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n 
This paper considers lim n-a L LA . (xl B. (xl and 

n .... 00 J=O x n-J J 
n 
L SA. (x) B. (xl dx and their application in the 

j=O n-J J 

Central Limit theorem. To arrive at these results some ratio limit 

theorems for numbers are generalized for functions. It has been 

proved that under certain conditions these limits are equal to the 

n 

limits lim n -a L L A. (xl B (xl and 
n .... 00 j=O x J 

11 

lim n -a L S A. (xl B (x) dx respectively where B (x) = lim B (x) 
n .... ..., j=o J n_ 00 n 

Central limit theorem plays a great role in the theory of statistics. Chebyshev 
and Markov proved that if 

\

1. 3. 5. 
lim E (Y ) = 

n - "" n 0 

.(k- I), when k is even 

otherwise 
n 

where Y n = i~' (Xi - P)/vn with f.Lj = E(Xj) and X" X2, .. . is a sequence of 

random variables, then in the limit Y has normal distribution with mean zero and 
n 

variance 82 = lim Var (Y ). Thus to prove the central limit theorem under n __ oo n 

certain given conditions one has to prove a set of limiting results which can be 
used in proving the central limit theorem. To start with we first state two lemmas 
the proof of which can be found in most text books. Weare quoting the first one 
from Karlin 0966, p127) and the second from Chung 0967, p66). 

129 
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Lemma I . If 0 ~ a < K and r a = 00 , then the relation lim b = b with b 
finite implies 

n n=O n n-. 00 n 

lim 
n_ "" 

n 

1: a . b. 
n-1 1 

j=O _____ =b. 

n 

1: a. 
1 

j=O 

Lemma 2. If 0 ~ a ~ K, a sufficient condition that 
n 

n 

1: a 
n-j b. 

1 

lim j=O lim b = 
n~ 00 n- "" n 

n 

1: a. 
1 

j=O 

a 
whenever {b } has a limit is that lim _n_ = O. 

n n-oo n 
1: a. 

j=O 1 

It is obvious that condition lim 
a 

n is linient as compared to the 

n 
condition lim r 

n .... ao j=O 

n .... 00 n 
r a j 

j=O 
a. = "" and that the latter implies the former but not conversely. 

1 

In this paper our aim is to generalize these lemmas when we have functions 
A(x) and B.(x) instead of a. and b .. Section 2 is devoted to the situation when A (x) 
aJd B(x) Je functions ot the dtscrete variable x. In this case we will generalize 
lemma 1. The continuous case will be considered in section 3 and there we will 
generalize lemma 2. 

2 . Discrele case 

Let A (x) and B. (x) be defined on I, the set of natural numbers, for all j. 
Suppose turther that 1the sum r A (x) exists which we may denote by a .. We are 

x 1 1 

going to generalize lemma I in the following form. 

Theorem I . Let {An (x) } be a uniformly bounded positive sequence such that 

lim £ r A (x) = "'" . Let the sequence { B (x) } converge uniformly to the 
n .... 00 j=O X 1 n 

bounded function B(x) such that m~n {IB(x>l/ =b > O. Then 
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n 

lim n ..... coo 

r r A . (x) B. (x) 
J=O X n-) ) 

= 
n 
r r A (X) B(x) 

J=O X ) 

provided B (x) does not change sign in the domain of definition. 

Proof. Since B (x) converges to B (x) uniformly in x, there exists an N 
. 1) 

(depending on a glVen 8 > 0) such that 

I B (x) - B (x) I < b 8 for all n > N. 
n 

Moreover Bn (x) converges to the bounded function B (x), there exists an M such 
that IB (x)1 f: M for all nand IB(x)1 f: M. Further B (x) does not change sign, we 

n 
have 

Now 

x, 

< 

n n 

r r A. (x) B (x) ~ b r r A. (x) 
) ) 

j=O x j=O x 

n 

r r A . (x) B. (x) 
n-) ) 

j=O x _________ - I 

n 

r r A. (x) B (x) 
) 

j=O x 

N 

r r A
n

_
j 
(x) B

j 
(x) - B (x) 

j=O x 

n 

r r A. (x) B (x) 
) 

j=O x 

N 

r a 
n-j 

2M b8 j=O 
+ --

b n b 
r a. 

