.H. and Wiley, P., editor: "The Chemistry of Heterocyclic Compounds: Pyrazolinones, Pyrazolidones and Derivatives", Jhon Wiley, New York (1964).
- [3] Hiremith, S.P., Rudresh, K. and Saundan, A.R., Indian J. Chem., 41B (2): 394 (2002).
- [4] Joerg, S., Reinhold, G., Otto, S., Joachim, S.H., Robert, S. and Klaus, L., Ger. Offen., 04 Feb. 1988; DE 3, 625, 686 (Cl C07D 231/22) [C. A. 108: 167465 (1988)].
- [5] Dhol, P.N., Achary, T.E. and Nayak, A., J. Indian Chem. Soc., 52: 1196 (1975).
- [6] Souza, F.R., Souaza, V.T., Ratzlaff, V., Borges, L.P., Olivera, M.R., Bonacorso, H.G., Zanatta, N., Martina, M.A. and Mello, C.F., Eur. J. Pharma., 451(2): 141 (2002).
- [7] Singh, J. and Tripathy, R., PCT Int. Appl., 138 (2001).
- [8] Karci, F. and Ertan, N., Dyes Pigments, 55: 99 (2002).
- [9] Ho, Y.W., Dyes Pigments, 64: 223 (2005).
- [10] Ishihara, Japan Kokai Tokkyo Koho, 81: 127, 360 (Cl CO7D 231/20),06 Oct. 1981, Appl. 80/29, 11 May, 829 (1980).
- [11] **Pathak, R.B.** and **Bahel, S.C.,** *J. Indian Chem. Soc.*, **57:** 1108 (1980).
- [12] Sammour, A., Zimaity, A. and El-Borai, T., J. Prakt. Chim., 314: 612 (1972).
- [13] Wrzeciono, U. and Jobke, E., Acta Pol. Pharm., 36: 264, 629 (1978).
- [14] Wariishi, K., Japan Kokai Tokkyo Koho, JP 08 20, 582 96 20, 582, C. A., 124: 317154k (1996).
- [15] Ubeda, T. and Akama, Y., Chem. Phys. Lett., 222: 559 (1994).
- [16] Li-Jiau, H., Sheng-Chu, K., and Hantch, L., Taiwan Yao Hsuch Tsa Chih, 31: 47 (1979).
 [C. A., 93: 71631 (1980)].
- [17] Khalil, A.Kh., Hassan, M.A., Mohamed, M.M. and El-Sayed, A.M., *Dyes Pigments*, **66**: 241 (2005).
- [18] Ertan, N., Dyes and Pigments, 44: 41 (2000).
- [19] El-Shekeil, A., Babaqi, A., Hassan and M.A., Shiba, S., Heterocycles, 27: 2577 (1988).
- [20] Hassan, M.A. and Döpp, D., Heterocycles, 45: 451 (1997).
- [21] Hassan, M.A., El-Kasaby, M. and Abou El-Regal, M.K., Phosphorus Sulfer and Silicon, 104: 15 (1995).

التكاثف الحراري لمشتقات ۱ – أريل هيتاريل – π – ميثيل – τ – بيرازولين – τ – ون: اصطناع مشتقات τ – أريل يدين – τ – بيرازولون

سالم أحمد باسيف قسم الكيمياء – كلية العلوم – جامعة الملك عبدالعزيز حدة – المملكة العربية السعودية

المستخلص. تسخين مشتقات π – مثيل -1 – (7 – بيريــديل/ 3 – كلوروفنيل) – 7 – بيرازولين – 9 – ون مع بعــض الألدهيــدات الأروماتية عند درجة حرارة 10 – 17 درجة مئوية، أعطــت نواتج ملونة من 3 – أريليدين – 7 – بيرازولين – 9 – ون بمــردود مرتفع. تم إثبات تراكيب النواتج باستخدام أطياف الأشــعة تحــت الحمراء، الأشعة فوق البنفـسجية وطيـف الــرنين المغنطيـسي للبروتون، وكذلك التحاليل الدقيقة للعناصر.