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Abstract. The objective of this paper is to systematically study the boundedness, persistence and stability of the
nonlinear malaria eptdemic model with latent periods. First, we consider the simplified model with the

approximation {(t-n)=0{t)~»f{t), when n is small enough so that the function f does not vary too rapidly over

the time interval [t-n, t],and study the stability of the trivial and the positive equilibrium points. Second, when the
latent periods are equal {and not small enough), we will investigate the stability of the positive equilibrium point
and prove the existence of Hopf Bifurcations and discuss the stability independent of the delays. Third, in the case
when the latent periods are different, we will employ the Lyapunov functional method to establish some sufficient
conditions for the local asymptotic stability of the positive equilibrium point,

Introduction

Mathematical models have been used to study the
transmission and control of malaria since the first
model that has been given by Ross in [23]. The Ross
model consists of two nonlinear differential equations
in two state variables that comespond to the
proportions of infected human beings and the infected
mosquitoes. The focus of the original work was
malaria, but this work was extended to develop a
rather general theory of disease transmission. George
MacDonald [16] added a layer of biological realism
to these early models by his careful attention to
interpretation and estimation of the parameters. This
work was based on Ross model and the collection,
analysis and Interpretation of epidemiological data
malaria infection by the WHO project by Molieaux,
L. and Gromicca, G. 1980. Garrette-Jones, C. 1964
created the vectorial capacity of any dynamic model
of malana to quantify how effectively the mosquito
population transmits malaria.

The guantitative character of much of this work is
in part a consequence of the emphasis placed by
MacDonald, G. 1957, in his simple model of the
dynamics of malaria. The value of mathematical
studies to the design of malaria transmission, the

control programs and the interpretation of observed
epidemiological tends has been a topic of
considerable controversy. We refer the reader to the
papers by (Bruce-Chwatt and Glonville [3],
MacDonald [15] and Maruni [17] and for more
details we refer the reader to the book by May and
Anderson [18].

The basic model of malaria as given in [18]
consists of two nonlinear differential equations
describing changes in the proportion of infected
humans h and mosquitoes m. The model is given by:

(1) = (ab(N/N) Jm(6)[1=h ()] uh (1)
m’(t) = ach(t)[] -m(t)]—&n(t);

where:

{I) N is the size of human populations, N is size
of female mosquito population {the ratio N/N defines
the number of female mosquitoes per humans host),

(I) a is a mosquito’s rate of biting people (the
nurnber of bites per unit time).

(I11) b is the proportion of the people that become
infected when bitten by an infectious mosquito.

(1V) p is the per capita rate of humans recovery
from infection.

(1.1
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(V) ¢ 1s the proportion of mosquitoes that become
infected after biting an infectious person.

(VD) & is the per capita rate of mosquitoes
mortality.

(VI (ab N /N Ym(t) is the inoculation rate, the
rate at which currently infectious mosquitoes deliver
infecting bites.

The first equation of the system (1.1} describes
the change in the proportion of infected humans and
the second equation describes the change in the
proportion of infected mosquitoes. In the first
equation the term (1-h(t)) refers to the proportion of
the population that are not infected, and the
formulation implies that all of these noninfectious
individuals are susceptible and can contract the
infection. The essential feature of infection that is
incorporated in these equations is that infection of a
human occurs whenever an infective mosquito bits a
healthy human, and infection of a mosquito occurs
when a healthy mosquito bits an infective human.

In system (1.1) it is assumed that the total
population of both humans and mosquitoes are
constants, so that the dynamical variable are the
proportion infected in each population h{t) and m(t).
The model assumes that there is no wvertical
transmission of the parasite; i.e., all newborn humans
and mosquitoes are susceptible. In addition, Ross
concluded that the death rate in humans was
negligible in comparison with their recovery rate and
that the opposite held true for mosquitoes; i.e., the
recovery rate in mosquitoes was negligible in
comparison with their death rate. There are a number
of assumptions that limit the utility of this
formulation. Because there is also recovery from the
infection {represented by the term ph), this further
imphies that there is no immunity to reinfection (May,
R. M. and Anderson R. M. 1995 ). The model in its
present form falls into the SIS class of epidemic
models. Also the model assumes that an individual
infected with malaria could not be again infected until
after complete recovery from the initial infection. Let
square brackets [.] indicate units, Then

