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On the Strong Limit of Well - Bounded
Operators
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Department of Mathematics, Yarmouk University, Irbid,
Jordan.

In this paper we prove that the strong limit of a net (S) of
well-bounded operators is a well-bounded operator S. Also we prove
that the strong limit of i(Su) is f(S) whenever f € AC(J).

1. Notations

Throughout this paper, X is a complex Banach space, and L(X) is the algebra of
all bounded linear operators on X. If J=[a,b] is a compact interval of the real line R,
then we use BV(J) to denote the Banach algebra of all complex-valued functions of
bounded variation on J with norm lIl.Il| defined by

M =1fb) + var (£J) (f €BVQ))

where var (f,J) is the total variation of f over J. The Banach subalgebra of BV(J)
consisting of all absolutely continuous functions on J will be denoted by AC(J).
We use z(J) to denote the subalgebra of AC(J) consisting of all polynomials on J.

2. Well-bounded operators

2.1. Definition
Let T € L(X). Wesay that T is well-bounded if there is a compact interval J and a
real constant K such that
NPT IZSKHIPIN (PGE(J)) 2.1.1).

For a full discussion of well-bounded operators, the reader is advised to see
(Dowson, 1978).

2.2. Theorem

Let {T }be a bounded net of bounded linear operators on an arbitrary Banach
space X such that{T }converges toT in the strong operator topology (T .
Then T} S, T" for any positive interger n.
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Proof.
Let {Aa}and {Ba}be two bounded nets of bounded linear operators on X such
that:

S S
Aa_‘A, B, >, Bandll AaH <K
Then for X=Xy s X € X, we have: .
|
1A, - ABxII < 5 and | (B, - B)x 1< €,

for a sufficiently large a and for an arbitrary g > 0 and €2>0.
Now
i (AaBa— AB) Il =l (AaBa— AaB + AaB - AB) x Il
Using the triangle inequality we get
[ (AaBa—AB) xll < IIAa(Ba—B) xIl + |I(Aa—A) Bx |l

€
CKIBB) xIl+

2
€
Taking g, = ——  we get
2K
€ €
“(AaBdAB) &K .+ = g
2K 2

Hence A B, -5, AB which means that T} -5, T? whenever T 5, T and by
induction the proof is complete.

3. Theorem
Let X be a Banach space and let {S :OtGA} be a net of well-bounded operators on
X converging to S in the strong operators topology such thatlllS 1< M < e.

Then

(1) S is a well-bourided operator.
(2) if J =[a,b] is a compact interval satisfying the conditions in Definition 2.1
and if f € AC(J), then I(Sa) S, fS).

Proof
(1) Let P be any complex polynomial. Since Sa’ (a«€A), is well bounded then,

] P(Sa)ll LK IIPIL

Since S, 5, S, then, by Theorem 2.2., §%, 5, §" Hence P(S) 5. P(S). This
implies that B

NPSHH L KNIPIIL
Which means that S is well-bounded.
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(2) Let f € AC(J). Since polynomials are norm dense in AC(J), there exists a
sequence {P of polynomials such that P — f in the norm of AC(J). Since S is
well-bounded for all a(in the index set Af we have:

Il P (S JISK P 1= K(P (o)l + var (P_,J)).
Smce P — f, we have

RS DI < K {1
Hence,
TP (S) -fS)I < KIIP £
<K {IP (b) - flb) | + var (P -D}
Hence

Pn(Sa)x—»((Sa) x uniformly for everyll x II< 1.
Thus, by the Moore-smith convergence theorem (Dunford and Schwartz, 1958).
f(S)x = llm 11m P (S X = hm hm P (S )X = hm ﬂS )X.

n

Hence f(Sa) f(S) (f € AC(J))
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