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Abstract: In this paper discrete vortices method (MDV) is developed for 
of Cauchy type with unbounded weight function on the edges, Linear 
vortex method are used in constructing the quadrature formula (QF) the above mentioned integral, The 
convergence of quadrature formula are examined in the classes of functions W([ -1, 1], A) and ,I J), New 
algorithms are presented to evaluate the singular integrals with weight function, AI the end of the paper numerical 
examples are given to show the validity of the quadrature formula. 

Introduction (I) and the characteristic 

The theories of ordinary and differential 
are fruitful sources of equations. In 

the quest for the representation fonnula for the 
solution of an ordinary and partial differential 

with boundary or initial conditions one is 
led to an of Fredholm, 

Volterra, or Hilbert type (see Kanwal RP., 
Moiseiwitsch B.L. (I Once a boundary 

value or initial value problem has been formulated in 
terms of equations, it becomes to 
solve this problem various 
Kanwal R.P., 1997.) 

In many practical situation (for see 
2004, Lifanov IX. and Polonskii I.E. 

one always encounter the problem of 
numerically the integral of 

the first kind on the of the form 

-\ -\ 
(I) 

-] x < I, 

where k(x,t)and k(x,t) are squre-

integrable functions of two variables and x with 
k(t,t) i: 0 and E 1I(a), 0 < a <; I. The solutions of 

49 

I < x < I 
-\ 

where rp(:,;) is to be determinant, have the same 
features. 

It is known that if a function 
condition then the exist 
Muskhelishvili when 

k(x,t) 1, and for K = 1, (in this case, we say that 

the solution of (2) may be unbounded at both end
points of the ,1]) solution of the equation 
(2) Lifanov IX., et aI., 2004, p.S) is given by the 
formula: 

where C is an arbitrary constant and 
I 

Jtp(x)d~ C. 
-\ 

c 
(3) 
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Cauchy singular integral equations occur in a variety 
of physical problems, especially in connection with 
the solution of partial differential equations in Jlt2 or 
R3 . There are many monographs and papers written 
on SIE; (see Lifanov I.K. , et a!., 2004, 
Belotserkovskii S.M. and Lifanov I.K., 1985, 
Muskhelishvili N.J ., 1953) and the references 
contained therein. 

From the cource of mathematical analysis it 
follows that the integral on the right side of (3) for 
different function f(x) in many cases is not integrable 
in closed form. Therefore the approximation method 
is to be apllied to evaluate the singular integral (3). 
There are many methods and approaches to evaluate 
the singular integral at any singular point x (see 
Palamara A.O. 1990, Smith H.V, 2006). 

In this paper we develop MDV to approximate the 
singular integral in (3) by using the modification of 
discrete vortices method and linear spline. It enables 
us to provide the convergence of quadrature formula 
in different classes of functions for any singular point 
x E (- J,I). 

Construction of the quadrature formula 

We consider the following singular integral 

1 Jf ~f(t) f (X) = .Jl7 _ dt, - 1<x <I, (4) 
7l l - x- -J t x 

Let tk =-I+kh,k=O, ... ,(N+I)be equal partition of 

the segment [-1,1] with width h = 2/(N +1), where N 

is a positive integer number. Let E = {Ik , k = I, ... , N} 

and Q(j)={j - l ,j,j+l, j=I, ... ,N}. It is assume 

that j is fixed number. The set E is called a canonic 
partition of the interval [-1,1] (see Belotserkovskii , 
S.M. and Lifanov, I.K., 1985, p.13). 

Let sv(t) be a linear interpolation spline of the 

form (see Stechkin, Sand Subbotin U. , 1976): 

I-I,. J( ) /"'+1 -I J( ) Sv =-- tv+1 +-- tv 
h h 

which has the following properties: 

a) if J(/) = c then Sv( l) = c, 

b) if[(I) = af+b,then sv(I) = al+b, 

where f E [I v ,!v+I]' 

(5) 

As singular point x doesn't coincide with knot points 

that is x ~ E and various in the interval (I j ,/j+l) we 

can write it as x = I
J 

+ £, where & E (O,h). Now QF 

for SI (4), is constructed in the following way 

I If~/(I)d 
7r J l - (l j + 6)2 _I 1- (1 , + 6) I 

= I l i III' P J(!) dl+ 

7rJ l-(t j +6)" , ~o.,.Q(J)" I-(I j +6) 
(6) 

+ 
~ l' f+1 JI_12 

J{ I ) dl ]_- N+I 
L- L Ak(l; + 6)/(td+ 

* =} I , I - (I j +6) k=O. 
I h Q(jlvj+2 

(7) 
I k h _ . ? 

