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Abstrac t: In thi s paper the Chebyshev polynom ials and the Sumudu transform are combined to solve analytical ly 
the neutron transport equation in one-dimensional case. The procedure is based on the expansion of the angular 
flux in terms of the Chebyshev po lynomials. The resulting sys tem of linear differential equat ion is solved 
analytically using the Sumudu Transform technique. 

1- Introduction: 

The neutron transport equation is a linear case of 
the Boltzmann equation with wide applications in 
physics and engineering. 

As is well known, the study of a gi ven transport 
equation is a quite important and interesting in 
transport theory. Various methods have been 
developed to inves tigate, and special attention has 
been given to the task of searching methods that 
generate accurate results to transport problems in the 
context of determinist ic methods based on analytical 
procedures, for the multidimensional transport 
problems. One of the effective methods to treat linear 
transport equation is the spectral method (Kim, 
Arnold. D. and lshimaru , Akira , 1999; Kadem, A, 
2006; W. Greenberg, C. Van der Mee and V. 
Protopopescu, 1987) whose basic goa ls is to find 
exact solution for approximations of the transpott 
equation, several approaches have been suggested. 
Among them, the method proposed by (S. 
Chandrasekhar, 1960) so lves analyt icall y the discrete 
equations, SN equations, the spherical harmonics 
method (Duderstadt, 1. J.; Martin, W. R, 1975) 
expands the angular flu x in Legendre polynomials, 
the FN method (Garcia , R. D. M, 1985) transforms 
the transport equation into an integral equation. The 
integral trans form technique like the Lap lace, Fourier 
and Bessel also have been applied to so lve the 
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transport equation in semi-infinite domain (Ganapol , 
B. D, et al,1994; Ganapol , B. D, 1992) the SGF 
method (Barros, R.C. and Larsen, E. W, 1991; Barros, 
R.C. and (Barichello, L .B.; Vilhena M.T., 1993) 
Larsen, E.W, 1990) is a numerical nodal method that 
generates numerical so lution for the SN equations in 
slab geometry that is completely free of spa tial 
truncation error. The LTSN method (M.T.Vilhena et 
ai, 199 1) solve analytically the SN equations 
employing the Laplace Transform technique in the 
spatial variable (finite domain). Recently, following 
the idea encompassed by the LTSN method, we have 
derived a generic method, prevailing the analyticity, 
for solvi ng one-dimensional approximation that 
transform the transport equation into a set differential 
equations. 

The version of this generic method are known as 
L TSN (Barichello, L .B. ; Vilhena M.T, 1993), LTPN 
(M.T.Vilhena ., Streck, E. E, 1993), LTChN (Cardona 
, A. V.; M.T.Vilhena , 1994), LTAN (Cardona, A. V.; 
M.T.Vilhena, 1997), LTDN (Barros, R.C. Cardona, 
A. V.; M.T.Vilhena, 1996). 

The analytical character of this solution, in the 
sense that no approximati on is made along its 
derivation, constitutes its main feature. The idea 
encompassed is threefold: application of the Laplace 
transform to the set of ordinary equations resultirg 
from the approximation, analytica l so lution of the 
resulting linear system depending on the complex 
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parameter s and inversion of the transformed angular 
flux by the Heaviside expansion technique. 

We remark that the second step was accomplished 
by the application of the procedures that we shall 
describe further ahead. For the LTSN approach, 
exploiting the structure of the corresponding matrix, 
the inversion was performed by employing the 
definition of matrix inversion. On the other hand, for 
tbe remaining approacbes, tbe matrix inversion was 
performed by the Trzaska's metbod (Trzaska, Z., 
J 987). 

For the multidimensional transport problems, one 
of the effective methods to treat linear transport 
equation is tbe spectral method (W. Greenberg et aI , 
1987; M. Mokhtar Kharroubi., 1997; G. Milton 
Wing., 1962) etc ... , wbose basic goals is to find exact 
solution for approximations of the transport equation, 
several approaches have been suggested. The series 
expansions method bas been largely used in the 
solution of the differential equation (Kadem, A., 
2006). Special functions (Olver, F. W. 1. , 1974) in 
particular, Legendre polynomials (Duderstadt, 1. J.; 
Martin, W. R. , 1975) expansion have been employed 
to solve the one-dimensional linear transport tbe 
Chebyshev polynomials have been employed to solve 
the two-dimensional linear transport (Asadzadeb, M 
and Kadem, A. , 2006) and for three dimensional case 
(Kadem, A., 2007, 2006). According to Gottlieb 
(Gottlieb, D. and S. A. Orszag, 1977) spectral method 
involve representation the solution to a problem as a 
tnmcated series of known functions of the 
independent variables, of course there exist other 
method to determine the coefficients of expansion, 
but in regard to that, we should prefer to use 
orthogonal basis such that those coefficients could be 
determined by orthogonality properties. Thereby, the 
orthogonal functions (Szego, G., 1957) and 
polynomial series have received considerable 
attention in dealing with various problem. The main 
characteristic of this technique is that reduces this 
problems to those of solving a system of algebraic 
equations, thus greatly simplifying the problem and 
making it computational plausible. 

