A Note on the Axioms for a Length Function on a Group

Mohammad I. Khanfar*
Mathematics Department, Yarmouk University, Irbid, Jordan

Abstract

The author introduces the concept of a length function on a group satisfying only two axioms. Under such general length function, he investigates properties of the elements of the group. General results are obtained and a subgroup theorem is proved.

1. Introduction

The ideas of Nielsen ${ }^{[1]}$, and in particular the idea of calculating the extent of cancellation in a product of reduced words in a free group, had motivated Lyndon ${ }^{[2]}$ to develop a set of axioms for a length function from a group to the set non-negative integers. He postulated six axioms for integer - valued length functions on free groups and free products.

In this paper we define a general length function; a real-valued length function satisfying only two of Lyndon's axioms, and then obtain some consequences and results under such a length function.

2. Length Functions

We give the following definition:

2.1 Definition

Let G be a group. A length function $\|: G \rightarrow R$ is a function assigning to each element x in G a real number $|x|$ such that for all x, y, z in G the following axioms are satisfied:

[^0]$A_{2} . \quad\left|\mathbf{x}^{-1}\right| \quad=\quad|\mathbf{x}|$
$A_{4} \cdot \mathrm{~d}(\mathrm{x}, \mathrm{y})<\mathrm{d}(\mathrm{x}, \mathrm{z})$ implies $\mathrm{d}(\mathrm{x}, \mathrm{y})=\mathrm{d}(\mathrm{y}, \mathrm{z})$
where $d(x, y)=1 / 2\left[|x|+|y|-\left|x y^{-1}\right|\right]$.
That is, the two smallest numbers in the triple of real numbers $d(x, y), d(x, z)$, $\mathrm{d}(\mathrm{y}, \mathrm{z})$ are equal. The numbering of the axioms is due to Lyndon ${ }^{[2]}$.

An example of a length function is the usual modulus function on R, the additive group of the real numbers.

2.2 Proposition

For $\mathrm{x}, \mathrm{y} \in \mathrm{G}$, we have
(i) $\mathrm{d}(\mathrm{x}, \mathrm{y}) \geq 1 / 2|1|, 1$ is the identity element of G
(ii) $|x| \geq|1|$
(iii) $\mathrm{d}(\mathrm{x}, \mathrm{y}) \leq|\mathrm{x}|-1 / 2|1|$.

Proof
(i) $2 \mathrm{~d}(\mathrm{x}, 1)=|\mathrm{x}|+|1|-|\mathrm{x}|=|1|=2 \mathrm{~d}(1, \mathrm{y})$; hence by $\mathrm{A}_{4}, 2 \mathrm{~d}(\mathrm{x}, \mathrm{y}) \geq|1|$.
(ii) $2 \mathrm{~d}(\mathrm{x}, \mathrm{x})=|\mathrm{x}|+|\mathrm{x}|-|1| \geq|1|$, by (i).
(iii) $2 \mathrm{~d}(\mathrm{x}, \mathrm{y})=|\mathrm{x}|+|\mathrm{y}|-\left|\mathbf{x y}{ }^{-1}\right|$

$$
\begin{aligned}
& =2|\mathrm{x}|-\left(|\mathrm{x}|+\left|\mathrm{x} \mathrm{y}^{-1}\right|-|\mathrm{y}|\right) \\
& =2|\mathrm{x}|-2 \mathrm{~d}\left(\mathrm{yx}^{-1}, \mathrm{x}^{-1}\right) \\
& \leq 2|\mathrm{x}|-|1|
\end{aligned}
$$

That is, $\mathrm{d}(\mathrm{x}, \mathrm{y}) \leq|\mathrm{x}|-1 / 2|1|$.
As another example, let any element $x=x_{1} x_{2} \ldots x_{n}$ as a reduced word in a free group F with basis X. Then $|x|=n$ defines a length function on F satisfying the above axioms.

If the length function is normalized by subtrating $|1|$, then it still satisfies A_{2} and A_{4}; so without loss of generality, we may assume that the length function on G satisfies axiom:

$$
\mathbf{A}_{1}^{\prime} \cdot|\mathbf{1}|=\mathbf{0}
$$

This is a weakened form of Lyndon's axiom:

$$
A_{1} \cdot|x|=0 \text { if and only } x=1 \text { in } G ;
$$

but it may be noted here that A_{1}^{\prime} is added more for convenience than necessity.
Using Proposition 2.2 and $\mathrm{A}_{1}^{\prime}, \mathrm{A}_{2}, \mathrm{~A}_{4}$ the consequences in the following Proposition are immediately obtained.

