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Abstract, In this paper, we consider a semi linear 
show that the energy solution decays at the same rate 

1 Introduction For aU =: ,Cavalcanti et at. [I] studied (1,1) in 

the presence of a localized damping cooperating with 
the dissipation induced by the viscoelastic term, 
Under the condition 

In this paper, we consider the following semi linear 
problem 

I 

(x,t)+Au(x,t)- fg(t-r) 
o 

=0, 
( 1,1) 

x 

where A or ')oJ ---- alx -' n 
IJ 'ax.' 

/,}=I \ / 

IS a bounded 

domain of I) with a smooth 

are bounded functions conditions to 

be g is a positive 

function defined on , and p 2: 2. 

41 

-sg ,t 2: 0, 

that the viscoelastic alone is enough to 
stabilize the To prove their result, Berrimi et 
at. introduced a diffirent functional, which allowed 
them to weaken the conditions on g, This result has 

been later extended to a where a source is 
competing with the viscoelastic dissipation, 
Berrimi et af. Cavalcanti et af. [4], considered 

)+f(u) 0, 

under similar conditions on the relaxation function 
g and a(x) ... b (x) 6' > 0, and improved the result 

of [1]. They established an exponential stability 
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when g is decaying exponentially and h is linear and 

a polynomial when g is 

polynomially and h is nonlinear. Another problem, 
where the damping induced by the viscosity is 
on the domain and a part of the boundary, was also 
discussed Cavalcanti et at. [5] and existence and 
uniform decay rate results were established. In the 
same direction, Cavalcanti et at. [6] have also 

in a bounded domain, the following equation: 

o 

for p 0, 

r z 0 and an 

( I 
-r) 6.u(r)dr- 0, 

a global existence result for 

decay for r > O. This last 

result has been extended to a situation, where a 
source term is competing with the strong mechanism 

and the one induced the by 
Messaoudi and Tatar [7]. In their work, Messaoudi 
and Tatar combined the well depth method with the 
perturbation to show that solutions with 
positive, but small, initial energy exist globally and 
decay to the rest state exponentially. 
Messaoudi and Tatar considered (1.2), for 

Y 0, and established exponential and polynomial 

results in the absence, as well as in the 
presence, of a source term. We also mention the 
work of Kawashima and Shibata [I in which a 
global existence and exponential of small 
solutions to a nonlinear viscoelastic problem has been 
established. 

For Messaoudi (II] considered: 
I 

UI/ 6.u + fgu- r (r}iT + 

0 

au,lu,l
m 

b lui' u, in n x 00) 

and under suitable conditions on g, that 

solution with negative energy blow up in finite time if 
r > m and continue to exist if m 2: y. This blow-up 

result has been pushed to certain where the 
initial energy is positive, Messaoudi [I A 
similar result was also using a different 

by Wu [13]. 

In the work, we the earlier decay 
result to solutions of (l.l). The paper is as 
follows. In Section we some notations and 
material needed for our work and state a 
existence theorem, which can be obtained following 
exactly the arguments of Section 3 contains the 
statement and the proof of our main result. 

2 Preliminaries 

In this section, we some material needed 
for the proof of our result. 

For the relaxation function g we assume 

(AI) g: is a differentiable function 

o:l 

g(O»O, I fg(s)ds=£ 0 
o 

(A2) There exists a positive constant c; such that 

g'(t) ~ 

For the matrix A 

(I), t z 0 I ~ p < 3/2. 

), we assume that 

(A3) A is symmetric; Le. 
i 1,2,. 'n, a.e. xinn 

(A4) A is definite; Le. there exists a constant 

> 0, for which 

i>j~j 

(AS) A is bounded; i.e. 

(x)1 ~ lvI, = 1,2,. 'n, a.e. xin n. 

nz3 
(/\6) 

p 2, n 1,2 

Proposition 2.1. Assume (AJ), (A6) hold and 

let (lIo, Uj ) E 0 (n) x L2 (n) be given Then 

1) has a global solution 

Remark 2.1. Conditions (A (A3), 
necessary to guarantee the hyperbolicity of ICU1,aLlVI 

(I. 
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Remark 2.2. Condition (A6) is made so that the 

nonlinearity is Lipschitz from HI (D) to LZ (D) . 

We introduce the "modified" energy 
functional 

o(t)= ~lu,112 2 +~( \- Ig(')d< ] 8(u(I))+ 
.!.(go'VU)(/)+~lluIIP , 
2 P P 

Where 

I 

(2.2) 

(2.3) 

(g 0 'V u )(1 ) = J g (I - s ) B (u (I ) - U (s )) ru . (2.4 ) 

Lemma 2.2. Suppose that 

v EL"' (O,T;H 1 (D)) andg is a conlinuousjimclion. 

