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Abstract : In this paper the Chebyshev polynomials and the Sumudu transform are combined to solve analytically
the neutron transport equation in one-dimensional case. The procedure is based on the expansion of the angular
flux in terms of the Chebyshev polynomials. The resulting system of linear differential equation is solved

analytically using the Sumudu Transform technique.

1- Introduction:

The neutron transport equation is a linear case of
the Boltzmann equation with wide applications in
physics and engineering.

As is well known, the study of a given transport
equation is a quite important and interesting in
transport theory. Various methods have been
developed to investigate, and special attention has
been given to the task of searching methods that
generate accurate results to transport problems in the
context of deterministic methods based on analytical
procedures, for the multidimensional transport
problems. One of the effective methods to treat linear
transport equation is the spectral method (Kim,
Arnold. D. and Ishimaru, Akira, 1999; Kadem, A,
2006; W. Greenberg, C. Van der Mee and V.
Protopopescu, 1987) whose basic goals is to find
exact solution for approximations of the transport
equation, several approaches have been suggested.
Among them, the method proposed by (S.
Chandrasekhar, 1960) solves analytically the discrete
equations, SN equations, the spherical harmonics
method (Duderstadt, J. J.; Martin, W. R, 19795)
expands the angular flux in Legendre polynomials,
the FN method (Garcia, R. D. M, 1985) transforms
the transport equation into an integral equation. The
integral transform technique like the Laplace, Fourier
and Bessel also have been applied to solve the
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transport equation in semi-infinite domain (Ganapol,
B. D, et al,1994; Ganapol, B. D, 1992) the SGF
method (Barros, R.C. and Larsen, E.W, 1991; Barros,
R.C. and (Barichello, L. .B.; Vilhena M.T., 1993)
Larsen, E.W, 1990) is a numerical nodal method that
generates numerical solution for the SN equations in
slab geometry that is completely free of spatial
truncation error. The LTSN method (M.T.Vilhena et
al, 1991) solve analytically the SN equations
employing the Laplace Transform technique in the
spatial variable (finite domain). Recently, following
the idea encompassed by the LTSN method, we have
derived a generic method, prevailing the analyticity,
for solving one-dimensional approximation that
transform the transport equation into a set differential
equations.

The version of this generic method are known as
LTSN (Barichello, L .B.; Vilhena M.T, 1993), LTPN
(M.T.Vilhena., Streck, E. E, 1993), LTChN (Cardona
, A. V.; M.T.Vilhena, 1994), LTAN (Cardona , A. V,;
M.T.Vilhena,1997), LTDN (Barros, R.C. Cardona ,
A. V.; M.T.Vilhena, 1996).

The analytical character of this solution, in the
sense that no approximation is made along its
derivation, constitutes its main feature. The idea
encompassed is threefold: application of the Laplace
transform to the set of ordinary equations resulting
from the approximation, analytical solution of the
resulting linear system depending on the complex
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parameter s and inversion of the transformed angular
flux by the Heaviside expansion technique.

We remark that the second step was accomplished
by the application of the procedures that we shall
describe further ahead. For the LTSN approach,
exploiting the structure of the corresponding matrix,
the inversion was performed by employing the
definition of matrix inversion. On the other hand, for
the remaining approaches, the matrix inversion was
performed by the Trzaska's method (Trzaska, Z.,
1987).