2.3 Proposition

(i) $\mathrm{d}(\mathrm{x}, \mathrm{y}) \geq 0$; this is Lyndon's axiom A_{3}
(ii) $\mathrm{d}(\mathrm{x}, \mathrm{x})=|\mathrm{x}| \geq 0$
(iii) $d(x, y) \leq|x|$
(iv) $d(x, y)=d(y, x)$.

3. Non-Archimedean Elements

3.1 Definition

In a group G with a length function an element x is archimedean if $\left|x^{2}\right|>|x|$ and non-archimedean if $\left|\mathbf{x}^{2}\right| \leq|x|$.
Let $N=\left\{x \in G:\left|x^{2}\right| \leq|x|\right\}$.

3.1 Proposition

Let x be an element of G. Then
(i) $x \in N$ implies $\left|x^{n}\right| \leq|x|$ for all integers $n \geq 0$,
(ii) $x \& N$ implies $\left|x^{n}\right|=|x|+(n-1) t$ for any positive integer n and where $t=\left|x^{2}\right|$ $-|\mathbf{x}|$.
Proof
(i) Let $x \in N$. We use induction on n. Result holds trivially for $\mathbf{n}=0,1$ and by definition for $\mathrm{n}=2$.

Suppose result is true for all non-negative integers $\leq \mathbf{n}$.
That is, $\left|x^{n-1}\right|,\left|x^{n}\right| \leq|x|$.
Now $2 \mathrm{~d}\left(\mathrm{x}^{\mathrm{n}}, \mathrm{x}\right)=\left|\mathrm{x}^{\mathrm{n}}\right|+|\mathrm{x}|-\left|\mathrm{x}^{\mathrm{n}-1}\right| \geq\left|\mathrm{x}^{\mathrm{n}}\right|$,

$$
2 \mathrm{~d}\left(\mathrm{x}, \mathrm{x}^{-1}\right)=|\mathrm{x}|+\left|\mathrm{x}^{-1}\right|-\left|\mathrm{x}^{2}\right| \geq|\mathrm{x}| \geq\left|\mathrm{x}^{\mathrm{n}}\right| ;
$$

hence by $A_{4}, 2 d\left(x^{n}, x^{-1}\right) \geq\left|x^{n}\right|$.
That is, $\left|\mathbf{x}^{n}\right|+|\mathbf{x}|-\left|x^{n+1}\right| \geq\left|x^{n}\right|$, giving $\left|x^{n+1}\right| \leq|x|$.
Hence result holds for all integers $\mathrm{n} \geq 0$.
(ii) For $\mathrm{x} \& \mathrm{~N}$, the formula $\left|\mathbf{x}^{\mathrm{n}}\right|=|\mathbf{x}|+(\mathrm{n}-1)$ t holds for $\mathrm{n}=1$, 2 . Assume result for all positive integers $\leq \mathrm{n}$.
That is, $\left|x^{n-1}\right|=|x|+(n-2) t,\left|x^{n}\right|=|x|+(n-1) t$.
We have, $2 \mathrm{~d}\left(\mathrm{x}^{\mathrm{n}}, \mathrm{x}\right)=\left|\mathrm{x}^{\mathrm{n}}\right|+|\mathrm{x}|-\left|\mathrm{x}^{\mathrm{n}-1}\right|=|\mathrm{x}|+\mathrm{t}$,

$$
2 \mathrm{~d}\left(\mathrm{x}, \mathrm{x}^{-1}\right)=|\mathbf{x}|+|\mathrm{x}|-\left|\mathrm{x}^{2}\right|=|\mathrm{x}|-\mathrm{t} .
$$