Then we have, for 0 ~ g ~ 1, 

And 

{

' ](P-I I P 
(g o v)(/)~ !BV(S)ru+IBV(/) 

(2.6) 

( )

11 P 
(gP o'VV)(/) . 

Proof. For q ~ 1 and 0:::; e :::; 1, we have 

,1- 11 I g- I+B 
(g 0 v) (I) = f g q (I - s) B q (v (I) - v (s )) g -- q- ' 

o 
~ 

(/-s)B q (v(/)-v(s»)ds. 

By applying Holder's inequality, we get 

(

' ]l /q 
(gov)(/)~ fgl_O (/-s)B(v(/)-v(s))ds 

(q-I ) l q 

(gq-I+B o'VV(/)) 

By taking q = (p -I + g) / P -I, we obtain 

p - l 

(g °v )(1) ~ ['OJgl~ (I - s)B (v (I) -v (s) )ruJp-l~(j 

(gP o'Vv (I)) 

e 
r--l'l~ 

hence, estimate (2.5) follows easily for 0 ~ g ~ 1. 

(2 .7) 

Finally, by taking g = J in (2.7), estimate (2 .6) is 

established . 

3. Decay of solutions 

[n this section, we state and prove our main result. 
For this purpose we set: 

F (/):= c(1 )+c11f/(/)+ czrd/), (3.1) 

where GI and Gz are positive constants and 

\f' (/):= fUUtdx,x (I): = 
n 

t (3 .2) 

- f u t J g(t - r)(u(/) - u(r»drdx 
n 0 

Lemma 3.1. If u is a solulion of (1/) then Ihe 
"mod{fied" energy salisfies 

I 1 
c '(t) = -(g '0 'Vu)(/) - - g(L)B(u(t» 

2 2 

~ ~(g ' 0 'Vu)(t) ~ O. 
2 

(3.3) 
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Proof. multiplying equation in (I.l) u/ and 

over Q, by parts, 
hypotheses I )-(A5) and some manipulations as in 
[II], we obtain (3,3) for solutions, This 

remains valid for weak solutions by a 
simple density argument. 

Lemma 3.2. For "I and "2 small enough, we have 

a,F(t) &(t)::;a 2 F(t) (3.4) 

holds lor two positive constants a l and a2 • 

Proof. Similar manipulations as in [3], [8J the 
desired result. 

Lemma 3.3. Under the assumptions (A I )-(A6), the 
functional 

"¥ fuuttit 
o 

satisfies, solutions ol( 1.1), 

"¥'(t) I U (dx - B(u(l» + 
o 2 

/ 

f g P (s) ds (3.5) 

P Vu )(1) Ilull/ 

Proof. 
equation in (1.1), we easily see that 

B(u(t» + 

(3.6) 

We now estimate the third term in the RHS of (3 .6) as 
follows: 

I 

Jg(1 
0 

I \ 
1 I 

fg(t ::; B(u(I))+-B 
2 2 

0 

~lB (t)) 
2 

+;{ + U('»d'] 
I 

~ u(,»d, 1 I +IB fg(t-::; B(u 
2 2 

0 

I \ 

fa i; fgU- YSj 
i,j=IO 0 

x [Ig(, tit 
) 

I 

')U(I)d'l I 
fg(t +-

2 (3.7) 0 

We then use Young's inequality and to estimate 
the terms of (3.7), For the second term, we have: 

±Br fg(t 
,,0 

I n (I 

I 11 fg(t 
::; M ,,0 

4 

dx 

Cauchy-Schwarz inequality and (A4), we 
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~ r ('f ( )( OU (s) OIl (/) J :2 L.. J( g I-S --- -- ds dx 
i, i = l Q 0 OX i OX i 

< "Og'-' (, )d' lIn [g' (1- ' )IVn(1) - Vnl' 

d, dx < : . (jg'-' w' ltg' ,vu) 

(3.8) 

Therefore, we arrive at: 

TB Og (1-' leur,) - U(I))d' ] < 

~[ Jg2 _ P (S)dS](gP oVu )(1). 
2a o o 

(3.9) 

As for the third term, similar calculations and using , 
the fact that Jg (s )ds ~ 1-f, gives, for '7 > 0, 

o 

(3.10) 

Finally, the fourth term can be handled as follows 

H[g(H)n(l)d> H,~ hex) 

([g(I-') On;:) "' ng ( H) ~,') "' 1 (3.11) 

"' ~~(fg(,)", J' ,~ 1, a, (x)x 

OU( I) OU(I) dx~ (1- £)2 B(u(I») . 
Oxi Oxi 2 

By inserting (3.8)-(3.11) in (3 .7), we get 

" , au (t ) au (s ) L J Jg(1 -s)aij (x )--dxds 
; .J =1 0 (l Ox, Ox J 

~ ;: (1+~J(jg2-P(s)d5 }g POVU)(t) (3.12) 

+ -+ 0 (1- 0 2 B(u(I». 
[

I n7]M +a ] 
2 2ao 

By inserting (3.12) in (3.6) and taking 

17 = aof / nM (1- f), (3.5) is established . 