For the multidimensional transport problems, one
of the effective methods to treat linear transport
equation is the spectral method (W. Greenberg et al,
1987; M. Mokhtar Kharroubi., 1997, G. Milton
Wing., 1962) etc..., whose basic goals is to find exact
solution for approximations of the transport equation,
several approaches have been suggested. The series
expansions method has been largely used in the
solution of the differential equation (Kadem, A.,
2006). Special functions (Olver, F. W. J., 1974) in
particular, Legendre polynomials (Duderstadt, J. J.;
Martin, W. R., 1975) expansion have been employed
to solve the one-dimensional linear transport the
Chebyshev polynomials have been employed to solve
the two-dimensional linear transport (Asadzadeh, M
and Kadem, A., 2006) and for three dimensional case
(Kadem, A., 2007, 2006). According to Gottlieb
(Gottlieb, D. and S. A. Orszag, 1977) spectral method
involve representation the solution to a problem as a
truncated series of known functions of the
independent variables, of course there exist other
method to determine the coefficients of expansion,
but in regard to that, we should prefer to use
orthogonal basis such that those coefficients could be
determined by orthogonality properties. Thereby, the
orthogonal functions (Szego, G., 1957) and
polynomial series have received considerable
attention in dealing with various problem. The main
characteristic of this technique is that reduces this
problems to those of solving a system of algebraic
equations, thus greatly simplifying the problem and
making it computational plausible.

Note that, in the case of one-speed neutron
transport equation; taking the angular variable in a
disc, this problem would corresponds to a three
dimensional case with all functions being constant in
the azimuthal direction of the z variable. In this way
the actual spatial domain may be assumed to be a
cylinder with the cross-section £ and the axial
symmetry in z. Then D will correspond to the
projection of the points on the unit sphere (the
"speed") onto the unit disc (which coincides with D,)
(Asadzadeh, M., 1986) for the details.

In the present paper we describe an new
approximation for the one-dimensional transport
equation, using Chebyshev polynomials combined
with the Sumudu transform. The approach is based on
expansion of the angular flux in a truncated series of
Chebyshev polynomials in the angular variable. By
replacing this development in the transport equation,
this which will result a first-order linear differential
system is solved for the spatial function coefficients
by application of the Sumudu transform technique
(Belgacem, F. et al, 2003, G. K. Watugala., 1988).

The inversion of the transformed coefficients is
obtained using Trzaska's method (Trzaska, Z., 1987)
and the Heaviside expansion technique. In our
knowledge, the combination of the Chebyshev
polynomials and the Sumudu Transform to solve the
one-dimensional transport equation, in this setting, is
not considered in the literature.

2- Analysis

Let us consider the following mono-energetic 3-D
transport equation:

{(21) QN(r.O)+m¥ir.Q =/ (2 O Wir n"”gn"_i(y,‘;
e i - Gl g
where
(2.2} r={x. y.z} = (spatial variable}.
{2.3) Q = (5.5} = (angular variable).
and
Z 2% +1 .
(2.4 T luy) = N ¢ 4 Pal'pg) [differential seattering cross section).

— 5

k=0

with g = 2.9 and Py = the k™ Legendre polynomial.

3- Planar Geometry :

We consider a planar-geometry problem with spatial

variation only in the x direction:
{3.1) Q(r) = g(z),

{3.2; Wir. Q)=

Eq. (2.1) simplifies to

oy ) P . 12
{3.3} ,:Ex:: ul+ oWz p) = [ Talp W, w0l = QT
with
(3.4) adpu) = E@@uﬂ {p) Pplus').
k=0 =
So we consider Eq. (3.3) with
0<x<aand -1 <u<d

— 7, and subject to

the boundary conditions

(3.5) Ylz=0 —u)= flu).
and

(3.6) VU(z=a,u)=0.
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where J(#) is the prescribed incident flux at
=0, W(x, u

i
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is the angular flux in the #
direction; “'7is the total cross section; =l with

= U1, .0

are the components of the

differential scattering cross section, and Pelee) are
the Legendre polynomials ofdegree k.

