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This paper provides a discussion of the estimatores of the multiple 
correlation coefficient given in the literature. It also gives some 
improvements to these estimators. New estimators have been 
suggested. 
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x I , 
Let X = (!;) p-I be a px1 random vector having the N (11, ~ ) distribution. The 
population multiple correlation coefficient p is the maximum correlation between 
XI and a linear function of the p-I variables in K

2
. Let R be the sample multiple 

correlation coefficient based on a sample of N = n + I observations on X. Fisher 
(1928) estimated p2 by the biased estimator. -

p~, = R2 - (p - I) (l - R2)/{n - p + I). 

Ifram (1970) obtained the same estimator using the method of conditional 
moments. This estimator may be negative when R 2 is very close to zero. 

The sample multiple correlation coefficient R is the maximum likelihood 
~timate of 'p , see e.g. Anderson (1958, PP. 86 - 96). Wishart 1931) estimated;e by 
fog. = P/' It is clear ~at P~ is an improvement to p}, since 0 f: p ~ f: I and 
var (pi) < var (p~,) However, in the average, p2 seems to overestimate p2 
when p2 is very close to zero, since 0 

(p - I)/{N - I) ~ E (R2) ~ I 

The UMVU estimate of p2 was obtained by Olikn and Pratt (1958) as 

g{R2) = I - (n - 2)(1 - R2) II (1, I; 1/2 (n - p + 3); 1- R2)/{n - p + I), 

where 2FI is a hypergeometric function. For the definition of hypergeometric 
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functions see Ifram (I 965). This estimate has the defect that when R2 is small it 
becomes negative. 

This brings us to the question; How should a multiple correlation coefficient be 
estimated? Should one be estimatiQg p2 rather than p? Would it be better to 
transform and try to estimate pI/ (I - p2 P. This paper provides some new 
estimates of p2 and p2 / (I - p2). Section 2 gives a comparison between the method 
of moment estimates and the Ifram method of conditional moments. Section 3 
applies an approximation to the density of R 2 and then an estimate for p2 is 
obtained through that density. A Bayes estimate is given in Section 4. 

Method of Moments 

Set () = p2/(/ - p2)and X = R2/(I - R2). It is known that 

E (R2) = 1 - (n - p + I) (I - p2) II (I, I; 1/2 (n + 2); p2)/n. 

So the method of moments does not lead to an «explicit» estimator. To get rid of 
this difficulty, Ifram (I970) has suggested a conditional method of moments 
estimate. His procedure depends on the fact that R 2 is a negative binomial mixture 
of beta variables, and it leads to the estimators. 

A2 A2 
PI = nR2/(n - p + I) - (p - 1)/(n - p + I) = ~J 

and 
A 

[}l = (n - p + 1) X / n - (p :: I) / n. 

Now, we will show that e I is a biased estimate and we will give another 
estimator ~ which is" unbiased and has smaller variance than () I' Thus 02 may be 
an improvement to °1, 

Wijsman (1959) has shown that X is a gamma mixture of noncentral F', 
namely: 

X :: F' (Y) 
p-l,n-p+1 

where Y is a gamma random variable with parameters (1/2 n, 28). Hence 

E (X) = E (E (F' p _ I.n _ p + I (Y) I Y» 

= E «p - 1) (1 + Y / (p - 1)) / (n - p - 1)) 

= (p - I) (1 +n9 / (p - 1»/(n -p - I). 

So, the method of moments estimate for IJ and p2 are 
A 

(}2 = (n - p - 1) X/ n - (p - I) / n. 
A2 
p = 1 - n/«n - p - 1) X + (n - p + 1)). 

2 '" A A A 

Note that €II =82 + 2X/n, E (92) = €I, and 

var (02)/var (8
1
) = «n - p - I)/(n - p + 1))2 < I. Hence BI is a biased estimator 
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A A 

and () 2 is an unbiased estimator. Moreover 9, has smaller variance than 81. 

It is clear that e 2 may be negative. When 8~ is positive with high probability? It 
will be shown that it is so when n > 64. 