) 

j=O 

= 

+ 

n 

r 
j=N+1 

n 

n 

.. .. A . (x) B. (x) - B (x) 
,L,,L, n-) ) 

j=O x 

n 

n 

r r A. (x) B (x) 
) 

j=O x 

r r A (x) B. (x) - B (x) 
n-) ) 

j=N+1 X 

n 

r r A. (x) B (xl 
) 

j=O x 

a n-j 

r a. 
) 

j=O 
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Taking the limit as n ~ "" , we obtain 

lim 
n- "" 

n 

r r A
n

_
j 

(x) B
j 

(x) 

j=O x 

n 

r r A (x) B (x) 
J 

j=O X 

_ I < f: 

But E is arbitrary which shows that the limit is zero and this proves the theorem. 

We note that if lim B (x) = B, a constant, then 
n~oo n 

n 
~ ~ A . (x) B. (x) 
~ ~ n-J J 

lim 
j=O X 

n_OIC n 

r r A (x) 
J 

j=O x 

In this case B need not be other than zero. 

= B 

We are now going to prove another theorem which is based on theorem I and 
is most helpful in proving the central limit theorem. 

Theorem 2. Let {A (x)} be a uniformly bounded positive sequence such that 
n n 

lim r r A (x) = "" . Let the sequence { B (x) } converges uniformly to the 
n .. "" j=O X J n 
bounded function B (x) such that min jl B(x) I} = b > O. Then 

n n 

lim .rO n-a rx A . (x) B. (x) = lim J' ~o n-a rx A
J
. (x) B (x) 

J= n - J J n- "" 
(1) 

provided the limit on the right hand side exists for some a > 0 and that B (x) does 
not change sign in the domain of definition. 

Proof. We have 
n 

n 

lim n -a r r A . (x) B. (x) = lim 
n __ j=ox n-j J n_oe 

j~O ~ A n_j (x) B
j 

(x) 

o 

j~O f Aj (x) B (x) 

o 

. n-a j~O ~ Aj (x) B (x) 

o 
Using theorem I and the existence of lim n- a r r A(x) Sex), we obtain the 

0_00 j =O x J 
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required result. 

If B(x) is independent of x, then with B(x) - B, say, we have 
n n 

lim n-a 1: 1: A (x) B (x) = B lim n-a 1: 1: A (x) . 
n _ .., j=O X n-j j n- "" J~O X J 

If lim a = A, say, then obviously 
n ___ ClIO n 

n { AB lim n-a Io 1:x A . (x) B. (x) = 
n- .., J= n-J J 

o if a > I. 

if a = I 

To show an application of the above theorem we consider a Markov chain with 
finite state space and transition probability matrix P= J P .. t where . I D I 
p. = Pr(X I = j I X = j) for all m and j 7r 1 as its stationary distribution with /-l 
~ IJ m+ m 1 x r 
as the mean and prove the 

Theorem 3, If XI' JS, ... , X , ... form a homogeneous Markov chain which is 
recurrent, irreducible and aperiodic, then 

n 

lim Var (1: X Ivn) = 02 - 2 1: 1: (x-/-l) (y-/-l) 7rX ." y /-l xy 
n-.., FI J x Y 

Where", is the mean first entrance time from E to y and a 2 is the variance of the 
stationaryY distribution. . 