Theorem 3.1. Consider the integro-differential
equation (3.3) subject to the boundary conditions

N w)
(3.5) and (3.6), then the function Wiz, ) satisfies
the following first-order linear differential equation
g."! : 'T'.l"
svslem/or the spatial component
v 9; 1. A (x}
z Mo ok ;}..‘.' —2_‘¢ O & —S i g1 D L(n ,'.__.(‘.“q—;—
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& 3 To(p)Plu) |
Q= —_—
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and 9m () are the coefﬁcients of the expansion of
Wz, ).
the * \ %K)

To prepare the proof of the Theorem (3.1), we need
the following result

Proposition 3.2.
Let

Tni1(x) — 22T0(2) + Tno1(z) = 0
and

Pi_y(z) = 2xPRlx) — B_y{x) = [ Pilx) — Pi_y(x)] /(L + 1)
then, the recurrence relations for the Chebyshev and
the Legendre polynomials respectively we have

Jor { = 2and k=2,3, take the form
] 2! 1 & e i { &
Qpivy = m [ar.-i.l + 0y, Al T Ir 1‘3-:,,5—1

and, in particularfor 1=0 and 1, the coefficients 2,

and Pnil take the values
J 0 1f n 4! odd,
——ﬂ——rH_. 1. it n+{ even,
and
wé
3 Un !
a,t .1

Proof
[t easy to see that

3 T [rr—
Gy = 77

""" 2(2 — 6

For k=2 by the multlphcatlon of the Chebyshev and

the Legendre recurrence formulas we have
2wl { .

T BT
P Taylu)— PluiTe_s —

=7 " o Al CYIT]

it is known that

Tk = Lo oq () = 26T {pe)
after doing some algebraic manipulations and
, , < [—1.1] :
integrating over ! L on the resulting
equation we get

g %=1 ., T
Cpisl T 57 oo (Onetd — Bn_1yl ni—1

ag
202 - ‘ {+1 "4
The case k=3 is treated similarly but in this case we

multiply the resulting expression by VI1-8" and

integrate over s [_J‘ 1] we get the desired
result.
Proof of Theorem 3.1

Expanding the angular flux in the A variable in
terms of the Chebyshev polynomials [21] leads to

Y‘ ) Tty
(37' X0 = :‘f—]—:l
‘ L — g2

v—U
with N=0,2,4,..., where the expansions coefficients

4= (2} should be determined.

Here T.i') are the well known Chebyshev
polynomials of order n which are orthogonal in the
interval [ -1,1] with respect to the weight

—————
=

w(l) = l:'\,fl —
After replacing Eq (3.7) into Eq. (3. 3) it turns out

E{/g % ~:'e§—'r)}-*~
e \

5f

5 N+1 i L Tulu') , gz
3.8y — “ ;1,\ gelx Py _’ du' = =
(3.8 ?’J s 2 /_. i)~y 5
using the orthogonality of the Chebyshev
T,s { 1)

polynomials, multiply the Eq. (3.8) by
considering m=0,1,...,N, and integrated in the

A, §

H variable in the interval [ -1,1]. Thus we get the
following first-order linear differentia[ equation
system for the spatial component Inl(Z).

o ) t+ L, 9lr
9_'((': ,g 20 19aix -—2

139 V )l 2=

where
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1
3.10) B =/ uT, (u)
=

1
/ Tnip) Pi{p)du
—1

3 3 TPy
(3.12) Qg 2/ ——d
=4

\ “l e e
denoting the delta of Kronecker. Here

- 5
13.11) G )

with Gy e

2 J
the coefficients 5. and “*n.! are evaluated by the
multiplication of the Chebyshev and Legendre
recurrence formulas and integration of the resulting
equation (See proposition 3.2).
In the next step we solve the first-order linear
differential equation system (3.9), for this we rewrite
this equation in the matrix form

. dg
13.13) .—I.Er-l:c. — Bglx) = Cla}
where
glx) = Col. |golx), g1(x),.... gN(Z)] 3nd 4
and B are squared matrices of order N+/ with the
components
(3141 A, =alli,,

L N

p—— y T0y 2+ ;
{3.15) 1B)5‘J=~2-_—L,,’—3_L.(—§ 501 ;cj_
and
13.16) C";L-:=‘7_'-?"‘3 = Col. [Coiz} Cilz).. Cxiz)l.

we notice that this equation has the well known
solution (Shilling, R.J. et al, 1988).