For $\mathbf{x} \& N, t>0$ and therefore $|\mathbf{x}|-\mathbf{t}<|\mathbf{x}|+\mathbf{t}$.
Thus $2 \mathrm{~d}\left(\mathrm{x}, \mathrm{x}^{-1}\right)<2 \mathrm{~d}\left(\mathrm{x}^{\mathrm{n}}, \mathrm{x}\right)$, and hence by A_{4},
We have $2 \mathrm{~d}\left(\mathrm{x}^{\mathrm{n}}, \mathrm{x}^{-1}\right)=2 \mathrm{~d}\left(\mathrm{x}, \mathrm{x}^{-1}\right)$.
That is, $\left|x^{n}\right|+|x|-\left|x^{n+1}\right|=|x|-t$, hence $\left|\mathbf{x}^{\mathrm{n}+1}\right|=\left|\mathbf{x}^{\mathrm{n}}\right|+\mathbf{t}=|\mathbf{x}|+\mathrm{nt}$.
Hence results holds for all positive integers n.
The Proposition implies that an element x of finite order G is non-archimedean, and if x is archimedean then the lengths $\left|x^{n}\right|$ are unbounded, a result obtained in ${ }^{[2]}$.

3.1.1 Corollary

$$
x \in N \text { implies } y x y^{-1} \in N \text { for all } y \in G .
$$

Proof

$$
\begin{gather*}
2 d\left(y x^{n}, y\right)=\left|y x^{n}\right|+|y|-\left|y x^{n} y^{-1}\right| \tag{1}\\
2 d\left(y, x^{-n}\right)=|y|+\left|x^{n}\right|+\left|y x^{n}\right| \tag{2}
\end{gather*}
$$

From (1) and (2) respectively, we have

$$
\left|y x^{n} y^{-1}\right| \leq\left|y x^{n}\right|+|y| \text { and }\left|y x^{n}\right| \leq|y|+\left|x^{n}\right| .
$$

By part (i) of the Proposition, $\left|\mathbf{x}^{\mathbf{n}}\right| \leq|x|$ for all $\mathrm{n} \geq 0$.
Therefore, $\left|y x^{n} y^{-1}\right| \leq|x|+2|y|$.
That is, the lengths $\left|\left(\mathrm{yxy}^{-1}\right)^{n}\right|$ are bounded and hence y $\mathrm{x} \mathrm{y}^{-1} \in \mathrm{~N}$

3.2 Proposition

$K=\{x \in G:|x|=0\}$ is a subgroup contained in N

Proof

Clearly K is contained in $N . K$ is a subgroup since if $|x|=|y|=0$ then $-1 / 2\left|x y^{-1}\right|=$ $d(x, y) \geq 0$;
therefore, $\left|x y^{-1}\right|=0$.

3.2 Definition

A relation \sim on G is defined by $x \sim y$ if and only if $\left|x y^{-1}\right| \leq|x|=|y|$ or equivalently by $x \sim y$ if and only if $2 d(x, y) \geq|x|=|y|$.

This is an equivalence relation on G; it is clearly reflexive and symmetric and transitivity follows from A_{4}.

Let $C(x)$ denote the equivalence class of $x \in N$, and $M(x)=\{y z: y, z \in C(x)\}$.

3.3 Proposition

$$
x \sim x^{-1} \sim y \sim y^{-1} \text { implies that } x y \in N
$$

Proof

For any element x of $G, x \sim x^{-1}$ if and only if $x \in N$.
As the elements x, x^{-1}, y, y^{-1} are all equivalent, we have

$$
\begin{aligned}
& \left|x y^{-1}\right|,|x y|,|y x| \leq|x|=\left|x^{-1}\right|=|y|=\left|y^{-1}\right| \\
& 2 d(x y, y)=|x y|+|y|-|x|=|x y| \\
& 2 d\left(y, x^{-1}\right)=|y|+|x|-|y x|=2|x|-|y x| \\
& 2 d\left(x y, x^{-1}\right)=|x y|+|x|-|x y x|
\end{aligned}
$$

Since $|x y|,|y x| \leq|x|$ it follows that $d(x y, y) \leq d\left(y, x^{-1}\right)$, and hence by $A_{4}, d(x y, y) \leq$ $d\left(x y, x^{-1}\right)$, giving $|x y z| \leq|x|$.

