A Note on the Axioms for a Length Function on a Group

MOHAMMAD I. KHANFAR* Mathematics Department, Yarmouk University, Irbid, Jordan.

ABSTRACT. The author introduces the concept of a length function on a group satisfying only two axioms. Under such general length function, he investigates properties of the elements of the group. General results are obtained and a subgroup theorem is proved.

1. Introduction

The ideas of Nielsen^[1], and in particular the idea of calculating the extent of cancellation in a product of reduced words in a free group, had motivated Lyndon^[2] to develop a set of axioms for a length function from a group to the set non-negative integers. He postulated six axioms for integer – valued length functions on free groups and free products.

In this paper we define a general length function; a real-valued length function satisfying only two of Lyndon's axioms, and then obtain some consequences and results under such a length function.

2. Length Functions

We give the following definition:

2.1 Definition

Let G be a group. A length function $||: G \rightarrow R$ is a function assigning to each element x in G a real number |x| such that for all x, y, z in G the following axioms are satisfied:

^{*} Present Address: Mathematics Department, Faculty of Science, K.A.U., Jeddah, Saudi Arabia.

 $\begin{array}{lll} A_2 & |x^{-1}| &= & |x| \\ A_4 & d(x,y) < d(x,z) & \text{implies } d(x,y) = d(y,z) \\ \text{where } d(x,y) &= \frac{1}{2} \left[|x| + |y| - |xy^{-1}| \right]. \end{array}$

That is, the two smallest numbers in the triple of real numbers d(x,y), d(x,z), d(y,z) are equal. The numbering of the axioms is due to Lyndon^[2].

An example of a length function is the usual modulus function on R, the additive group of the real numbers.

2.2 Proposition

For $x, y \in G$, we have

- (i) $d(x,y) \ge \frac{1}{2} |1|$, 1 is the identity element of G
- (ii) $|\mathbf{x}| \ge |\mathbf{1}|$
- (iii) $d(x,y) \le |x| \frac{1}{2} |1|$.

Proof

(i) 2d(x,1) = |x| + |1| - |x| = |1| = 2d(1,y); hence by A_4 , $2d(x,y) \ge |1|$.

(ii) $2d(x,x) = |x| + |x| - |1| \ge |1|$, by (i).

(iii)
$$2d(\mathbf{x},\mathbf{y}) = |\mathbf{x}| + |\mathbf{y}| - |\mathbf{x}\mathbf{y}^{-1}|$$

= $2|\mathbf{x}| - (|\mathbf{x}| + |\mathbf{x}\mathbf{y}^{-1}| - |\mathbf{y}|)$
= $2|\mathbf{x}| - 2d(\mathbf{y}\mathbf{x}^{-1}, \mathbf{x}^{-1})$
 $\leq 2|\mathbf{x}| - |\mathbf{1}|$

That is, $d(x,y) \le |x| - \frac{1}{2}|1|$.

As another example, let any element $x = x_1 x_2 \dots x_n$ as a reduced word in a free group F with basis X. Then |x| = n defines a length function on F satisfying the above axioms.

If the length function is normalized by subtrating |1|, then it still satisfies A_2 and A_4 ; so without loss of generality, we may assume that the length function on G satisfies axiom:

$$A_{1}' |1| = 0$$

This is a weakened form of Lyndon's axiom:

$$A_1 \cdot |\mathbf{x}| = 0$$
 if and only $\mathbf{x} = 1$ in G;

but it may be noted here that A'_1 is added more for convenience than necessity.

Using Proposition 2.2 and A'_1 , A_2 , A_4 the consequences in the following Proposition are immediately obtained.

222

2.3 Proposition

- (i) $d(x,y) \ge 0$; this is Lyndon's axiom A_3
- (ii) $d(\mathbf{x},\mathbf{x}) = |\mathbf{x}| \ge 0$
- (iii) $d(x,y) \le |x|$
- (iv) d(x,y) = d(y,x).

3. Non-Archimedean Elements

3.1 Definition

In a group G with a length function an element x is archimedean if $|x^2| > |x|$ and non-archimedean if $|x^2| \le |x|$.

Let N = { $x \in G : |x^2| \le |x|$ }.

3.1 Proposition

Let x be an element of G. Then

(i) $x \in N$ implies $|x^n| \le |x|$ for all integers $n \ge 0$,

(ii) $x \notin N$ implies $|x^n| = |x| + (n - 1) t$ for any positive integer n and where $t = |x^2| - |x|$.

Proof

(i) Let $x \in N$. We use induction on n. Result holds trivially for n = 0, 1 and by definition for n = 2.

Suppose result is true for all non-negative integers $\leq n$.