%
-1 -1 P
3.47) glx) = e Brgr0; —/ e~ Bt g e
G

that depends on vector g(0). Having established an
analytical formulation for the exponential appearing
in equation (3.17), the N+/ unknown components of
vector g(0) for the boundary problem (3.3) can be
readily obtained applying the boundary conditions
(3.5) and (3.6) in the solution given by Eq. (3.7) and
multiplying this expression by the Chebyshev

polynomial Tonlp) considering m=0,2,4,..., and

integrating in the interval [ -1,1], this procedure gives
AY nt $ok 1
— T, - ()

(3.18) S 9,3(0}/ —_—du =/ ()T e )du
it Jor V1= u? Ly

and

N\ 1 .
13.19) T»——]]’"‘g“{m/ Ma{u:&
n=0

—
=1 \.»’] —#2

To derive an analytical formulation for the

exponential of matrix A1 B, appearing in equation
(3.17), let us solve the homogeneous version of
equation (3.13), namely

(3.0 45 (2) + Bgiz) =0

ax

Now, following the idea of applying the Sumudu
transform (cf. Belgacem, F. ef al, 2003, Theorem 2.2
p. 107) to equation (3.20), we obtain an algebraic
linear system that has the solution

{321} GiuifuB+ 4| =R
with

R = A.g(0).
where Glu) = S[g(x)] denotes the Sumudu

transform of the vector g(x). Solving equation (3.21)

that has the solution
13.22) Giui=[uB-A"'R

by Trzaska's method (Trzaska, Z, 1987) the inverse of

[4 — . . .
matrix ‘-“B '_i] is readily obtained indeed
N 1
(3.23) B-AT =Y ——P

u—

k=%
where the coefficients $# denote the eigenvalues of

) -1 .
matrix B A and the matrices P~"~‘- are the ones

resulting from the application of Trzaska's method.
The inversion of the transformed vector G(u) is
executed by the Heaviside expansion technique.
Following this procedure, we obtain an analytical

expression for the exponential of matrix B! -“1(
Trzaska, Z, 1987).

E—B_:Arc = Z PL‘ES\::.
k=1

We substitute Eq. (3.24) into Eq. (3.17) then, the

transformed vector g(x) by the Heaviside technique to

get

(3.24)

M Y =
{3.25) glzi =Y PR+ Pk/ e =R (6)dE.
bt St 0
. (0} al . ;
Replacing Gn il and 9n! @) by its values given by

equation (3.17) in equation (3.18) and (3.19), it turns
out

13.26)

\ |\~ i Sf’ /; ATB e ‘ /_ 1\“7 - [] oy

= =1

and

{3.27:

with m=0,2,4,..., where F; design the element of the
unknown vector R

After solving the linear system (3.26), (3.27) for the
components of the vector R the angular flux given by
equation (3.7) is completely determined.
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Conclusion

The Chebyshev spectral method combined with
Sumudu transform should be general enough to
consider higher spatial dimensions in a way similar to
that presented in this paper, although we have not
investigated this idea thoroughly. We will be
considering more complicated geometries in future
studies, during which we will ascertain this method's
usefulness for larger spatial dimensional problems. In
preparation for these problems, we are currently
investigating the effectiveness of spectral methods
combined with Sumudu transform in solving the
linear system of differential equation analytically.

We have intention to prove the convergence of the
spectral solution within the framework of the
analytical solution in our future study by using the
discrete ordinates method, combined with the
methods employing Sumudu transforms, and we
expect this method represent very interesting new
ideas for studying the convergence of many
numerical methods and can be extended easily to
general linear transport problems. In fact only some
preliminary results have been obtained. On the other
hand in this context we intend to study the existence

and uniqueness of its solution by using Co
semigroup approach. Our attention will be focused in
this direction.
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