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Abstract. In this paper, we consider a semilinear integro-differential elastic equation, in a bounded domain, and
show that the energy solution decays at the same rate of the decay of the relaxation function.

1 Introduction For a; =6, Cavalcanti e/ al. [1] studied (1.1) in
the presence of a localized damping cooperating with
In this paper, we consider the following semilinear the dissipation induced by the viscoelastic term.
problem Under the condition
¢ = D
. , ~&g(N £g' (1) £ ~4,g(1), 120,
u, (x.0)+ Au{x,0)- Jg(: -7)
0

they obtained an exponential rate of decay. Berrimi
A;;(x,z}dx+]3;]‘?‘z g;(;{}{):@? et al. [2] improved Cavalcanti’s result by showing
‘ (1.0 that the viscoelastic dissipation alone is enough to
n QX(O’CO) stabilize the system. To prove their result, Berrimi ef
u(x,)=0, xedQ, 20 al. introduced a diffirent functional, which allowed
N 0) = ‘ them to weaken the conditions on g. This result has
u(x,0) = %(x)’ ,(x,0) = (x), been later extended to a situation, where a source is
xeld competing with the viscoelastic dissipation, by
Berrimi et al. [3]. Cavalcanti ef al. [4], considered

-~

] PN .
where A:-Zg{‘m[a&u)é} Q  is a bounded
j i

i
fy=l u, —koAu + Jd‘:’v[e(x}g(f —)Vu{ridr+
domain of R"(rz1) with a smooth boundary 0

bya(u) + fluy =0,

€2, a;; are bounded functions satisfying conditions to

be specified later, g is a positive nonincreasing under similar conditions on the relaxation function

function defined on R, and p> 2. ganda(x)+b{x)=J5 >0, and improved the result
of [1]. They established an exponential stability
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when g is decaying exponentially and 4 is linear and

a polynomial stability when g is decaying

polynomially and / is nonlinear. Another problem,
where the damping induced by the viscosity is acting
on the domain and a part of the boundary, was also
discussed by Cavalcanti et al. [5] and existence and
uniform decay rate results were established. In the
same direction, Cavalcanti e/ al [6] have also
studied, in a bounded domain, the following equation:

ulPu, ~Au—Au, +
i i i3

' (1.2)
J‘g(f —ry Au(rydr - yAu, =0,
o

for p>0, and proved a global existence result for
y =z 0and an exponential decay for y > 0. This last

result has been extended to a situation, where a
source term is competing with the strong mechanism
damping and the one induced by the viscosity, by
Messaoudi and Tatar [7}. In their work, Messaoudi
and Tatar combined the well depth method with the
perturbation techniques to show that solutions with
positive, but small, initial energy exist globally and
decay to the rest state exponentially. Furthermore,
Messaoudi and Tatar [8], [9] considered (}.2), for
¥ =0, and established exponential and polynomial

decay results in the absence, as well as in the
presence, of a source term. We also mention the
work of Kawashima and Shibata [10], in which a
global existence and exponential stability of small
solutions to a nonlinear viscoelastic problem has been
established.

For nonexistence, Messaoudi [11] considered:

{
w, = Au + Ig(!—r)&zc(r)df +
0
au, lul lm = bla}r u, in Qx(0,x)

and showed, under suitable conditions on g, that

solution with negative energy blow up in finite time if
¥ > mand continue to exist if »m 2 y. This blow-up

result has been pushed to certain situations, where the
initial energy is positive, by Messaoudi [12]. A
similar result was also proved, using a different
method, by Wu [13].

In the present work, we generalize the earlier decay
result to solutions of (1.1). The paper is organized as
follows. In Section 2, we present some notations and
material needed for our work and state a global
existence theorem, which can be obtained following
exactly the arguments of [6]. Section 3 contains the
statement and the proof of our main result.

2 Preliminaries

In this section, we present some material needed
for the proof of our result.
For the relaxation function g we assume

(A1)  g:R*" > R*
satisfying

is a differentiable function

2(0)>0, 1- J-g(s)ds =050
4]

{A2) There exists a positive constant & such that
gl s~Eg?{n), 120 1<p<3/2
For the matrix 4 = (@, ), we assume that
(A3) A issymmetric; i.¢.
ag =a, Vi, j=12,n,
(A4} A i1s positive definite; i.e. there exists a constant
a, > 0, for which

ae xin

»
Z Gy ()54, 2 24 "f
i,j=1
(A5) Ais bounded; ie,
Iag(x)l <M, Vi j=L2,-naexinQl

2 .
, VEeR", ae xinQ

2(n-1)

<ps nz3
{A6) (n—-Z)’
pz2, n=12

Proposition 2.1. Assume (A1), (A3)- (46) hold and

fet (ug,u)e HEO (Q) x I? (Q) be given Then
problem (1.1} has a unique global solution
u e ({0,504, (@), wec(oorl(9). @)

Remark 2.1. Conditions (Al), (A3), (A4) are
necessary to guarantee the hyperbolicity of equation

(1.1).
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Remark 2.2. Condition (A6) is made so that the
nonlinearity is Lipschitz from A'(Q)to L* (Q).