That is, $|\mathbf{x}^{n-1}|$, $|\mathbf{x}^{n}| \le |\mathbf{x}|$. Now $2d(\mathbf{x}^{n}, \mathbf{x}) = |\mathbf{x}^{n}| + |\mathbf{x}| - |\mathbf{x}^{n-1}| \ge |\mathbf{x}^{n}|$, $2d(\mathbf{x}, \mathbf{x}^{-1}) = |\mathbf{x}| + |\mathbf{x}^{-1}| - |\mathbf{x}^{2}| \ge |\mathbf{x}| \ge |\mathbf{x}^{n}|$;

hence by A_4 , 2d $(x^n, x^{-1}) \ge |x^n|$.

That is, $|\mathbf{x}^n| + |\mathbf{x}| - |\mathbf{x}^{n+1}| \ge |\mathbf{x}^n|$, giving $|\mathbf{x}^{n+1}| \le |\mathbf{x}|$.

Hence result holds for all integers $n \ge 0$.

(ii) For $x \notin N$, the formula $|x^n| = |x| + (n - 1)$ tholds for n = 1, 2. Assume result for all positive integers $\leq n$.

That is,
$$|\mathbf{x}^{n-1}| = |\mathbf{x}| + (n-2)t$$
, $|\mathbf{x}^n| = |\mathbf{x}| + (n-1)t$.

We have, $2d(x^n,x) = |x^n| + |x| - |x^{n-1}| = |x| + t$,

 $2d(x,x^{-1}) = |x| + |x| - |x^2| = |x| - t.$

For $x \notin N$, t > 0 and therefore |x| - t < |x| + t.

Thus $2d(x,x^{-1}) < 2d(x^n,x)$, and hence by A₄,

We have $2d(x^n, x^{-1}) = 2d(x, x^{-1})$.

That is, $|x^n| + |x| - |x^{n+1}| = |x| - t$,

hence $|x^{n+1}| = |x^n| + t = |x| + nt$.

Hence results holds for all positive integers n.

The Proposition implies that an element x of finite order G is non-archimedean, and if x is archimedean then the lengths $|x^n|$ are unbounded, a result obtained in^[2].

3.1.1 Corollary

 $x \in N$ implies $yxy^{-1} \in N$ for all $y \in G$.

Proof

$$2d(yx^{n}, y) = |yx^{n}| + |y| - |yx^{n}y^{-1}|$$
(1)

$$2d(y,x^{-n}) = |y| + |x^{n}| + |yx^{n}|$$
(2)

From (1) and (2) respectively, we have

$$|yx^ny^{-1}| \le |yx^n| + |y|$$
 and $|yx^n| \le |y| + |x^n|$.

By part (i) of the Proposition, $|\mathbf{x}^n| \le |\mathbf{x}|$ for all $n \ge 0$.

Therefore, $|yx^ny^{-1}| \le |x| + 2|y|$.

That is, the lengths $|(yxy^{-1})^n|$ are bounded and hence $y \ge y^{-1} \in \mathbb{N}$.

3.2 Proposition

 $K = \{x \in G : |x| = 0\}$ is a subgroup contained in N.

Proof

Clearly K is contained in N. K is a subgroup since if |x| = |y| = 0 then $-\frac{1}{2} |xy^{-1}| = d(x,y) \ge 0$;

therefore, $|\mathbf{x}\mathbf{y}^{-1}| = 0$.

3.2 Definition

A relation ~ on G is defined by $x \sim y$ if and only if $|xy^{-1}| \le |x| = |y|$ or equivalently by $x \sim y$ if and only if $2d(x,y) \ge |x| = |y|$.

This is an equivalence relation on G; it is clearly reflexive and symmetric and transitivity follows from A_4 .

Let C(x) denote the equivalence class of $x \in N$, and $M(x) = \{yz : y, z \in C(x)\}$.

3.3 Proposition

$$x \sim x^{-1} \sim y \sim y^{-1}$$
 implies that $xy \in N$

Proof

For any element x of G, $x \sim x^{-1}$ if and only if $x \in N$.