Lemma 3.4. Under the assumptions (Al)-(A6), the 
functional 

, 
X(t):= - Ju, Jg(t -s)(u(t)-u(s»dsd'( 

n 0 

satisfies, along solutions 0/0.1) and/or any 

8> 0, 

x '(I) ~ 10 - jg(S)dS l lu/dx+ 

[
nOM +£C.2P-2(£0 )(P-2)]B(U(I»+ 

ao ao R. (3.13) 

( Mn ( I+~) +_1 J[ jg2- P(S)dS ) 
aO 40 40ao 0 

(gP o'VU)(I)- g(O)Cp (g'o'Vu)(I). 
40ao 

where C is the Poincare constant and C. is the 
P 

embedding constant. 

Proof. Direct computations, using (1. J), yield 
, , 

1"(1)=- Jg(S)dS bU/ dx - Ju, Jg '(I -r)(u(I) -
o 0 0 

[

' ) 11 OU(I) 
u(r»drdx+ 1- Jg(S)dS J"L>ij (x )ili. 

o O' ,; =l ; 

[ 'Jg(I - S) ( a~(I) - 8u(S)]dS ) dx+ 
o ox, ax, 

(3.14) 

B[jg(I - S)(U(t) - U(S»dS )+ 
I 

JlulP-2u Jg(t-s)(u(I) - u(s) )dsdx. 
o 0 
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We proceed now to estimate the terms of (3.14). So, 
By using Cauchy-Schwarz and Poincare's 
inequalities, the second term can be handled as 
follows: 

, 
- fu, fg'(t-r)(u(t)-u(r))drdx 

o 0 

::;.5 fu 2,dx+ 4
1
5 {jg'(t_r)(u(t)_U(r))dr]2 dx 

o ~lo (3 .. 15) 

r 2 g(O)C f'f 2 ::;.5 JU ,dx-~ g'(t-r)IVu(t)-Vu(r)1 
o 00 

r 2 g(O)C 
drdx::;' 5 JU ,dx---P (g'o Vu)(t). 

45ao o 
As for the third term, similar estimations give 

fi>ij(x)aUU)[fgu-s/au(t) - 8u(S)]ds Irlv 
ni,j~1 ax) 0 l ax, ax, r 
~ Mno flVul2 

dr+:[fi-P(S)ds: ffgPU-S) 
n 0 no (3.16) 

IVu(t) - Vu(s)12 dsdx::;' Mno B(u(t)) + Mn 
ao 46ao 

[jg'-' (')'" }g' 0 Vu )(1). 

Also, by repeating similar calculations as in (3.7), 

(3.16), and using the fact that L g (s )ds ::;; 1- -£ , we 

estimate the fourth term of(3.14) as follows: 

, 
x f fgP(t-s)IVu(t)-Vu(st dsdx 
00 

< ~:(jg'-'W+' o'1U)(I) 

(3.17) 

Finally, using (A4), (A6), (2.2), and Lemma 3.1, the 
fifth term is estimated as follows 

, 
~ulP-2 U fg(t -s)(u(t) -u(s))dsdx 
n 0 

< Jc. '<>-' II'1ulI'<>-', + ~ [jg'-' (,)a\ ] 

(gP 0 Vu) (I) ~ rxo~1 c. 2p-2 [ B( u(t)) ]P-I + 

~ [jg'-' (')'" Jt g' 0 VU) (I) 
(3.18) 

::;._O_c.2P-2( 50 i(P-2) B(u(t))+_I-
rxoP-I lu) 45ao 

[jg'-' (')'" ]( g' 0 '1u )(1) 

By combining (3. I 4)-(3.18), the assertion of the 
lemma is proved. 

Theorem 3.1. Let (uO'u I) E Hio(D.) X L2 (D.) be given 

Assume that (Al)-(A6) hold. Then, for each to > 0, 

there exist strictly positive constants K and k such 

that the solution of (1.1) satisfies, for all 1 ~ 10 ' 

5(t)::;.Ke-k
" p=l 

5(t) ::;. K(1 + trJ/(p-J), p > l. 