Proof Let Pr (Xo = a) = I and denote E(X Ix = a) by H (n) which we may nora 
write as ,.,., if there is no fear of confusion. Let X be the random variable having 
the station~ry distribution 111'i I of the given Markov chain which is guaranteed by 
the given conditions. We have 

Var ( . ~I X II/fi) = E [ . ~I (X - "")/vn J'2 
J- J .1- J J . 

n n j-I 

= j~1 n- 1 E (Xj - I-'j)2 + 2n- 1 j~1 i~l E [ (~ - fLj) (Xi - fL)]. (2) 

But 

n j- J n n-i 

j~1 i~1 E [ (~ - ""j) (Xi - "")l = = i~J j:J E [(Xj +i - ~+i) (Xi - "'i)l 
n n-i 

= i~1 j~1 E [(Xj +i - ~') (Xi - ""i)] 
n n-i 

= 1: 1: (x - ",,) p O)I ~ (y - "n P (j) 
i= I x ' 1 ax Fly J xY 

n n 

= i~1 ~ Bj (X) A
n

_i (X) - i~I'; Ci {X) A n_i (X) 
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where p' = min E (x.I X = x) = P
b 

(j), say, B (x) = x p (m), 
) x ) 0 m ax 

m 
C (x) = P p (m) and A (x) = .I . I (y - P .) p. (m). 

m m ax m )=1 y m xy 

With E (X. - p.)2 = a 2, we get from (2) 
. ) ) ) 

n , n 

lim Var (~I x. IVn) = lim '~I n- I a)2 + 2 lim n- 1 
n ... 010 J- J n -. QO J- n _ 00 

n 
- 2 lim n-1I Ie. (x) A . (x) 

n .... QIO 1:::1 X 1 n-1 
(3) 

Since lim B (x) = X ::rtx and lim C' (x) = P nx and are both positive, therefore 
n _ 00 n n-. 00 n 

theorem 2 applies in (3) if we show that {An (x) } is bounded and that ofl ~ An (x) 

= - . To do this it is enough to prove that lim A (x) exists and is not zero. To n _ 00 n 
this end we have, from Chung 0967, p66), 

n 

lim A (x) = lim ' ~l I {p (j) Pb (j)}~(y-~) 
n" "" n n .. _ )- Y xy. y 

n 

= I { lim I [p (j) - p (j)Jl (y-ft) y n ___ )=1 xy bY! 

= I (p - p ) (y_/l) 
y by xy ry 

which is bounded and non-zero for positive recurrent chain. Therefore from (3) 
we obtain, using the validity of the interchange of two summations and of limit 
and summation, 

n n 

lim Var (II X. /.'11) = at + 2 I xn I lim n- I I'~_I AI' (x)} n _ 010 J = J V 11/ X X ) n ... 00 

= a 2 - 2 I I (x - p ) (y -11) 
x y 7r X 7r Y P xy 

and the proof is complete. 

3. Continuous case 

Let {An (x)} and {B (x)} be function sequences defined on a common 
domain D of the real line. ~uppose that {An (x)} and the double sequence {An (x) 
Bm (x)} are Riemann integrable with respect to x. We are going to generalize 
lemma 2 in the following. 

Theorem 4. Let {An (x) be a uniformly bounded non-negative sequence and 
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suppose {B~(x) } converges uniformly to a bounded function B(x) which does not 
change sign in D and Inf {I B(x) I} = b> O. 

A sufficient condition that 
xED . 

n S B. (x) A . (x) dx r 
j=O D 

) n-) 

lim = 
n .... QC) 

n 

r S B (x) A. (x) dx 
) 

j=O D 

is that 

J A (x) 
n 

dx 

lim 
D 

= 0 (4) 
n- 00 

n S r A (x) dx 
D 

) 

j=O 

Proof. Since B (x) converges uniformly to B(x), given any € > 0 there exists an 
n 

N such thatlB (x) - B(x)1 < b € for n >N and all x. Moreover B(x) is bounded, 
there exists an M such thatlB (x) - B (x)1 ~ M for all nand x. We observe that (4) 
also implies 

n 

n S A (x) dx r n 

lim 
j=n-N D 

n .... QC) 

n S r A. (x) dx 
j=O D ) 