As the elements x, x^{-1}, y, y^{-1} are all equivalent, we have

$$\begin{split} |\mathbf{x}\mathbf{y}^{-1}|, |\mathbf{x}\mathbf{y}|, |\mathbf{y}\mathbf{x}| &\leq |\mathbf{x}| = |\mathbf{x}^{-1}| = |\mathbf{y}| = |\mathbf{y}^{-1}| \\ 2d(\mathbf{x}\mathbf{y},\mathbf{y}) &= |\mathbf{x}\mathbf{y}| + |\mathbf{y}| - |\mathbf{x}| = |\mathbf{x}\mathbf{y}| \\ 2d(\mathbf{y},\mathbf{x}^{-1}) &= |\mathbf{y}| + |\mathbf{x}| - |\mathbf{y}\mathbf{x}| = 2 |\mathbf{x}| - |\mathbf{y}\mathbf{x}| \\ 2d(\mathbf{x}\mathbf{y},\mathbf{x}^{-1}) &= |\mathbf{x}\mathbf{y}| + |\mathbf{x}| - |\mathbf{x}\mathbf{y}\mathbf{x}| . \end{split}$$

Since |xy|, $|yx| \le |x|$ it follows that $d(xy,y) \le d(y,x^{-1})$, and hence by A_4 , $d(xy,y) \le d(xy,x^{-1})$, giving $|xyz| \le |x|$.

Now
$$2d(xy,y^{-1}x^{-1}) = |xy| + |xy| - |(xy)^2|$$
,
 $2d(y^{-1}x^{-1},x^{-1}) = |xy| + |x| - |y| = |xy|$,
 $2nd(xy,x^{-1}) = |xy| + |x| - |xyx|$.

As $|xyx| \le |x|$ it follows that $d(y^{-1}x^{-1},x^{-1}) \le d(xy,x^{-1})$ and hence by A_4 , $d(y^{-1}x^{-1},x^{-1}) \le d(xy,y^{-1}x^{-1})$ giving $|(xy)^2| \le |xy|$. Thus $xy \in N$.

3.1 Theorem

 $H = C(x) \cup M(x)$ is a subgroup of G.

Proof

By definition C(x) is a subset of N and, by Proposition 3.3 M(x) is also contained in N; therefore H is contained in N. Since C(x) contains the inverses of its elements, the same is true for M(x), which contains the identity element 1. Thus it remains to show that H is closed under multiplication. For this purpose we consider products of elements in C(x). Let $x, y, z \in C(x)$, then if |xy| = |x| = |y| it follows from definition 3.2 that $xy \sim y$ and hence $xy \sim C(x)$, and so $xyz \in M(x)$. If |xy| < |x| = |y| = |z| then 2d $(xy,y) < 2d(y,x^{-1})$, and A_4 implies $d(xy,y) = d(xy,x^{-1})$, giving |xyx| = |x|; and we consider

$$2d(xyx,x) = |xyx| + |x| - |xy| = 2 |x| - |xy|,$$

$$2d(z^{-1}x,x) = |z^{-1}x| + |x| - |z^{-1}| = |z^{-1}x|.$$

Since $x \sim x^{-1} \sim z \sim z^{-1}$, we have $|z^{-1}x| \le |z^{-1}| = |x^{-1}| = |x|$.

Hence $d(z^{-1}x,x) < d(xyx,x)$ and A_4 implies that $d(z^{-1}x,x) = d(xyx,z^{-1}x)$, giving |xyz| = |x|.

Thus $|xy| = |xyzz^{-1}| < |xyz| = |x| = |z|$. By definition 3.2, this shows that $xyz \sim z \sim z$

x and xyz $\in C(x)$. Also, if x,y,z,w $\in C(x)$ then, if |xy| = |x| = |y|, we have shown above that xy $\in C(x)$, and so xyzw is the product of three elements from C(x) which, as we have shown is an element of $C(x) \cup M(x)$. If |xy| < |x| = |y|, then we have shown that xyz $\in C(x)$, and so xyzw $\in M(x)$. These cases cover the product of two elements of H = $C(x) \cup M(x)$, proving that H is a group.

Acknowledgement

The author is grateful to the referees for their comments and suggestions.

References

- [1] Nielsen, J., A basis for subgroups of free groups, Math. Scand., 3: 31-43 (1955).
- [2] Lyndon, R.C., Length functions in groups, Math. Scand., 12: 209-234 (1963).

A Note on The Axioms..

دراســــة في مسلمات دالة الطـــول على الزمـــر محمد إبراهيم خنـــفر* قسم الرياضيات ، كلية العلوم ، جامعة اليرموك ، إربــد ، المملكة الأردنية الهاشمية

يدرس هذا البحث مفهوم دالة الطول على الزمر حيث يقدم دالة طول عامة تحقق مسلمتين فقط ومعرفة على أية زمرة .

ثم يدرس البحث خواص عناصر الزمرة تحت تأثير دالة الطول هذه ، حيث يصل إلى نتائج عامة تصنف عناصر الزمرة ، ومن ثم يبرهن نظريةً لزمرة جزئية في الزمرة الأصلية .

* العنوان الحالي : قسم الرياضيات ، كلية العلوم ، جامعة الملك عبد العزيز ، جـــدة ، المملكة العربية السعودية