We introduce the “modified” energy
functional

&)= Hule [ jg(s)ds]B(u(rm
(2.2)

%(govl,>a)+;||uupp,
Where

B(u(t)) = LZaij(x)%itl%dx, (2.3)

i /=1 i J

(goVu)t)= jg (t=s)B(u(t)-u(s))ds. (2.4)

Lemma 2.2. Suppose that
vel® (O,T H! (Q)) andg is a continuous function.
Then we have, for 0 <6 <1,

(ov)(1)< 2 [Jg (S)ds]

(2.5)
18 (]l (0.7)
2
((gp on)(t))P"19
And
(p-lip
(gov) {JBv(s)ds +1Bv(1 )}
(2.6)

((g” on)(t))l/p.

Proof. For ¢ >1and 0 <8 <1, we have

(g9)(1)=J& * (1-5)8" (v(1)=v(s))g *
(t—s)B—"; (v(t)—v(s))ds

By applying Holder’s inequality, we get

1/¢q
(gov)(1) [Jg 1-5)B(v t)~v(s))ds]
(¢-1)/¢
(gq_l+'9 on(f))
By taking g =(p—1+6)/ p—1, we obtain

(gov)(1) S[,.[g"&(l ws)B(v (t)~v(s))dsjp -

a2

(g7 oW (1))

2.7)

hence, estimate (2.5) follows easily for 0 <@ <].
Finally, by taking € =1 in (2.7), estimate (2.6) is
established.

3. Decay of solutions

In this section, we state and prove our main result.
For this purpose we set:

F(t)=e(t)+ew(t)+ex(1), (3.1)
where &, and &, are positive constants and
¥ (1)5= Juu,dx,l (e): =

Q
(3.2)

—Ju, Jg(l—r)(u(t)—u(r))drdx
0

Q

Lemma 3.1. If u is a solution of (l.1) then the
“modified” energy satisfies

£10) =5 (g Vi(1) - 3 (0 B(r)
(3.3)

<—(g'oeVu)1)<0.

N |-
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Proof. By multiplying equation in (1.1) by #, and

integrating over £, using integration by parts,
hypotheses (A1)-(A5) and some manipulations as in
[11], we obtain (3.3) for regular solutions., This
ingquality remains valid for weak solutions by a
simple density argument.

Lemma 3.2. For & and &, small enough, we have
a F(t)y<e(t)Y<sa,F (1) (3.4)

holds for two positive constants ¢, and o, .

Proof. Similar manipulations as in [3], [8] give the
desired result,

Lemma 3.3. Under the assumptions (A1)-{A6), the
functional

W(t)= J‘ v, dx
0
satisfies, along solutions of (1.1)

b4 {I)S Luz,dx—gB(u(z))Jr

Mn ﬁ/f?’!(l-«é))\. ! 2-p )
. [+ o Ijg (s)a’sJ (3.5)

AN

(87 evu)r-]ul,”

Proof.

By using equation in (1.1), we easily see that

V()= Luidx — B{u(t)) +

Z ’Mzg(‘“‘*)%(@ (3.6)

81:( )@u( )afxd i ”

ox;  Ox,;

We now estimate the third term in the RHS of (3.6) as
follows:

Z”: J.M jg(t - $)ay (x)%ds
“ ax; F ’ ox;

J=LG !

<lB(u(z))+—l—B ]g(t~s)u(5)ds\‘
i -
1

ip Jg(z — $)uls) ~ult) + u(z))dsJ
O

N

s%g( () += B J'g(z—sxu(s) u(:))a’:}

\0

" du(s) ou(n))
L] oo -5
x[]g(f—s)au—m'dswdx

; @xj )
+%B{!g(!—s)u(r)ds}

We then use Young’s inequality and {AS5) to estimate
the terms of (3.7). For the second term, we have:

%B(’jg(z ~sY(u(s)=u(t) dsj
" & { by
> [ et 5

w| 00
4 f,
1on

By using Cauchy-Schwarz inequality and {A4), we
get:

(3.7)

()

a;fj))dsf d

/

dx +

<

Lé‘u(&

L=
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Zn: L“g (1-5)[82—75_5)~&;—y}ds}2dx

i,/=1 0 i

< n{ _[g“ (s)ds} J'Q .[gﬂ (:—sj||Vu(z)—Vu\2
0 0

dsdx < :—0[ Igz'p (s)ds}(g” oVu).