Now, 

var (0
2

) = «n - p - l)/n)2 var (X) 

= «n - p - l)/n)2 {E(var (F'p _ I, n _ p + I(Y) I Y» 

+ var (E(F' p _ I, n - p + I (Y) I Y) } 
= 2 (p - I)(n - 2)(n - p - 3)-1 n-2 E(I + 2Y/(p - I) 

+ y 2/(n - 2) (p - I» 
+ n-2 (p- 1)2 var (I +Y/ (p-I» 
= 2(n-2) (n-p-3)-1 n- I «p- I)/n + 2 0+(2n-p-l) 02/(n-2». 

A A S A 

Note that var (I:)) A'-:";' 0 as n __ 00 and n var (e ) converges to 49 
(I + 9) as n __ 00 Hence 8 ~ is a consistent estimate for e an~ roughly speaking 
one may use the approximation 

(var (A92»- 1/2 (92 - (J) ~ N (0,1) A 

to get the P (0
2 

.:> 0) ~ I when n ~ 64. So we recommend 82 when n ~ 64. 

Finally, 01 could be used to get its corresponding unbiased estimate, namely; 

9
3 

= (n - p - I) X/n - (p - l) (n - p - 3) (n - p + I)-I n- I. 

Note .that var (0).= var (0 ), 02 - 03 = - 4 (p -:- I)/? and ~~ 92 and 9
3 

may ~ 
negative when X IS very close to zero. Hence, In thIs case 0

3 
IS «better» than 62 

when n is small in the sense that it is closer to the parameter O. 

Estimation through Approximations 

Fisher (1928) has shown that as n __ 00, (n - p) R2 = X} «n - p) p2) . Let-r­
= (n - p) p2 and Y = (n - p) R2. Applying the method of moments one gets the 
estimator p2= Rl - P/ (n - p). 

Using the estimates of the noncentrality parameter of X j, ((n - p) p2) given by 
Perlman and Rasmussen (I975) we may estimate p2 by. 

;t = R2 - p (n - p)-I + (b (n - p)-2 (R2)-1 

if p ~ 5 and be is some constant such that 0 <" b < 4 (p - 4). 

To compare p t with the other estimates we need Theorem I P. 464 given by 
Parlman and Rasmussen (1975) which states that: Let Y be a X~ ([), tb = Y - P 
+by- I, p ~ 5, and 0 < b < 4 (p - 4) then for every fixed t ~ 0, 

E (Y - p - t )2 > E ( tb - 1:. )2. 

Apply this theorem with Y = (n - p) R 2 and t = (n - p) p2 to get 

E (p2 _ p2)2> E(P/ _ p2)2 . 



342 Adnan M. Awad 

Hence Ph 2 is an improvement to p2. 

Note that p b 2 may be greater than one or negative. So there is a need to find 
when "P/ lies betwe~n 0 and I. It can be shown that this occures when. 

n (n2 - 4b)1/2 R2 < _P_ -
(p2 _ 4b)1/2 

2 (n - p) 2(n - p) ~ - 2(n - p) 2(n - p) 

or 

p 
+ 

p2 - 4b 
< R2. 

2 (n - p) 2 (n - p) 

So, it is clear that this estimate is not a good one, since it may be used only in a 
small range of the possible values or R2. 

Bayes Estimation 

Unfortunately, the method of moments does not lead to a positive estimate for 
e or for p2. We could get rid of this difficulty by using a Bayes method. 

The Bayes approach assumes that p2 is a random variable with some prior 
distribution q (p2). Then the Bayes estimate Po 2 is the one which minimizes the 
oosterior mean square error(see Wasan (1970), P. 185). Moreover it is known that 
o ~ p2 ::; I, hence 0 ~ E (p2 I R 2) ::; I a.s. So the Bayes estimate is an 
improvement to the other estimates. 

It is known that (see Anderson (1958), P. 95) the density of R2 given p2 is 

n 
n-p- I 

2 
f(R~p2) _ (t - p2) 2 

- (n- p + I 
- R 2) . II ( ~ , ~ ; p-I; p2 R 2). 