Now $2 \mathrm{~d}\left(\mathrm{xy}, \mathrm{y}^{-1} \mathrm{x}^{-1}\right)=|\mathrm{xy}|+|\mathrm{xy}|-\left|(\mathrm{xy})^{2}\right|$,

$$
\begin{aligned}
& 2 d\left(y^{-1} x^{-1}, x^{-1}\right)=|x y|+|x|-|y|=|x y|, \\
& 2 n d\left(x y, x^{-1}\right)=|x y|+|x|-|x y x| .
\end{aligned}
$$

As $|x y x| \leq|x|$ it follows that $d\left(y^{-1} x^{-1}, x^{-1}\right) \leq d\left(x y, x^{-1}\right)$ and hence by $A_{4}, d\left(y^{-1} x^{-1}, x^{-1}\right)$ $\leq \mathrm{d}\left(\mathrm{xy}, \mathrm{y}^{-1} \mathrm{x}^{-1}\right)$ giving $\left|(\mathrm{xy})^{2}\right| \leq|\mathrm{xy}|$. Thus $\mathrm{xy} \in \mathrm{N}$.

3.1 Theorem

$H=C(x) \cup M(x)$ is a subgroup of G.

Proof

By definition $C(x)$ is a subset of N and, by Proposition $3.3 \mathrm{M}(x)$ is also contained in N; therefore H is contained in N. Since $C(x)$ contains the inverses of its elements, the same is true for $M(x)$, which contains the identity element 1 . Thus it remains to show that H is closed under multiplication. For this purpose we consider products of elements in $C(x)$. Let $x, y, z \in C(x)$, then if $|x y|=|x|=|y|$ it follows from definition 3.2 that $x y \sim y$ and hence $x y \sim C(x)$, and so $x y z \in M(x)$. If $|x y|<|x|=|y|=|z|$ then $2 d$ $(x y, y)<2 d\left(y, x^{-1}\right)$, and A_{4} implies $d(x y, y)=d\left(x y, x^{-1}\right)$, giving $|x y x|=|x|$; and we consider

$$
\begin{aligned}
& 2 \mathrm{~d}(\mathrm{xyx}, \mathrm{x})=|\mathrm{xyx}|+|\mathrm{x}|-|\mathrm{xy}|=2|\mathbf{x}|-|\mathrm{xy}| \\
& 2 \mathrm{~d}\left(z^{-1} \mathbf{x}, \mathrm{x}\right)=\left|z^{-1} \mathbf{x}\right|+|\mathbf{x}|-\left|z^{-1}\right|=\left|\mathbf{z}^{-1} \mathbf{x}\right|
\end{aligned}
$$

Since $x \sim x^{-1} \sim z \sim z^{-1}$, we have $\left|z^{-1} x\right| \leq\left|z^{-1}\right|=\left|x^{-1}\right|=|x|$.
Hence $d\left(z^{-1} x, x\right)<d(x y x, x)$ and A_{4} implies that $d\left(z^{-1} x, x\right)=d\left(x y x, z^{-1} x\right)$, giving $|x y z|=$ |x|.

Thus $|x y|=\left|x y z z^{-1}\right|<|x y z|=|x|=|z|$. By definition 3.2, this shows that $x y z \sim z \sim$
x and $x y z \in C(x)$. Also, if $x, y, z, w \in C(x)$ then, if $|x y|=|x|=|y|$, we have shown above that $x y \in C(x)$, and so $x y z w$ is the product of three elements from $C(x)$ which, as we have shown is an element of $C(x) \cup M(x)$. If $|x y|<|x|=|y|$, then we have shown that $x y z \in C(x)$, and so $x y z w \in M(x)$. These cases cover the product of two elements of H $=C(x) \cup M(x)$, proving that H is a group.

Acknowledgement

The author is grateful to the referees for their comments and suggestions.

References

[1] Nielsen, J., A basis for subgroups of free groups, Math. Scand., 3: 31-43 (1955).
[2] Lyndon, R.C., Length functions in groups, Math. Scand., 12: 209-234 (1963).

دراســـــة في منسلمات دالة الطــــول على الزمـــر

بحمد إبراهمـم خـــــــر"

تسم الرياضيات ، كلية العلوم ، جامعة اليرموك ، إر.ــد ، الملكة الأردنية الهاتشمية

يدرس هذا البحث مفهوم دالة الطول على الزمر حيث يفدم دالة طول عامة عكقت مسلمتين فقط ومعرنة على إية زمرة .

نم يدرس البحث خواص عنامر الزمرة تحت تأثير دالة الطول مذه ، ، حيث ير يصل إلى نتائج عامة تصنف عناصر الزمرة ، ومن ثم يبرهن نظرية لزمرة جزئية في الزمرة الاصلية .

[^0]: *Present Address: Mathematics Department, Faculty of Science, K.A.U., Jeddah, Saudi Arabia.