Note that, in the case of one-speed neutron 
transport equation; taking the angular variable in a 
disc, this problem would corresponds to a three 
dimensional case with all functions being constant in 
the azimuthal direction of the z variable. In this way 
the actual spatial domain may be assumed to be a 
cylinder with the cross-section ~ and the axial 
symmetry in z. Then D will correspond to tbe 
projection of the points on the unit sphere (the 
"speed') onto the unit disc (which coincides with D,) 
(Asadzadeh, M., 1986) for the details. 

In the present paper we describe an new 
approximation for the one-dimensional transport 
equation, using Chebyshev polynomials combined 
with the Sumudu transform . The approach is based on 
expansion of the angular flux in a truncated series of 
Chebyshev polynomials in the angular variable. By 
replacing this development in the transport equation, 
this which will result a first-order linear differential 
system is solved for the spatial function coefficients 
by application of the Sumudu transform tecbnique 
(Belgacem, F. et aI, 2003; G. K. Watugala ., 1988). 

The inversion of the transformed coefficients is 
obtained using Trzaska's method (Trzaska, Z., 1987) 
and the Heaviside expansion technique . In our 
knowledge, the combination of the Chebyshev 
polynomials and the Sumudu Transform to solve the 
one-dimensional transport equation, in this setting, is 
not considered in the literature. 

2- Analysis 

Let us consider the following mono-energetic 3-D 
transport equation: 

(2 11 a .s:::t!: !}) - (,, >jI lr:.. !} 1 = r. (',r.Q W 'II IL rtld!Y + ~Q(! I 
J~ "! .... I 

where 
12.2 

(23) 

and 

1:. = (x . y. 0) = (spatial \13rii, ble ;' 

il = (t). ~) = (a l gular variable ). 

. f- 2k + 1 c . 
(2.-1.1 J.T,.(~ J = 1-~ctl"" P .. \!-'o) fdliferentibl Gocat terms ~ ro~~ sec tion j. 

;. ~a 

wi th Lio = U.n' and PI, = the p h Legendre poly nom ial. 

3- Planar Geometry: 

We consider a planar-geometry problem with spatial 
variation only in the x direction : 

(3.1) Q(r:J = q(x ), 

(32) ( . 1 ( . 
IV r·n; = 2r. 1V :r. ,u ) 

Eq, (2.1) simplifies to 

(3 .3 , 

( 3~) ' ) = 2k ", 1 ( " 
~ .tI, ~ = - ? - <" ,. P. " JP,.I,U I. 

~!l -

So we consider Eq. (3 .3) with 

o $ X ::; a a 1d -1 $ J.i. $ 1 
, and subject to 

the boundary conditions 
(3.5) 

and 

(3.6) 

lJI(x = 0, - ,al = /(.a l . 
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where j (,11 ) is the 

x = 0: \{I X .. U) is 

prescribed incident flux at 

the P the angular flux In 

direction ; (T t is the total cross section; 0- sl with 

t = 0. 1 . ... , L are the components of the 

differential scattering cross section, and Pk ud are 
the Legendre polynomials of degree k. 
Theorem 3.1. Consider the integra-differential 
equation (3.3) subject to the boundary conditions 

(3.5) and (3.6), then the function \}I (x. ~l satisfies 
the following first-order linear differential equation 

where 

1 
o.n .m. 

0. :1 ._ /1 
't .:' - -1 \/ 1 - t,2 

and 91 1 ( x are the coefficients of the expansion of 

the \lI . .:t' . I-< } . 