[5] = time™", [u]=time™', [b]= peoplexbites™',

c|= mosqultoes x bites !,

A2 -1/
xmosquztoes V2 peop!e”z x[bc] :

e}
—s

[
[al=time™
[be

In this paper, we consider the modification of
{1.1) to include mcubation periods quoted from Ross,

R. 1921 to be 1=0.5 month in human and o=0.6
month in mosquito, ie., we consider the nonlinear
delay system

b(t)=am(t)[1-h(t)]-rh(c)
m (1) = ph(O[1=m(t) | -om(1),

Where:
o=(abN/N), PB=ac, y=pty,

where p1 is death rate in humans and am(t-1) is the

new inoculation rate, the rate of uninfected humans
that become infected, depends on the latent period of
humans.

For epidemiological significance, we consider the
initial conditions for (1.2) of the form:

h{8)=:(8), m(8)=p2(6), 6c[-7,0], (1.3)

where t=max{c,1} and assume that ¢, eBC[-11,0],
@. >0, =12 (ie. are bounded, continuous and
nonnegative functions on [-11,0]. Let|.!be any norm
of R* and denote by llol=SUpP ;.. o o),
where = (@,,0,) . In the following we denote by

S,, the set of nonnegative continuous and bounded

functions on [-15,0] such that lleli<H where H is a

positive constant. Let X(ty= (h,,m,) be the vector
of R? whose components are defined by:

B =h(t+0), andm, =m(t+8), fe[-r1,0]. (1.4)

According to (1.4), he=p1(03>0 and mo=p2(03>0. The
system (1.2) can be rewritten as:

X' ()=F(X,), (L.5)
with initial condition Xe=¢(8)e .S,
F(X,)is given by:

, where the vector

FX )= (FX).FAX)Y (1.6)

Where:
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F(X,)=am(t—7)[1-h(t-7)]-rh(t),
Fz(X,):ﬂh(t—a)[l%m(t—o‘)]—ém(t).

Denote by Xy for t>0 the set of BC[-14,0] such that

Il.X', I<H for some H>0. Of course X, (0= S, . A

solution of (1.5) for t>0 satisfying the initial
conditions X(0)=¢(0), is denoted by:

X(t) = X(t, tg, ). (1.7)

It is clear that the solution (1.7) of (1.2) which starts
at (0, 0) in R?,,:={ueR® u, >0, i=1,2} will remain

in R2+o- (e.g Beretta, Y. and Takeuchi, Y. 1994).

Provided that the solutions (1.7) of (1.2) are bounded
for any t>0, then the solution X(t,ty,) can be

uniquely continued to [0,00) with its properties of
continuous dependence on initial conditions ¢ and of
positivity of the solution. We remark that in the last
decades there are some different models of malaria
has been introduced and some studies form different
angles has been considered. For convenience, we
refer the reader to the papers Aron, J. L. 1988,
Bruce-Chwatt, L. J. and Glonville, V. J. 1973, Feng,
Z., Yi, Y. and Zhu, H. 2004, Gravenor, M. B. et al.
2002, Gupta, S. and Hill, A. V. S. 1995, T. R. Jones,
T. R. 1997, May, R. M. and Anderson R. M. 1995,
Martini, C. 1921, McKenzie, F. E. and Bossert W. H.
1997, Kwiatkowski, D. and Nowack, M. 1991,
Nasell, I. 1991, Nedelman, J. 1985 and the references
cited therein.