., ( ),k- l, 2, .. . ,J-_,J+3 , ... , N. 
tr J l- (l j +6r II - Ij +6 

These coefficients Ak ,k = I, ... ,j-2,j+3, .. ,N and 

the coefficients defined by discrete vortex method are 
similar (Belotserkovskii, S.M. and Lifanov, I.K. , 

1985,p.19-25). Now the coefficients Ao and A ,Y' I 

are found from the condition that the quadrature 
formula (6) is exact for the linear functionJ, i.e .: 

A () 
I l - rCI - t)d 

[ 

1 , 

o I · +& = 1-
; 2tr J l-(I , + /i )" J I-(t j+&) 

j +1 ' v+l r:--:> - L f vl - r 0 - 1) dl-
. 1- (/ . +&) 

1' = ; - 1 Iv ) 

(8) 
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Substituting (7) and (8) into (6), we obtain 

I II ~rp(l) ---,---------'--:"- d 1 

/ ( )2 1-(1 +£) Jr\jl- I j +£ ~I ) 

1 1 f Rrp(lk)h+ (9) 

)1 ( )2 " ~ I Ik - (I). + £) Jr - I + £ , ~ . 
) kfoQ()lvj +2 

+ L I _ s" dl +RN (l j +£)' 
j+1 (,. , ~ * (I) I 

v- j - I/, 1 (tj + £) 

where 

rp(/) = !(t)-±[(l-t)!( -1)+ (J + t)!(I)], (10) 

s,:(t)=s,,(/)-±[(I-t)!(-I)+(I+I)!(I)]. (11) 

Substitute (10) and (11) into (9) and after simpl ifying 
the corresponding terms yields 

----;==1 = = f~ f(t) dl 
JrJl-(l j +&)2 ~I I-(lj +£) 

iV 

L Ak(lj +£)rp(lk )+ 
k =1 

k~Q(j)~j+2 

+ Ao(l j + &)/(-1)+ AN+I(lj + £)/(1)+ 

+ A) ~ , (lj + £)/(tj~l) + A) (I) + £)/(1;) + 

+ Aj +I(l j + &)/(tj +l ) + Aj +2(1) + £)/(l j +2 ) + 

+RN (I j +C'), 

( 12) 

where AkCto;l, k=1, ... , j-2,j+3, ... , N is defined by 

(7) and the rest of the coefficients are: 

(13) 

Let us introduce the following designations 

I~-X~ 
f\(I , x) = ~ c-'i 

'.}I-x· +v'I-r 
P2 (I) = arcsin(I), ( 14) 

p}(t) = ~, 

P4 (t) = I~. 

From (14) and antiderivatives rule it follows that: 

(15) 

Now computing the expressions on the right hand 
side of (13), taking into account (15) and rearranging 
corresponding terms, we arrive QF for actual 
evaluation: 
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I fJi=? /(/) dl = 

IT~I-(IJ +&)2 -I I-(I j +&) 

N I Ak (Ij + &)rp(tk ) + 
k=l , 

k'!'Q(j)u j+2 

+Ao(tj +&)/(-1)+ AN+I(l j + &) /(1)+ 

+ Aj _l(l j + &)/(tj-I) + Aj( lj +&)/(/j) + 

+ Aj+I(lj +&)/(lj +I)+Aj +2(/ j +&)/(l j +2)+ 

+RN (I; + &) , 

( 16) 

where the coefficient of QF are defined by the 
following formulas : 

( ) 
_ (I) () 1 AN+I Ij + & - AN+1 I j + £ - I 2 X 

2lr\jI-(lj +£) 

X[(lj +£)(IT+~(lj_I)-~(tj+2))-

-(l+(tj +&))(~(tj_I)-~(lj+2 ))+ j 
1 ' +2: (~(tj+2) - ~ (l j_l) + ~ (I j_l) - ~ (lj+2) + IT) 

( ) 
_ (I) () 1 Aj _1 I j +5 -Ai_I tj +5 - 2 x 

2IT~I-(lj + &) 

X[lj(l i +&)(~(lj_I)-~(lj+2 )) -

- ( 1 + (I j + 5) ) ( ~ (Ii) - ~ (I j -I )) -

- ~ ( P. (Ii-! ) - P. (I j ) + ~ (I j ) - ~ ('j_1 )) ], 

A (/.+£) = A(I)( I .+£) - I x 
} } I ) .J 2 

"h l-(I j +£) 

x [ -I , I (I +£ ) (p, (I j ) - p, (' ,_1 )) - (h +£ )( P, (I j ) - P, (If-I)) + 

+ ~(p., (I j_1 ) - P, (I j ) + P, (I j ) - P, (I j _1 ) + 

+lj+1 (I; +£ )(p, (li+1 )-p, (I j )) +(£ -h)( P, (1'+1)- P, (I; ))