To prepare the proof of the Theorem (3. J), we need 
the following result 

Proposition 3.2. 
Let 

T -:+ l .:d - 2X:01 (x 
and 
P,_ l( X) = 2xPdx \ - PI _ I' X ) -lx Pd .l') - P1_.(x )1 (/ ~ 1) 

then, the recurrence relations for the Chebyshev and 
the Legendre polynomials respectively we have 

for l> 2 and k=2,3 , take the form 

:: 2L + '1 [ !; ". I i: 
G" .: + . := 21 + 2 G'-:_l. ~ + Goo- I. :. - ! + lo. ,; .j-l 

? 

and. in particular for 1=0 and I, the coefficients ( .. ~ i 

a 3 
and n .E take the values 

{ o 
2 

(1+1 .1 ~ -n~ 

and 

3 a -
nJ - 2 - OLO 

if .;'1 + ! odd, 
it n + l e\'en , 

Proof 
It easy to see that 

1 
tt~l., 1 

.- ' i . (j I ~; - ~n 

22 - S ,,-I- m .l 'j 
For k=2 by the multiplication of the Chebyshev and 
the Legendre recurrence formulas we have 
21 - I i 
~1_ 2 : PI ",IjT ",_I(Ul - P I,J.JT"_ l JJ -2u ,1 -r 11 P:-t 1l--1! r",,· I~tl - T .. _l ;..til 

it is known that 

T',_J (p ) + T 1 - 1 lfl) = 2p.Tn (fi- J 
after doing some algebraic manipulations and 

,Ll c [-1. 1] on the resulting integrating over 
equation we get 

'1 2l - 1 - ') '1 ') 
0.- t 1 = -- G- . l ' - 0 . - I I - --0.- . ,, - 21 - 2 - "'" .. ,,- , - I + 1 ".J - J 

The case k=3 is treated similarly but in th~s case we 

mUltiply the resulting expression by vi] - j-I ~ and 

integrate over p E [-1. '1 ] we get the desired 
result. 

Proofof Theorem 3.1 
Expanding the angular flux in the p. variable in 
terms of the Chebyshev polynomials [21] leads to 

.Y . . 

) ,\"g" I .. t' lT" I .. u ) 
W I .t' . }-I , =L ~ 

.;= 0 \1' 1 - fJ.2 

with N=0,2,4, ... , where the expansions coefficients 
9" ( ,) should be determined. 

Here T Tl ") are the well known Chebyshev 
polynomials of order n which are orthogonal in the 
interval [ -I, I] with respect to the weight 

'U.J t) = 1/ """1 - 1~ 

After replacing Eq. (3.7) into Eq. (3.3) it turns out 
~ , . T.il', 
~ { "9 , .. l.r l -(T ,gc.lz l} , '" 
I"l_i) \ / 1 - J.I.-

uS1l1g the orthogonality of the Chebyshev 

polynomials, multiply the Eq. (3.8) by T"m (p) , 
considering m=O,I, ... ,N, and integrated in the 

/-1.. variable in the interval [ -I , I J. Thus we get the 
following first-order linear di fferential equation 

/ ' 
system for the spatial component gn 1,. X ) . 

\. I ' (', .-: !.-. ')( --1 . .::;.,. ~ qlrl 
[39 , ~ (\ ,: .,, 9'1L~I -~9fT1~ '(I = -2-r .I ('I ~ :L C\ ;. .. q.,:X · ..... T 

,...- 0 - " " () ::0:0 ... 0 

where 
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:3 10) , j' T",( iJ. . 
C'r, m = "T,,{ ~ J ~a,(l. 

-, V I - j l" 

( 3 111 

(:3 .12) 
3 j'1 T,, (f, )PI' I' ) , 

" r.,1 = .) all. 
-1 -/1 - w 

with 6" >7" denoting the delta of Kronecker. Here 
? 3 

the coefficients O: ~d and o'td are evaluated by the 
multiplication of the Chebyshev and Legendre 
recurrence formulas and integration of the resulting 
equation (See proposition 3.2). 
In the next step we solve the first-order linear 
differential equation system (3.9), for this we rewrite 
this equation in the matrix form 

~ 31:3) -\ dg 1 ) ... .. -(~c - Bgler , = C I.t· a:r: 
where 

9 x) = Col. :9o(;r ), 91 (:r') , .. .. 9N ,X)] andA 

and B are squared matrices of order N+ 1 with the 
components 
( ;J lJ ) l. -\ j~ .J = ~, :1_1 . ) _1' 

and 
q (.r) 

1316) C (.rl =2=Col.[Co(r) C,I .?L . . C , \ :c ):. 

we notice that this equation has the well known 
solution (Shilling, R.1. et ai , 1988). 