Remark 1.1. We note that when there is no
incubation periods admit to the model, i.e., when
1=6=0, the system (1.2) becomes:

= m(t)[—§+((ﬁh(t))/(m(t)))-ﬁh(t)]

In this case, we have % =f}, (h,m)<0
1%

andg%=gm(h,m)<0 for h>0 and m>0. Then by

Bendixon-Dulac Theorem there is no periodic orbit of
(1.8) in the interior of the first quadrant of the phase
plane. In Section 3, we will see that the delays will
change this case and there exists a Hopf bifurcation.
The paper is organized as follows: In Section 2, we
examine the boundedness and persistence of the
solution of the system (1.2). Also we consider the
simplified model after substituting the approximations

h(t—o)=h(t)-oh'(t),

h(t—z)=h(t)-zh'(t),

m(t—o)=m(t)—om'(t),

m(t—-7)=m(t)—zm’(t),

and study the asymptotic stability of the equilibrium
points. In Section 3, by employing the stability switch
theorem due to Cooke, K. L. and Driessche, P. van

den. 1986, we investigate the local asymptotic stability
and prove that there exists a Hopf Bifurcation at the
positive equilibrium point E+ of (1.2) when the delay
increases and consequently there is a periodic
oscillations induced by the delay. This shows that there
exists a major effect of the incubation periods in the
behavior of the model. Also, we discuss the stability
independent of the delays when the delays are equal as
well as when the delays are different. In Section 4, we
establish some sufficient conditions for local
asymptotic stability by employing the Lyupanov
functional method Kuang, Y. 1993  when the
incubation periods are different. The global asymptotic
stability of the positive equilibrium point still open and
this will be of our interest in future.

Persistence and a Simplified Model

In this Section, we examine the boundedness and
persistence of the solution of the system (1.2). For
more details about the persistence of biological and
ecological systems, we refer the reader to the book
Kuang, Y. 1993. Also, we consider the simplified
model after substituting the approximations

h(t—o)=h(t)-oh'(t),

h(t-z)=h(t)-zh'(t),

m(t—-o)=m(t)—om’(t),
m(t—7)=m(t)—zm'(t),

and study the asymptotic stability of the equilibrium

points.

Definition 2.1. The system (1.2) is said to be
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persistent if every positive solution (h(t), m(t)) of (1.2)

satisfies lim, _,inf h{t)> 0 andlim,_,inf m(1)>0

and the system (1.2} is said to be uniformly persistent

if there exists two positive numbers hy and m+ such

that every positive solution (h(1), m{1}} satisfies
limy_yeinf h(t)>h >0

and lim,_,inf m(t)>m >0

Definition 2.1, We say that the solution (h{1),
m(t) of (1.2} is permanent if theve exist positive
constants Cs, Cz Dy and D2 with 0< Cr<Ce<x and
D5Dz<o such that for any positive initial positive
conditions there exists a positive integer T>0 which
depends on the initial conditions such that
Crh(t)<Ce and Dr<m(8)<Dz for T,

From applications point of view permanence
guarantees the long term of the diseases.

Theorem 2.1. Let (h(t), m(t)) denote any positive
solution of system (1.2).

(DI
limsup,_,,m(t) <co, (2.1)
then
limsup _, A{t) <, (2.2)
(). If limsup, , A (1) <oo, then
limsup,_, m(t) <o, (2.3)

(3). If there exist me>0 and M+>0 such that
ma < liminf,_, m(t) < limsup,  m(t) < M
then there exist positive constants h+ and Hs
(independent of the solutions) such that

ha < liminf, | hi(t) < limsup,_, b (1) < H1. (2.4)
(4). If there exist hr>0 and Hz>0 such that
hs < liminf,_ h(t) <limsup,_, h(t)< H,.,
then there exist positive constants m:+ and Mo
(independent of the solutions) such that.
mi < liminf,_ m(t) < limsup,_, m(1)< M, (2.5)

Proof. We only prove (1) and (3), since the proofs of
(2) and (4) are similar and hence the details are
omitted. Let (h{t), m(t)) denote any positive solation
of system (1.2). From (1.2}, we see that h'{(t)}>-vyh{1),
which implies that:

fiminf,_, ,21{1) 20:{0)=m+>0.
Also, we can see that

liminf,_, m(t)292(0)=m2>0,
Suppose that (2.1) holds, then we can see that there
exist M+>0 and t+>0 such that:

0<m{t)< M, for 2t (2.6

From the first equation of (1.2), we see that h'(t)>-
yh(t) and this implies for t>ts+2max {1, ¢} that:

hyze " h(t—7), and h(tyz e P h(t - o). (2.7)

Also, from the second equation of (1.2), we can see
for 2t1+2max {1,601, that:

m()z e m(t—7), and m(t)= e mit—o). (2.8)
Now, from (1.2}, (2.6) and (2.8), we have:

B (1) € ™ m(O)[1 - h(t — )]~ yh(D)
< ae® M, - yh(t),

for t2t+2max {x, o}. Thus:

ae® M, B

he) < CH, (2.9)

for t2t=tr+max {1,5}. On the other hand, by the
positivity invariance of the solutions, from (1.2) and
(2.7}, we have:

B ()= amsy[1- e h(1)]- yh(1)
=amy —[amye”” +y 1),
which implies that:

hnz—2"2

(2.10)
lamye’™ +y]

for =112, For the proof of case (3), we can see from
the above derivation that if mz and Mz are uniform
lower and upper bounds of the second variable of all
the positive solutions of system (1.2), then (2.9) and
{2.10) also hold uniformly for all positive sclution of
h(t) of (1.2). The proot is complete.

Next, we consider the simplified model and study
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the stability of the equilibrium points. Most studies
on biological and epidemiological systerns start from
the local stability analysis of some special solutions
{equilibrium points). For this purpose, the standard
approach is to analyze the stability of the linearized
equations about the special solutions. If the delay
differential equations are autonomous and the special
solution is constant, then the linearized equation take
the form of linear autonomous delay differential
equation. The stability of the trivial solution (zero
solution) of the linearized equation depends on the
location of the roots of the corresponding
characteristic  equation. If the roots of the
characteristic equation for the linearization at the
equilibrium have negative real parts, and if all the
roots are uniformly bounded away from the
imaginary axis, then the trivial solution of the linear
equation is uniformly asymptotically stable.

Now, we assume that the delays ¢ and 1 are equal
and small enough, this can be true if the disease
persist for a long time, so that h{t) and m(t) do not
vary two rapidly over the time interval {t-o, t], one
may approximate

h(t—o)=h(t—r)=h{t)-oh'(t),

and
m(t-c)=m(t-7)=m(t)-om'(t).

With these approximations, and after appropriate
algebraic rearrangement and considering the case a=f
and y=8, model (1.2) becomes:

(I=aom)b’(t)+ao(l-h)m(t)
= am(l-h)-yh,
ac(l-=m)h'(t)+(1-ach)m'(t)
= ah{l-m)-ym.

Solving for W{t) and m'(t), we have:

h'(t) = f{h(t),m(1))
/—Am+8mn+ChmDmJ
(L(h+m)-M) [

m'(t)=g(h(t),m(t))
[ Am?—Bhm-Cm+Dh |
L (L(hem)-M) J’

@11

where

=(oa*+oya), B=(a+aoy),

+ D={a+ ,
= ggg_‘a o? é)‘ and(M =%]GZ21§2<72).

A simple algebra shows that the system (2.11) has
0), which is the

free disease case, and the non-trivial steady state:

trivial steady state (hg,mg)=(0,

C-D C-D)
(m,mo_[gtgygjgj »
[(a=n) a=) e

a = a )

provided t;lat o>y. First, we consider the free disease
case (he, mo)=(0,0). To analyze the stability of (ho,

mo) the eigenvalues of its Jacobian matrix have to be
investigated. The Jacobian matrix of system (2.11) at

{he, mo) is given by:

g %) 3

'a"l;;‘(%»’”o) %(hoamo)
JO =

%) d

@di(ko,mo) é—é(ﬁ@,ma)

~(oat+y) (a+ ao‘y))

_ (1-a%c?) (l-ac?)
~(a+agy) (oa*+y) |
(l-a?c?) (1-ac?)