2 2 2 
B __ 

2 

Set 'P = p2 and r = R 2. Assume 'P has a beta prior distribution 

q( 'P) = 'PiX-I (t - 'P )II-I/B ( iX, (3). 

Then the posterior mean of p2 given r IS 

E ('P I r) = S ~ 'P U 'P ) f (r I 'P) d 'P / f ~ n 'P ) f (r I 'P ) d 'P 

l2 ( ~ n 
iX + I 

p-I n 
--, IX+.8+ I +_;r) 

iX 2 2 2 2 
= 

.8 n l2 ( ~ n p-I 
ix. + .8+ 

n r ) IX + +- , IX -2-' 2 2 2 2 
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Unfortunately this estimate ;B 2 = E (.p I r) has a complicated expression, so 
there is a need to approximate it. 

Note that 

2 

n p-l • 
,IJ;--,();+P'+ 

2 2 
n 

where 

[( ~ + K) [( a + K) [( p - 1 ) [( a + P + ~ ) 
222 

~= 
p-l +K [ ( n )[(a)[( ) [( a+fJ+ n 

2 2 2 
Similarly 

+ K) K! 

l2 ( n n , a + I; p-I 
, tX+I+P+ n ; R2 ) = !~Obk rk 

2 2 2 2 

where bk equales a
k 

with each a is replaced by a + I . 

Hence 

It can be shown that: 

({3 + ~ ) k 
2 

bk - ~ = ak --------

Hence 

a ( a + /3 + ~ + K) 
2 

tX ( (J + ~ ) ( ~ )2 
2 2 2 + _________________ R 

and 

p- I .( a + {3 + ~)2 ( a + (J + 
2 2 

IF 
p-I 

a t::--
2 

+ ~ ) 
2 



344 Adnan M. Awad 

A cknow ledgment 

Thanks are due to the referee for his suggestions for improving this paper. 

References 

Anderson, T. W. (1958) Introduction 10 Multivariate Analysis . Wiley, New York. 

Fisher, R.A. (1928) The general sampling distribution of the multiple correlation coefficient. 
Proc. Roy. Soc. Ser. A; 121,654 - 673 . 

Ifram, A.F. (1965) Hypergeometric functions in sequential analysis. Ann. Math. Statist.J6. 
1870-1872. 

Ifram, A.F. (1970) On mixtures of distributions with applications to estimation. JA SA. 65, 

749-754. 

Olkln and Pratt (J 958) Uniformly rrurumum variance unbiased estimate for the multiple 
correlation coefficient. Ann. Math . Statist . 29,201 - 208. 

Perlman, M.D. and Rasmussen, U.A. (J 975). Some remarks on estimating a noncentrality 
parameter. Comm. Statist .. 4 (5), 455 - 468. 

Wasan, M.T. (J 970) Parametric Estimation. Mc Graw - Hill. N.Y. 

Wljsman, R.A. (J 959) Applications of a certain representation of the Wishart matrix. Ann. 
Math. Statist .. JO, 597 - 601. 

Wishart, J. ' (J 931) The mean and second moment coefficient of the multiple correlation 
coefficient in samples from a normal population. Biometricka. 22, 361 - 553 . 



Estimation of the Multiple Correlation Cremcient 345 

~,.. .J- ul,j~ 

o 0~J ~I '...l.?) ,t!J,...~1 4.....6:- , ~~ ~I o;l~ 

~I .)J.A.i1 j.~J~1 ~W ~I ol.)!..IA:l1 ~I 1..iA U=;l:.! 

Lr" J.4ii o..l.:!~ c.1.)!~ (~ d ~ ou~1 ~ ~IJ.) c.i 

J). c.!J ~ ~ I 1..iA ~ l1...-.::...1 ..u J 0 ~ U I c.1.)!..IA:l I ctl; 

iJjJlJ iJjJl 4). c.,! 0 .)..L.A.i1 j.~J~1 J....~ .)!..IA:l 

41). ui ~ ..uJ oj:.! 4!).J ($.'!.;=JI .)!..IA:l1 4!).J a.J~1 
o .)J.A:i1 j.~J ~I ~~ .)!..IA:l 4.l~1 ~ y,l-i J..4ii c.,! j:.! 