-~( P, (Ii) - P., (1;+1)+ P, (l j.I ) - P, (I j )) l 
Ai •1 (I; +£)= A~;\ (I , +£) - I I 2 X 

. "h,I-(/;+£) 

x [ -I; k +£ ) (p, (/;+1) - P, (I j )) - £ (p, (I , 'I) - p, (I) )) + 

+ ~ (p., (I) ) - P., (I}+I) + P, (/,+, ) - P, (I;) + 

+1 /'2 (Ii +£ )( p, (/;.2)- P, (l j+1 ))+ (2h - £)( P, (I j+,)- P, (I f+1 ))

-~(p, (1) +1) - P. (1;+2) + P, (1;+,)- P, (l i+I) ) l 

The coefficients All) (I j + c ),k = O, .. . ,N + I, are found 

in (Eshkuvatov, Z.K. et aI, 2007), which are: 

(I)( ) ~I-(tj +£) 2 h 
Ak I . + £ = -'-----'--- --0= =-----

j 7! JI-'l h-(/ j +£))' 

k = I, ... j - 2, j + 3, ... N, 

A~I) (lj +£)= _I [ (I - (/j +£))JOIP,(tj-l,I j + £) 1_ 
27! P' (l j + 2 ,l j +£) 

-~I-(tj + £)2 (7! + P2(tj-I)- P2 (t j +2))]. 

Ai~~I (lj+£)=_1 [(I+(lj +£))lol~(t j - I'lj +£)I+ 
27! P'(l j + 2 ,li +£) 

~I-(Ij + £)2 ( 7! + P2 (t j -I)- P2(1j+ 2))], 
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(1)( )_ I [ I PI{lj,I ; +S) ! , A;_I I j +S - - - sin ~, 
7[h ~(li-I,lj +S) 

+~I - (I j + S)2 (P2 (I;) - P2 (t j_ I») ] 

AY)(I ) +S)= - '_[(h+S)'n l ~(I I' l i +S)!+ 
7[ 11 PI(lj_I,I;+S) 

+(h -s )Jn + 
! 
~ (I / ~ I , I i + S)I 
~ (tj,l ) + s) 

+ ~I - (t j + S)2 (2 P2 (I; ) - P2 (I ; -1 ) - P2 (I j+ I ) ) l 

Estimate of errors 

Theorem 1: Let J(t) E He< (A,[ -1,1]) , and E 
be a set of canonic partition of the interval [- I , I] 

Then the error of quadrature formula (12) is 

' , II" In(N+I) + L: h", c ~~ , 
)1-(/, +<)1 2 

IR,,(/, +< )1,,; 
/111" In( N+ I) + LJ 

, h" I·L,I/. GE(O,h) ,c -, ~. 
JI- (/ j Ht 

where 

L = 6A ( 1 4.18 J 
I 7[ + a In (N + I) , 

L) = A (0.567 h1
-

J + 0.068h5
-

6 + 0.516), 

12h - c:1 
o < 6 <;; log" ( ) ( ) . 2h-c: h+c: 

Theorem 2: Let /(1) E C l ([ -I, I]) , and E be a set 

of canonic partition of the interval [-1,1]. Then the 

error of the quadrature formula (J 2) satisfies the 
inequality 

where 

L* =
4M

l l(l+ 2.15 J L*=5M(1+h~J 
I 7[ a In ( N + I) ' 1 I l ' 

L;*= MI (0.567h 2-l> +0.068h5-l1 +0,516), 

12h -c:l h 
o < 6 ~ log}, ( ) ( ) , 2h - c: h + c: 

The proof of the theorems I and 2 are based on the 
following lemmas. 

Lemma 1 . Let / (I) be continuous function and the 

function cp(l) be defined by (10). If 

f(i) E H C«A, [-I , IJ) then for any 1',t",1 E[-l,l] 

the following estimates are true 

0) 1q:>(I")_q:>(/')1~2AI/"_I'IC(; 

b) 1q:>(/) j~ A(I-/2t. 

If f(t) E C l 
([ -1,1]), then for any 1',1",1 E [-I, I], the 

following estimations are hold: 
c) 1q:>(I")-q:>(t')1~2MIII" - I'I; 

d) 1 q:>(t) 1<;; MI (1-/ 2). 