Thus the characteristic equation is given by:

(6a2+y)2j=0,

(azo.z_ 1)2

1 (a+aoy)?
(a202—1)2

and the the associated eigenvalues are:

e ((\ a+y)V(a- y))w
(V( cxo*—l)\:(czcrﬂ)”

(- :V)H
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Now, we note that if o>y and oo>l, then the
equilibrium point (he,mo) is a saddle point and then
unstable. But if o>y and co<l1 then the point {ho,mo)
is a centre and then becomes stable,

From the above discussion, we have the following
stability result of the trivial equilibrium point of the
system {2.11}.

Theorem 2.2. Assume that a=8, y=8, and r=0 is
small enough. Then the point (homo) is:
(a). Unstable if a>y and ao> 1,
(b). Stable if o>y and ao<l,

Next, we consider the endemic case (hs, mi).
From (2.12) it is evident that for this non-trivial fixed
point to be biologically meaningful the conditions
o>y and such that (1-eoo)>0 must hold. Notice
that the necessary condition (I-ao)>0 provides an
upper bound for values of o that are biologically
meaningful, one has ao<l, which implies that
o<(1/a).

For simplicity, we consider the case a=2y. In this

case the equilibrium point becomes
(h1, m1) = ((1/2),(1;’2)) and  the  coefficients
become:

A = 4oy’ B=2y(oy+1), C=y(207+1),
D = 2y(oy+1), L=20y(l-oy),
M = (1-2y%0?).
The Jacobian matrix of system (2.11) at (hy,ma) is
given by:

/af(hlvmi) @f(h],ﬂ?])\

5 = Oh om
dg(hy,m)  Of (hy,my)
Ch om

Thus the characteristic equation is given by:

22+ p(—407y° +60% 4+ 207p°

7

=260+ 220y -5y =10,

and the the associated eigenvalues are:
A= —yV(2x— V(X -2 - 2x7 +12x - 5),

Whe
Az = pV(2x 1V (2x* = 2x7 - 2x2 + 12x = 5),

rex=oy. We note that when o =(1/(2y)), this

implies that the eigenvalues are zeros. Noting that the
function f{x)=2x*-2x>~2x>+12x~5 is a positive
function for x> 0.46 and negative in the interval
0<x<0.46<1/2, so that the value of the function
f(x}) is negative when0 <y <046<1/2. This
implies that the eigenvalues are real numbers and

h2<0<ha,

So that the equilibrium point (hs,m) is a saddle point

and thus it is unstable. This means that in the case
when o=2y the equilibrium point is unstable. This
biologically is very interesting and explain that, when
the rate at which the currently infectious mosquitoes
that deliver infecting bites is greater than the sum of
recovery and death humans rates then there exists an
endemic situation which is unstable.

From the above discussion, we have the following
stability result of the positive equilibrium point of the
system (2.11).

Theorem 2.3. Assume that a=p, y=0, with a=2y and
=g is small enough such that yo<(1/2). Then the
positive equilibrium point is a saddle point and thus
unstable.

Stability and Hopf Bifurcations

Time delay plays an important role in many
biological and epidemiological dynamical systems.
When the delays are finite, the characteristic
equations are functions of delays. As lengths of
delays changes, the stability of the trivial solution
may also changes. Such phenomena is often refereed
to as stability switches. In this Section, we discuss the
local asymptotic stability of the unique positive
equilibrium point (h*,m*), the existence of Hopf
Bifurcations and discuss the stability independent of
the delays when the delays are not small. In order to
analyze the full characteristic equation, we make use
of the following Lemma which is the modification of
the result by Cooke, K. L. and Driessche, P. van den.
1986. The Lemma is extracted from the book by
Kuang, Y. 1993

Lemma 3.1 [Kuang, Y. 1993]. Consider the
characteristic equation of the Jorm
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PO+ O(Me™* =0, and define F(@)=|P(i@ )|
[Ofi @ }}% Suppose P(A) and Q) have no common
imaginary zeros, P(0)+Q(0)#0, P(-i@ }=P(iw), Of-
iw)=0(iw) for real w and F(@) has at most a
finite number of real zeros. Then if F{w) has no
positive real root then there are no stability switches
as 1 increases, while stability switches are possible if
F{ @) has at least one positive roots.

