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Abstract. In this paper, we derive the single and product moments of order statistics from

Rayleigh distribution under the contaminations. We assume

independent with probability density function &) while

vivig fl

independent with & e

Xoypareees

\'|,...,X,,,p, p=01,2,..n -

" are independent (and

7=P ) and arise from some modified version of 7/ (XY which call

€(*)in which the location and/or scale parameters have shifted in value. In addition, we give
some numerical illustrations. Finally, some special cases are deduced.

Introduction

Barnett and Lewis (1994) have defined an outlier in a
set of data to be "am observation" or subset of
observations "which appears to be inconsistent with
the remainder of the set of data". They also describe
several models for outlier; two of them are inherent
alternative and contamination model. In the first type"
inherent alternative" one considers the possibility that
the entire set of observations actually comes from a
distribution that is different than the ‘originally
anticipated. The second type of outlier models is
contaminated model. Under this alternative model,
one considers the possibility that some of
observations come from altered form of the originally
anticipated distribution.

It worthwhile to mentioned that for the multiple
outlier model, the problem of finding means, variance
and covariance of all order statistics will be involve
density functions considerably are complicated.

[l

Density functions and joint density functions of order
statistics arising from a sample of a single outlier
have been given by Shu (1978) and David and Shu
(1978). One may also refer to Vughan and Venables
(1972) for more general expressions of distributions
of order statistics using permanent expressions.
Arnold and Balakrishnan (1989) have obtained

the density function of X vn when the sample of size
N contains unidentified single outlier. They also

obtained the joint density function of Xrn andXSI" 3

I<r<s<n_ Balakrishnan (1994b) has derived
some recurrence relations satisfied by the single
product moments of order statistics from the right
truncated exponential distribution. Also he has
deduced the recurrence relations for the multiple
outlier models (with slippage of observations), see
also Balakrishnan (1994a). Childs, Balakrishnan and
Moshref (2001) have derived some recurrence
relations for the single and product moments of order
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statistics from # independent and non-identically
distributed Lomax and the right-truncated Lomax
random variables. Barnett and Lewis (1994) say that
"... we are not aware of any published application to
studies of robustness of accommodation procedures
in the presence of multiple outliers. There is much
work waiting to be done in this important area".

Let X v X are independent with probability
density function /) and cumulative distribution
function F ) while Xnr= X v are independent
(and independent with X 1o X"‘") with probability
density function gx) and cumulative distribution
functionG(x ). Let XX denote the order
statistics obtained by arranging XX i
increasing order magnitude. The probability density

h

function of the 7" order statistics " under the
multiple outlier model can be written as follows: [see
Childs (1996)]

min(n—p-1,r-1)

S plx) = Z

s=max (0,y—p-1)
X (G N=Feoy
3 [1_G(X)]p—r+s+l
min(n—p,r—1)
+ X
s=max (0,r—p)
X [GC) T =F )P
x 1=-Gx)P™™,

1<r<n, p=0,2,..,n,—0<x <00,

Cyf (OIF ()Y

Cog (F ()P

(1.1)

_ (n-p)'p!
sl r=s=D!n=p-s=Di(p-r+s+D

where

and
(n=p)ip!
slr—s=DWn—p-s)(p—r+s)"

, =

Similarly, the joint density function of X oo and X e ,
1<r<s<n is given by
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2 Y Ag)g(IFT
/=0 i=max(0s-p—j)

x (GO IFO)-F oY
x [GU)-GEF " I=F)" P
X[1-GO)P** , p=0,1,2,..n,

—0<x <y <w, |<r<s<n,

Af ()gWFE)T

where

(n-p)'p!

V=

=i =D Ns—r—=l=jWn—p—i—j - p-s+i+j+2)

A= n=-ptpt
LN —i =D s === WM n=-p—i—] =D p—s+i+j+D)

and

A = (n—p)p!
i —i =D s =1 ) —p—i =) p—s+i+ )

setting P =1 in (LI} and (1.2}, we obtain the
corresponding pdf's in the case of the single outlier
given by Shu (1978) and David and Shu (1978).

In this paper, we consider the case when the

. X X : .
variables »-» are independent observation

from Rayleigh distribution with density
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2
X

f&)=i§ﬂpP——ﬂ,x20,9>Q
6 20-

X . ¢ . .
and “ ! » arise from the same distribution

with density
x x?

glx)= —2€Xp[——2], x 20, >0,
4 27

where 7 > 0.

The corresponding cumulative distribution functions
F() and 9O are given as

2
F(X)Zl—exp[—x—z], x 20, >0,
26

and
x2
G(x)=]—exp[———2], x>0, 7>0.
2T

The relation between J(x) and F(x)

is given by
)= -F@)]. (13)
0
Similarly
X
g(x)=S[1-G(x)l. (14)
T

In the next two sections, we use (1.3) and (1.4) to
derive the single and product moments of order
statistics from Rayleigh distribution under the
multiple outlier model. This situation is known as a
multiple  outlier model  with  slippage  of

p observations; see Barnett and Lewise (1994). This
specific multiple outlier model was introduced by
David (1979).