Lemma 2 Let f(t) be continuous function, and the 

function SI' (t) be linear spline defined by (5). Then 

the following estimates 

0) If f(t)E H C«A,[lv,lv+l]) , then for any 

I E [I v ,/1'+1]' 

1 f(/) - Sv (I) 1<;; rC( AhC( 

b) If fCt) E c l 
([tv, 11'+1]) , then for any 

I E [/1''/1'+1]' 

1 f(/) - Sv (I) 1<;; !VII h/2 

are hold, where Nfl = max I/,(B)I. 
1,.'5.85:./1'+1 

Lemmas J and 2 are proved in (lsrailov M,L and 
Eshkuvatov, Z.K. 1994 and Eshkuvatov, Z.K. and 
Nik Long, 2007 ,), 
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Let 

1f1(1)=(I+lj+c}p(I), (17) 

1f2 (I) = (I +Ij +£)(1(1) -sv (I)). (18) 

Lemma 3 For any I E [-1,1] the function Ifl (I) 

satisfYing the following inequality 

a) If rp(l) E H a(2A,[-1,1J) then 

Ilfl (I) 1.$ 2A( 1- 12 t· 
b) If rp(l) E CI([-l,lJ) then 

Ilfl (I) 1.$ 2MI (1- 12). 

Lemma 4 For any t E [t k' t k+l] the function Ifl (I) 

satisfies the following inequalities 

a) If rp(t)EHa (2A,[-I,IJ) then 

Ilfl (I) -If, ('k) 1.$ 2A(2 + h)( I - ,2 )a . 

b) If rp(l) E C'([-I,I]) then 

11ft (I) -If I (lk ) 1.$ M (2 + h )(1- ,2). 

Lemma 5 For any I E [Iv, IV+I ] the function Ifl (I) 

satisfYing the following inequality 

a) If rp(I)E Ha(2A,[-I,JJ) then 

11f2 (I) I::; 2'-a Aha. 

b) If rp(t) E C I 
([ -1,1]) then 

I 
11f2 (I) I~ - Mh. 

2 

The proof of the Lemmas 3 and 4 follows by Lemma 
I, whence Lemma 5 is proved by the help of Lemma 2. 

Proof ofthe Theorem 1. From (9), it follows that 

Where 

N 

L 
;;' .- 1. 

k~Q(j}. ' j +2 

t i +£ )tp(l.}h 

JI- li 

The estimate of RI (lj + £) has been ~roven In 

(Eshkuvatov, Z.K. et ai, 2007), that is stated if 

rpEHa (2A,[-I,I]) , then RI(tj+£) is 

where 

~ = 24A ( , + 0.854 ) . ~ = .:!( 0.68hhi + 0.56h 2- J + 0.516). 
1[ aln(N+I) 1[ 

Tn oreder to estmate R2 (I j + £) due to (17) , (18), we 
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write it as follows 

fvrl(t ~ dt-
I 1- t~ 

,v () I ~h-
k=l , )1 -1; 

keQU )',- i .- 2 

[n view of Lemmas 3a), 4a), 5a) the estimate of 
R2 (lj + c) can be obtained in the form 

The prove of the Theorem I follows from RI and R2, 

Theorem 2 is proved in the same manner as Theorem 
I, but we use second part of the Lem mas 1-5, 

Numerical results 

As the example, we consider the function 
!(t) = ,2 +' + I, The exact solution is: 

cp(x) = l , j~(t 2i- 1 + I)d' = 

1[~ _ I I- .r 

= ,11 ~ x 2 [ _ x
3 

_x
2 -f++l 

£ 0,9h r. ~ 11,4 f. - h/2 I: = 3h17 
x error x error x error x Error 

-,~8~ 11 ,119952 -_~7 ~ 0.09594 -.870 00875 .. -.8 71 0,08994 
-,8 (\2 0,On S3 -_77 5 0,03965 -.850 0.06861 -.85 1 0,0711 3 
-,842 0.05309 -, b7S 0.02338 -.830 0.05444 -.831 0,05713 
- 042 O,0482Q - 0'5 0, 027" I -050 0.00097 -.0 71 0,00659 
-, O[)2 0,04759 - 035 0.02795 -.030 0.00058 -.03 1 0,00740 
0,278 0,03923 - 015 0,02837 -,0 10 0,00019 0.029 0,00858 
u,)58 (J,03630 0,005 0,U2877 0,010 0.0001 9 0.089 0,00967 
O.77~ 0.04713 O,R25 0.044"6 0 830 0.05444 0.829 0,05 172 
O,SIX 0,060 12 0.845 O.0593'i 0.850 0.0686 1 0.849 (),06606 
0,858 0,08299 0,865 0,07874 0.870 0.08754 0.869 0,085 11 

Conclusion 

Method of discrete vortices (MDV) invented and 
implimented by Belotserkovskii S.M, and Lifanov 
I.K. in 1956, has many application in different areas 
of Physics, Mechanics and aerodinamics. Its 
simplicity allows us to solve the problems easily. 
Therefore we develope MDV by using spline 
approximation and provided the convergence of the 
QF for any singular point X= li+ & belonging to the 
segment [tj, ti- ll , j=I , ... ,N. we improve of the error of 
QF(16) in the classes of H O( A. [ 1,1)) and e l([-I,!I]) ' 

The numerical results shows the validity of the 
QF(16) at different value of [;. 
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