Proof 
Since g is positive and g(O) > 0 then for any to > 0 

we have 
, '0 
fg(s)ds ~ fg(s)ds =go > 0, Vt ~to' (3.19) 

o 0 

By using (3.3), (3.5), (3.13), and (3.19), we obtain 

F'(I)::; -[C2(gO -5)-cI] fu 2,dH 

n 

[
J g(O) 2 J ' --c2--C 2 (g oVu)(I)-

12 4b"(a
o 

( 2) Jl (3.20) l c~c - C2 5:~ + ao~-I C. 2p-2 ( c; ) p- B(u(I)) + 

[
CIMn(l+ Mn(1-C)J+c2 [Mn(l+~)+_l JJx 
2ao 2f!. ao ao 45 45ao 

[jg2-
p

(r)dr }gP oVu)(t)-clllull/ 
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At this point we choose J so small that 

-0> ~ ~[onM +~C.2P_'(E:o)IP-2)] < ~ , 
g o 2 g o' e ao a/-' e 4 go 

Whence J is fixed, the choice of any two positive 

constants 6', and 6'2 satisfying 

will make 

k l =cz(go-5)-c l > 0, kz=c~£-C2 

[
5nM +~c.zP-z (~J(P-2)1 > O. 

ao ao
P 1 £ 

We then pick 6') and 6'2 so small that (3.4) and 

(3.21) remain valid and, further, 

(3,2 I) 

-- -- + +c - 1+- +--I [cJMn (I Mn(J -£J (Mn ( I J I Jl 
!; 2ao 2£ a o 2 a o 45 45ao 

Therefore, we arrive at 

F '(I) $ -/3 

[ lU2(dx+B(U(I))+(gP o V'U)(I) +IIuIIP 
P }l:il ~ 10, (3.22) 

Case 1. P = 1: 
We combine (3.4) and (3,22) to get 

(3,23) 

A simple integration of(3.23) leads to 

(3.24) 

Thus (3.4), (3.24) yield 

Case 2. P > 1: 
By using (A I) and (A2) we easily see that 

<X> f g 1-8 (r)d r < 00, () < 2 - p. 
o 

So Lemma 2.2 yields 

f( ) } (P - IJ / (P-I+O) 

(g o'lU)(/):::;C 1 fgl-B(r)dr c(O) 

{ }

O/( P-I+O) 
(g P 0 'lu )(1) , 

Therefore we get, for CT > 1, 

c" (I):::; C c,,-I (O){ju 2,dx + B (u(/)) +I~IIP P }+ 

{(g o'lU)(/)}" :::;Cc"-1(0){jU 2,dx +B(U(/))}+ 

ClOg ,-, (,)d, 1 &( of' _'l'('-H" , 

{ }

"o /( P-I+O) 
(gPo'lU)(/) . 

(3.26) 

By choosing 

I () = - and (J' = 2p -I (hence (J'() /(p -I + ()) = I), est 
2 

imate (3.26) gives 

c" (/):::;C {juZ,dx + B(u(/)) +IHP P +(gP 0 'lU)(/)}, 

(3.27) 

By combining (3.4), (3.23) and (3.27), we obtain 

F '(I ) :::; - /32 c" (I) :::; - /32 (al )F" (t), V I ? 1
0

, (3.28) 
C C 

for some constant /32 > O. A simple integration of 

(3.28) over (to, t) leads to: 

F (t ) :::; C (I + I ) -1/(" -I) , V I ? 1
0

, 

As a consequence of (3 .29), we have 
00 

f F (I )dl + SUPt>o IF (I) < 00 , 

o 

(3,29) 

Therefore, by using Lemma 2.2 again, we have 
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g V'u s: 

C [j B(u(s ))ds + 

(gP 0 V'u 

c[j F(s)ds + 

(gPoV'u :::; 

oV'ut p
, 

which implies that 

x 

oV'uy. (3.30) 

Consequently, a combination of(3.23) and (3.30) 
yields, vt 2: 

F'(f):::;-(:' [lU2t(t +B(u(t))+(g oV'UY(t)j. 

On the other hand, we have similar to 

Combining the last two inequalities and we 
obtain 

I) 

F'(t):::;-CFP(r),t to. (3.33) 

A simple !nt,Pert'Clt! of (3.33) over (to' t) 

F(t):::;K(I+t I( pi) , V t to' (3.34) 

This completes the proof. 

Remark 3.1. Note that our result is proved without 
any condition on g unlike what was assumed in 

of [6]. We only need g to be differentiable 

and (AI) and 

Remark 3.2. Estimates (3 and are also 

true for t [0, to] by virtue of continuity and 

boundedness of 6(t). 
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