

On the Strong Limit of Well-Bounded Operators

A. A. Jibril

Department of Mathematics, Yarmouk University, Irbid, Jordan.

In this paper we prove that the strong limit of a net (S_{α}) of well-bounded operators is a well-bounded operator S. Also we prove that the strong limit of $f(S_{\alpha})$ is f(S) whenever $f \in AC(J)$.

1. Notations

Throughout this paper, X is a complex Banach space, and L(X) is the algebra of all bounded linear operators on X. If J=[a,b] is a compact interval of the real line R, then we use BV(J) to denote the Banach algebra of all complex-valued functions of bounded variation on J with norm |||.||| defined by

$$||| f ||| = | f(b) | + var (f,J)$$
 (f $\in BV(J)$)

where var (f,J) is the total variation of f over J. The Banach subalgebra of BV(J) consisting of all absolutely continuous functions on J will be denoted by AC(J). We use P(J) to denote the subalgebra of AC(J) consisting of all polynomials on J.

2. Well-bounded operators

2.1. Definition

Let $T \in L(X)$. We say that T is well-bounded if there is a compact interval J and a real constant K such that

 $|| P(T) || \le K ||| P |||$ (P \in P(J)) (2.1.1).

For a full discussion of well-bounded operators, the reader is advised to see (Dowson, 1978).

2.2. Theorem

Let $\{T_{\alpha}\}$ be a bounded net of bounded linear operators on an arbitrary Banach space X such that $\{T_{\alpha}\}$ converges to T in the strong operator topology $(T_{\alpha} \xrightarrow{s} T)$. Then $T_{\alpha}^{n} \xrightarrow{s} T^{n}$ for any positive interger n.

Proof. Let $\{A_{\alpha}\}$ and $\{B_{\alpha}\}$ be two bounded nets of bounded linear operators on X such

$$\begin{array}{c} A_{\alpha} \stackrel{s}{\longrightarrow} A, \ B_{\alpha} \stackrel{s}{\longrightarrow} B \text{ and } || A_{\alpha} || \leq K \\ \text{Then for } x=x_{1}, \ \dots, \ x_{n} \in X, \text{ we have:} \\ || (A_{\alpha} - A)B x || \leq \frac{\varepsilon_{1}}{2} \text{ and } | (B_{\alpha} - B)x | \leq \varepsilon_{2} \end{array}$$

for a sufficiently large α and for an arbitrary $\varepsilon_1 \ge 0$ and $\varepsilon_2 > 0$. Now

 $|| (A_{\alpha}B_{\alpha} - AB) || = || (A_{\alpha}B_{\alpha} - A_{\alpha}B + A_{\alpha}B - AB) x ||$ Using the triangle inequality we get

$$||(\mathbf{A} \underset{\alpha}{\mathbf{B}} - \mathbf{A} \mathbf{B}) \mathbf{x}|| \le ||\mathbf{A} \underset{\alpha}{\mathbf{B}} (\mathbf{B} _{\alpha} - \mathbf{B}) \mathbf{x}|| + ||(\mathbf{A} _{\alpha} - \mathbf{A}) \mathbf{B} \mathbf{x}||$$

$$\leq K \parallel (\mathbf{B}_{\alpha} \mathbf{B}) \mathbf{x} \parallel + \frac{\varepsilon_1}{2}$$

Taking $\varepsilon_2 = -\frac{\varepsilon_1}{2K}$ we get

$$\|(\mathbf{A}_{\alpha}\mathbf{B}_{\alpha}\mathbf{A}\mathbf{B})\mathbf{x}\| \leq \mathbf{K} \cdot \frac{\varepsilon_{1}}{2\mathbf{K}} + \frac{\varepsilon_{1}}{2} = \varepsilon_{1}$$

Hence $A_{\alpha}B_{\alpha} \xrightarrow{s} AB$ which means that $T_{\alpha}^2 \xrightarrow{s} T^2$ whenever $T_{\alpha} \xrightarrow{s} T$ and by induction the proof is complete.

3. Theorem

Let X be a Banach space and let $\{S_{\alpha}: \alpha \in A\}$ be a net of well-bounded operators on X converging to S in the strong operators topology such that $||S_{\alpha}|| \le M \le \infty$. Then

(1) S is a well-bounded operator.

(2) if J = [a,b] is a compact interval satisfying the conditions in Definition 2.1 and if $f \in AC(J)$, then $f(S_{\gamma}) \xrightarrow{S_{\gamma}} f(S)$.

Proof

(1) Let P be any complex polynomial. Since S_{α} , ($\alpha \in A$), is well bounded then,

$$|| P(S_{\lambda})|| \leq K ||| P |||$$

Since $S_{\alpha} \stackrel{s}{\longrightarrow} S$, then, by Theorem 2.2., $S_{\alpha}^{n} \stackrel{s}{\longrightarrow} S^{n}$. Hence $P(S_{\alpha}) \stackrel{s}{\longrightarrow} P(S)$. This implies that

$$|| P(S)|| \leq K ||| P |||,$$

Which means that S is well-bounded.

334

(2) Let $f \in AC(J)$. Since polynomials are norm dense in AC(J), there exists a sequence $\{P_n\}$ of polynomials such that $P \rightarrow f$ in the norm of AC(J). Since S_{α} is well-bounded for all α (in the index set A), we have:

$$||P_n(S_{\alpha})|| \le K |||P_n||| = K(|P_n(b)| + var(P_n,J)).$$

Since $P \rightarrow f$, we have

 $|| f(S_{\lambda})|| \leq K ||| f |||$

Hence,

$$|| P_n(S_{\alpha}) - f(S_{\alpha})|| \le K || P_n - f ||$$

$$\le K \left\{ |P_n(b) - f(b)| + \operatorname{var}(P_n - f) \right\}$$

Hence

Hence

 $P_n(S_{\alpha}) \xrightarrow{} f(S_{\alpha}) \xrightarrow{} x$ uniformly for every $||x|| \leq 1$.

Thus, by the Moore-smith convergence theorem (Dunford and Schwartz, 1958).

$$f(S)x = \lim_{n} \lim_{\alpha} P_{n}(S)x = \lim_{\alpha} \lim_{\alpha} P_{n}(S)x = \lim_{\alpha} f(S)x = \lim_{\alpha} f(S)x.$$

$$f(S) = f(S) \qquad (f \in AC(J)).$$

Acknow ledgement

This paper is a part of a dissertation presented for the degree of Doctor of philosophy in Glasgow University. The author wishes to express his gratitude to professor H.R. Dowson for his guidance and his encouragment.

References

Dowson, H.R. (1978) Spectral Theory of Linear Operators. Academic Press, London. Dunford, N. and Schwartz, J.T. (1958) Linear Operators, Part 1. Wiley-Interscience.

النهايات القوية للمؤثرات المحدودة جيداً عدنان عبد القادر جبريل دائرة الرياضيات – جامعة اليرموك – اربد – الأردن

في هذا البحث نثبت أن النهاية القوية لشبكة س_ن من المؤثرات المحدودة جيداً هي مؤثر محدود جيداً س. كذلك نثبت أن النهاية القوية لـ ق(س_ن) هي ق (س) حيث ق تنتمي لمجموعة الدوال مطلقة الاتصال على فترة مغلقة ل.