0

(3.8)

Therefore, we arrive at:

;—B[Jg (1=s)(u(s)- u(l))a’s} <

ni/IO [(;[gz_p (s)ds}(gp oVu)(!).

As for the third term, similar calculations and using
!

the fact that J“g( )ds <1-2¢, gives, for n>0,

5 [ [Jg o[ -2l

1

3.9)

i,j=1

x[i[g(t—s)%@ds}dx

J

: #[Jg()d] (87 v

L nMy(i- £)?
20

(3.10)

B(u(1)).

Finally, the fourth term can be handled as follows

—B[jg, s u(z)dsJ 'S ot

l_}l

By inserting (3.8)-(3. 11) n (3 7), we get

7

<%{1+ ][Ig "’(s)dy] OVu)(l)

+[%+"'7/:‘;J(1—e)2}3(u(1)).

&,

(3.12)

By inserting (3.12) in (3.6) and taking
n=ayl/nM(1-2¢), (3.5) is established.

Lemma 3.4. Under the assumptions (A1)-(46), the
Sfunctional

2()=— ju, J'g (1 =) (t)—u(s))dsdx
Q 0

satisfies, along solutions of (1.1) and for any

>0,

FAOES {5— J.g(s)ds} u,zdx+
0 Q
(p-2)
n§M 5 c.202 £
[ p- ( ; } ]B(u(l))+ (3.13)

) ao

Mn | 2-p

—_— d
[ao [l+45} 4&10}[J.g (s) s]

(gpovu)(f)_%c_

0” (g'ovu)(1).

where Cp is the Poincaré constant and C, is the

embedding constant.

Proof. Direct computations, using (1.1), yield

7'y = —Tg(s)ds Lu,zdx— Iu, i[g (=) ()=

u(t))drdx +[l - J.g(_v)ds} _[Z

Qi j=1

(M——JJ

B[ J-g(l —s)u(t)— u(s))ds] +

(3.14)

0

_[|u|" ngr s

)) dsdx.
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We proceed now to estimate the terms of (3.14). So,
By using Cauchy-Schwarz and  Poincaré’s
inequalities, the second term can be handled as
follows:

= J.u, J.g (¢ —7)(u(t)—u(r))drdx
o 0

2
<5 |’ e +— '{J.g t— u ())dr} dx
(3..15)
<6 \uQ,dx—g() J.J.g (t—z')|Vu(t) Vu(z')|
Q
dz'dx<5J. dx—%( "o V) (f).
0

As for the third term, similar estimations give

J.iay (x)a;—(j) ’J.g(’—s){&alx—(:)_%f)]d‘%

Qi.Jj=l

</\/b15ﬂVu| it [J'gz p(s)ds] J'J'g (1—s)

(3.16)

Vu(t) - Va(s)|* dscbe I . B(u(t)) +%

[ng‘”(sms](g" 2Vu)().
0

Also, by repeating similar calculations as in (3.7),
(3.16), and using the fact that J; g(s)ds £1—1, we

estimate the fourth term of (3.14) as follows:

B[ Jg(t - $)(u(s) —u(t)dsJ < Mn[ ngp(s)dsJ
0 0

X Jjgp(l —S)|Vu(t) —Vu(s)|2 dsdx 3.17)
Qo
< @{ ng_p(s)ds](gp o Vu)(t)
% | o

Finally, using (A4), (A6), (2.2), and Lemma 3.1, the
fifth term is estimated as follows

J]u|p_2 u Jg(! —s)u(t) —u(s))dsdx
0

Q

<G|l +@{ ng_p (S)ds]
2p—2|: ( (1))]

L[ f o
@Ug %s)ds}(g”ow)(z)

S pa2f& 2 I
<G B(u(1)) +——
o 2t 4da

[ Ing‘P (s)dsJ( g” oVu) .
0

By combining (3.14)-(3.18),
lemma is proved.