Single moments

i : . th
In this section we derive the k moment of the

th P ; s .
F order statistic under multiple outlier model (with

a slippage of p observations). Let

(k) <p < h
HrolPl 1Sr <n denote the k'

of order statistics in the presence of P~ outlier

single moment

observations from Rayleigh distribution. The
following theorem gives an explicit form of
k
lufzn)[p:l‘
Theorem 1
For 1€ La, p =0, 1,000 -
= (k)
k=0,1,... the single moments e LP] is given
by
k
*) r(5+|) | min(n—p-I,r-1)
Hyin [P]:W - G

2
0” s =max(0,r—p-1)

s (g r—s-I F—s —1
SJE)
=0 m=0 m

_l[+m

k
n—pfs+f+p—r+s+l+m 7

= 0

1 min(n—p,r-1)
+ —2 C2
T s=max(0,7-p)

S (sNr2p—s =1 2.1

_][+m
X

— I
— ) e . |
(n pvs+,r+p r+52+l+m)2

& T

_ (n-p)ip!
Dosir—s=D(n-p-s-DYp-r+s+)’

where

and
_ (n=p)ip!
sWr—=s—Din-—p-—s)p-r +5)

2

Proof

Starting from (1.1), we have
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wEp1= [x*frn lpHx
0

min(n—-p-=1,r-1) ) . .
= 2 Cy [x"F ) ()]
s=max(0,r—p-1) 0
X[G) U =-Foy e

X[l —G(.\’ )]p—r+s+ldx

min(n—p,r-1) 0 ¥ )
LD YRR PN EAF 1CDICIER) )
s=max(0,r-p) 0
x[G () T = F )P
X[I*G(.\' )]p—l‘+.\‘+]dx

i min{(n-p-1,r-1) ) sl )
== X O
0 s=max(0,r-p-1) 0
X[GCOT - F OO
x[l—G(x )]p4r+.v+ldx

] min(n-p,r-1) 0 %+ i
t5 2 G )]
T s=max(0,r-p) 0

x[G (O T - F )P (2.2)
X[l -G (x )]p—r+s+ldx )

By using the differential equation (1.3) and (1.4) in
(2.2), we have
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)

It is easy to derive (2.1) by writing
F)=1-(0-F(x)) ,q0&)=1-0-Gx) i,
(2.3) and integrate over* . Table (1) displays the

numerical values of uﬁ”)[p]for some values of

n,p,r,0,rt.

Product moments

In this section, we derive the product moments of
order statistics under multiple outlier model (with a

slippage of p observations).

Let #I('],;yj:)[p]a (l <r<s < n)
(kzh m/h

(I”h ,S th

denote the
product moments of the order statistics

order statistics in the presence of the

P ~ outlier observation from Rayleigh distribution.

The following theorem gives an explicit form of
k. m)

ILII(‘)S," [p]
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th

th
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By using (1.3) and (1.4) in (3.7), we have
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Upon, we put

Fx)=1-[I-F(x)], G(x)=1-[1-G(x)],
F(y)-F(x)=[1-F(x)]-[1-F(y)] and
G(y)-G(x)=[1-G(x)]-[1-G(y)] and using
binomial theorem, where

l—F(x):exp[—%], 1-F(y)=

and

2 2

y
26°
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2 2 Table 1. Me d vari f ord istics when € =1.0
_ X 3 y a €an and variance of order statistics when .U and
l—G(x)—eXP[—z—Tz], l—G(y)—exp[—Z;], e 7=20
get (3.1). ol
P P n Variance
Table 2 given below displays the product moments g ; ‘g 8’28?2 g-?ggg
and the corzspondmg covariance of 0(;d;:r25tatlst|cs in 0 3 5 11992 01287
=1 7=1/4 p=0,12. 0 4 5 15481 | 0.1700
(3.1) when , and 0 5 5 20675 | 0.2920
1 1 5 0.6079 0.1010
Special Cases 1 2 5 0.9757 0.1271
1 3 5 1.3328 0.1625
In this section, we deduce some special cases 1 g g ;g;gg ?ﬁgg
from the single and product moments given in (2.1) 2 1 5 06699 | 01226
and (2.2) as follows: 2 2 5 1.0887 0.1597
— 2 3 5 1.5211 0.2225
1. Setting 2 0 , we get the single and 2 4 5 2.1690 0.5019
product moments of order statistics when 2 ) 5 3.3244 | 1.2889
Eysrersdy, have Rayleigh distribution with Table 2. The product moments of order statistics when
] . G=10and 7=2.0
parameters V| see Dyer and Whisenand ] )
(1973) ty 5nP]
nlTk /24 ' (r-1 4 r 3 n
P ( _)k/z 0 1 2 5 11182
(r=Din-r)'2 i=o\¢ 0 1 3 5 1.4360
4 (4.1) 0 2 3 5 2.3013
(1) ¢ 0 | 4 5 1.8081
k/12+1° 0 2 4 S 2.8898
(n—r+l+f) 0 3 4 5 3.9188
And 0 1 5 5 2.3734
0 2 5 5 3.7857
2T 222 R & B 11
Mo 5'n = é
(r=Ds —r=D)l(n—r)126" ! I 2 5 12775
y . i 1 I 3 5 3.9517
r= S=r—= 1 2 3 5 5.2084
x2 [b TZ [é } I [ 4 5 47535
b=0 =0 1 2 4 5 11.0937
I, (k/2+1, m/2+1) [ 3 4 5 9.6252
= 1 I 5 5 5.1046
st 212 , ! 2 5 5 12.8589
g k24D «(mi2+]) | 3 5 5 18.2291
! 2 | 4 5 5 15.0532
(4.2) 2 [ 2 5 15320
Where 2 1 3 5 6.8859
2 2 3 5 9.6910
2 I 4 5 12.3920
leb“_’_g , _nos-1-t 2 2 4 5 295163
2 2 2
260 and 26 : ? : : 05523
2. If we put P =" \we have the same relation 2 2 5 5 37.2539
; T 2 3 5 5 50.8036
above but with parameter ¢ . 5 2 : - Y

3. if we put p=l we have the relation for the
single outlier case. Acknowledgements. The authors would like to thank
the referees for their helpful comments
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