(317 ) g(.r) = e-r'Bxg(O j -10" e-r ' B'" -" C( ~)d,~ 

that depends on vector g(O). Having established an 
analytical formulation for the exponential appearing 
in equation (3.17), the N+ 1 unknown components of 
vector g(O) for the boundary problem (3.3) can be 
readily obtained applying the boundary conditions 
(3 .5) and (3.6) in the solution given by Eq. (3.7) and 
mUltiplying this expression by the Chebyshev 

polynomial T, . ( J..£ ' considering m=O,2,4, ... , and 
integrating in the interval [ -I, I], this procedure gives 

~ j'; T" \UjT".(u ) , /' ::1.15 L 9,,(0 ) . :. . j ai' = !I (ld T.,i,uJd. 
n=O . -1 v' 1 - p -1 

and 

13 19) 

To derive an analytical formulation for the 

exponential of matrix A -1 B , appearing in equation 
(3.17), let us solve the homogeneous version of 
equation (3, 13), namely 

i :3 . 20 ) dg . B ) 0 .-\-;- (xl + g{ x = 
ax 

Now, following the idea of applying the Sumudu 
transform (cf. Belgacem, F. et aI, 2003, Theorem 2.2 
p. 107) to equation (3.20), we obtain an algebraic 
linear system that has the solution 
(:] 21.' G : !, i :uB +.-l] = R 

with 

R = .-1.g(O,. 
where G(ld = .5 [g( xl l denotes the Sumudu 
transform of the vector g(x). Solving equation (3.21) 
that has the solution 

: :3 .22) . [ ·-1 R GI " .: = (, B -,-.-\. 

by Trzaska's method (Trzaska, Z, 1987) the inverse of 

. [ i! B - A 1· d'l b' d ' d d matnx . IS rea I y 0 tame m ee 

132:3) 

where the coefficients 3 /,: denote the eigenvalues of 

. B- 1 I d h . p. h matnx .'''1. an t e matrices I" are t e ones 
resulting from the application of Trzaska's method. 
The inversion of the transformed vector G(u) is 
executed by the Heaviside expansion technique. 
Following this procedure, we obtain an analytical 

expression for the exponential of matrix B- 1 A ( 
Trzaska, Z, 1987). 

.~ r 
(:] 2-1) -B-' --\", _ ~ P ' k Z 

e - L I.e . 

1: =1 

We substitute Eq. (3 .24) into Eq . (3.17) then, the 
transformed vector g(x) by the Heaviside technique to 
get 

.\{ _' l ~ 

(3 25) 9iX j = L e":p"R+LPk r f '· I~- ~ 'C '~)d.~ 
/._ , &. _ - Jo 

Replacing 9 1( 0 ) and 9 "" a by its values given by 
equation (3 .17) in equation (3.18) and (3.19), it turns 
out 

13.26) 

~ l{ P};RI- f... P. r E4- 'B~ Cl~j.c'.~l j l T.: ( .J ,j) T..:[:d d~ l = j' 9i JdT .. ;+,lidf.1 
1::: \ b:: l kal ./O _ i , I -,u ' -I 

with m=O,2,4, ... , where R ,' design the element of the 
unknown vector R 
After solving the linear system (3.26), (3.27) for the 
components of the vector R the angular flux given by 
equation (3.7) is completely determined. 
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Conclusion 

The Chebyshev spectral method combined with 
Sumudu transform should be general enough to 
consider higher spatial dimensions in a way similar to 
that presented in this paper, although we have not 
investigated this idea thoroughly. We will be 
considering more complicated geometries in future 
studies, during which we will ascertain this method's 
usefulness for larger spatial dimensional problems. In 
preparation for these problems, we are currently 
investigating the effectiveness of spectral methods 
combined with Sumudu transform in solving the 
linear system of differential equation analytically. 

We have intention to prove the convergence of the 
spectral solution within the framework of the 
analytical so lution in our future study by using the 
discrete ordinates method, combined with the 
methods employing Sumudu transforms, and we 
expect this method represent very interesting new 
ideas for studying the convergence of many 
numerical methods and can be extended easily to 
general linear transport problems. In fact only some 
preliminary results have been obtained. On the other 
hand in this context we intend to study the existence 

and uniqueness of its solution by USIng Co 
semigroup approach. Our attention will be focused in 
this direction . 
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