Hence 

n ~ B. (x) A . (x) dx r ) n-) 
j=O D 

n 

r S B (x) A. (x) dx 
j=O D ) 

t:,--------
n 

b r ~ A (x) dx 
j=O D ) 

n=n -\ 

r 
j=O 

= O. (5) 

n 

r A (x)IB . (x) - B (x) I dx 
) 1)-) 

_ 1 ~ 
j=O D 

n 

r 
j=O D 

\B (x)\ Aj (x) dx 

SA (x) I B (x) - B (x) I dx 
) n - ) 

D 
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+ 1: S A. (x) IB _. (X) - B (x)idx I 
j=n-N 0 J n J 

n-N-I n 
r ~ A. (X) dx r 5 A. (x) dx 

J J 
bE: j=O 0 M j=n-N 0 

<-- + -
b n b n 

1: 5 A. (x) dx r 5 A. (x) dx 
J J 

j=O 0 j=O 0 

Taking the limit on both the sides and using (5) we obtain 

n 

r S B. (x) A . (x) dx 
j=O 0 J n-J 

lim _ I < t: 
n ..... "'" n 

r S B (x) A. (x) dx 
j=O 0 J 

Since E is arbitrary, we conclude that the limit is zero which implies the theorem. 

It is to be noted that condition is satisfied if 

a) lim .£ ~ A. (x) dx < "'" 
n - 0<> J=O 0 J 

or 

b) lim 
n ..... 00 

LO So A. (x) dx = "'" and So A (x) dx is bounded. 
J= J n 

We now state a theorem similar to theorem 2 for the continuous case and omit 
the proof. The proof goes on the same lines as that of theorem 2 with the exception 
that summation will be replaced by integration. 

Theorem 5. If the conditions of theorem 4 are satisfied, then 

lim n- a ~O SO A . (x) B. (x) 'dx = lim n-a Lo ~o A. (x) B (x) dx 
n_oo J= n-J J n__ J= J 

Provided the limit on the right hand side exists for some a > O. 

It is obvious from this theorem that if lim So A (x) B (x) dx exists, then 
n-.. 00 n 

Cauchy's first theorem applies and for a= I we have 

lim n- I £0 50 A . (x) B. (x) dx = lim SoA (x) B (x) dx n _ "'" J= n-J J n _ 00 n 
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Moreover if the sequence {An (x) ! is uniformly convergent to A (x), then we 
have 

(6) 

Finally we mention that a result similar to theorem 3 can be proved in the 
continuous case also. But it involves the concept of continuous state space Markov 
processes and therefore will be taken somewhere else. 

Remark. It is clear that all our results in this paper are either the generalization 
of lemma I and lemma 2 or depend on these generalizations. However it will be 
worth while to mention that one can obtain results (I) and (6) by generalizing 
Cesaro's theorem whose special case is Cauchy's first theorem. 
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n 

,n-
a 

jfo ~An_j(X)B I (x)0!)J.A.l1 ~ly: ~11iP. ~ LrJ-C 

n 

n -a j~O f An_j (x) Bj (x) dx 

~~ ~ I«~J ,~ly: ~ L. JJ n ~ JJY L...w. 

. - W 'U\ oiP. JI J ,u ~ ' <')I ~I''1 ~ ~ ~ • ro -f _ ...... 

c.J. ~iJ , JIJ.) ~ JJ .)1..1.£.i ...,.....J ~~I G~~ 

B (x) Lt-)J.A.l1 ~ly: <?JL..; G~~\ oiP. ui .1 J~I ~ 
n n 

J JY L...w. n -a j~O f Aj (x) B (x) dx , n -a j~O ~ Aj (x) 

~ B(x) ui ~ ,~;J\ j&.J ,~ly: ~ L. JJ n ~ 

,~ly: ~ L. JJ n ~ JJY L...w. Bn(x) ~ly: 

oJJJ.1 ~~ I . 
~ ~ 
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