(gﬂovu)(z)s 4
%" (3.18)

the assertion of the

Theorem 3.1. Let (uy,u,) € H'y(Q)x L* (Q) be given
Assume that (41)-(A6) hold. Then, for each t, >0,

there exist strictly positive constants K and k such
that the solution of (1.1) satisfies, for all t 2 1,

e(<Ke™, p=1
e S KA+ ps,
Proof

Since g is positive and g(0) > 0 then for any ¢, >0
we have

'[g(s)ds 2 '[g(s)ds =g,>0, V=, 19
0 0

By using (3.3), (3.5), (3.13), and (3.19), we obtain

i) <=[e(gy=0)=2)] [ulds+
Q

l_ 80 o _
[ 4500 J(g Vau)()

(p-2)
{ [‘”’M 0‘2103*"2[570] ﬂB(u(!))+
gan L Mni-0)) M[HL} L],
: 2a, Lo\ 46) 46q,

p(r)dr} (g7 o vu) O -2 [u] °

(3.20)
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At this point we choose & so small that

N (p-2)
1 2
g0_5>_g07 _I:()”M+ 4 CZP_Z[ﬁJ }<lg0.

2 o ey @ ¢
Whence 0 is fixed, the choice of any two positive
constants &, and &, satisfying

1 1
Zg082<gl <§g082 (3.21)

will make

k,=&(g,-06)-¢ >0, k, z%[—gz

5nM+ o cwtl L s > 0.
o, " 1

We then pick & and &, so small that (3.4) and
(3.21) remain valid and, further,

I gMn( Mn(1-¢ Mn[ 1
== 1+ +& | — | 1+—= |+
&\ 2a, 22, a, 46

802 g

+——&
2 4éa, ’

4da,

Therefore, we arrive at
F()s-p

l'[uz,dx+B(u(I))+(gpOVu)(l)+||u”pp1,Vl210. G

Q

Casel. p=1:
We combine (3.4) and (3.22) to get
F'(t)<-Belt) <-LoyF(t), Yt 2t,. (3.23)
A simple integration of (3.23) leads to
F(t) < F(ty)eP e ™ Vit 2t (3.24)
Thus (3.4), (3.24) yield
et) <o F(t, )" e =Ke™ V1 >1,,  (3.25)

Case2. p>1:
By using (Al) and (A2) we easily see that

Jg""(r)dr <w,0<2-p.
0

So Lemma 2.2 yields

- (p=1)/(p-1+0)
(goVu)t)<C {{ J-g l"9(1')dz']£(0)}
0

}a/<p-1+0)

{(g" ovVu))
Therefore we get, for o > 1,

(1) sCs""(O){‘[u 2 d +B(u(t))+HuH”p}+
Q

{(govu))}” SCe”"(O){Jztz,dx + B (u(t ))}+
Q

@ o(p-1)/(p-1+6)
C { Ig"”(r)era(O)} X
0

B p-1+6)

(3.26)

{(g” ovu)0))

By choosing
Hzéando':zp-l(henCCo’@/(}?‘l+9):l)> est

imate (3.26) gives
&) sc{ﬁﬁ,dx +Bu( ))+|M|"p +(g’ oVu)(t)}
(3.27)

By combining (3.4), (3.23) and (3.27), we obtain

F)< —-g—zg"(z) < —%(a, VEO (1), V1 21, (3.28)

for some constant 3, > 0. A simple integration of

(3.28) over (#,,/) leads to:

F()<C(l+0) MoV v >u,. (3.29)
As a consequence of (3.29), we have

[F (@)t + sup o tF (1) < 0.
0

Therefore, by using Lemma 2.2 again, we have
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goVu <
¢ (P‘l)"ﬁ
c{ jg(g(s))ds + zB(u(z))} x

(g7 0vu)” <

p (p-1)p
C]:J‘F(S)dSwLIF(()} x

(g ovu) " <
C(g”ovu)”,

which implies that

27 oVu2C{gVu)’. (3.30)

Consequently, a combination of (3.23) and (3.30)
yields, ¥t 2¢,,

0

F*(z)S—cUui(z}dx +B@E)+(goTuY (1) |.
(331

On the other hand, we have similar to (3.27),

P <C| [u (s + Ba@)+ P, + (g2 V) (),
Q
iz,
(3.32)

Combining the last two inequalities and (3.4}, we
obtain
F'Uys-CFr{),t 21, (333
A simple integration of (3.33) over (to, 1) gives
FOYsKQ+0)y e vy>y, . (3.34)
This completes the proof.

Remark 3.1. Note that our result is proved without
any condition on ¢ unlike what was assumed in

(2.4) of [6]. We only need g to be differentiable
and satisfying (Al) and (A2).

Remark 3.2. Estimates (3.25) and (3.34) are also
true for IE{O,EO] by virtue of continuity and

boundedness of £(f).
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