The system {1.2) admits both the

equilibrium Ee=(he, me)=(0, 0) which cormresponds to

the free disease case when (a/8)=(y/B), and the
positive equilibrium point:

trivial

aff—y8 aff -y

_ h*, O ?
(hm) ((a-:-;,f)/)’ a(B+6)

)

provided that(a /&) > (y/ B}, which corresponds to

the endemic case. Let:
W) =x()+h and m()=y()+m ., (3.1)

where (k*,m*) is the unique positive equilibrium
point of (1.2}, Substituting from (3.1) into (1.2), we
find that ¥ () = (x(6), p(1)) satisfies:

DD aye-oyem x4

dt
—yx()=yh (3.2)
YO prxti-or+ ' 1-s1-0)-m'}
—(5)}(1)—631?7 .

Then, the variational system of {1.2) with respect fo
the positive equilibrium point (4", m  )is given by
the linearized system of (3.2), that is:

air(!} +/x(£)+am x(t—7)

+a(:‘z -Dylt—13=0, 33

d rrrrrrr +3y(1)+ ph Wt —0)

+,8{m Dt —o)=0.

The characteristic equation corresponding to the
system (3.3), is given by:

A 424+ Cae T 1 Cuae Tt L et

XY
+Dye 0+ Ee MO L g

where
A=y+8,B=85,C =am ,Cy = i,
=abm' Dy =prh E=afim +h —1].

We consider the effect of the delays and analyze the
characteristic equation (3.4) in two different cases:

Case (1) m +h" =1 and T=0=1,

Case (2): m* vy -} = fz*m* and t#o.
First, we consider Case (1). In this case, the
characteristic equation (3.4) becomes:

A2+ AA+B+e** [CA+D]=0, (3.5)

where C=C++Cz and D=D+Doa.

Remark. 3.1. We note that in the case when t=0,
the roots of (3.5) are real and negative since

A+C >0, so that the fixed point (k' ,m") is

asymptotically stable.
In order to understand the stability switches of
(3.5) in detail, it is crucial to determine the value of

7" at which (3.5) may have a pair of conjugate
imaginary roots, where in the work of Cooke, K. L.
and Driessche, P. van den. 1986, t is regarded as
variable which may increase from zero to «. If the
roots of (3.5) are in the left-half plane for
0<r<oo, implying that the equilibrium s
asymptotically stable for all 1, the equilibrium is said
to be absolutely stable. Otherwise, there may be
values of 1t for which pairs of complex conjugate
roots of the (3.5) cross the imaginary axis. If the
crossing is from left to right, thus the equilibrium is
destabilized, and if the crossing from right to left an
unstable equilibrivm may be stabilized as ¢ increases.

We assume that A=i @, @ >0 is a root of {3.5) for
some 1>0. In (3.5), we denote:

P(4)=A2+1A+B, and Q(1):=CA+D.
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It is clear that P(0)+Q(0)# 0, this means that A=0
is not a root of (3.5). This implies that:

P(iw)=(B-w*)+iA®, and Q(iw)=D+iCa.
Hence

Fa):=|P(io)*-[Q(ie)*

=~ (C?+ 2B~ A?) 0w’ +(B*-D?).
It is clear that, there is a positive real root w of

F{ew =0 if and only if there is a positive real root
u=¢v * of the equation:

w-(C?-A2+2BJu+(B*-D*)=0.  (3.6)

From (3.6) 1t is clear that there exists a positive real
root if B<D, while if
(C*+2B~A%)2<4(B*~D?) the roots of (3.6) are

non-real and then no stability switches may occur.
IfB>D and

(C2+2B-A?)?>4(B2-D?)

the roots of (3.6) are real, and are both positive if
(C*+2B-A%)<0, both negative if
(C*+2B-A%)>0.

Thus there is a positive real root of (3.6) if and
only if either:

(ha). B<D, or
B>D, (C?+2B-A?)>>4(B*-D?),
and (C*+2B-A?%) <0,
which is equivalent to:

(h2). (C?+2B~A?)<-2V(B*-D?).

So according to Lemma 3.1 the stability switches
are possible and it is possible for roots of the
characteristic (3.5) to cross the imaginary axis, and
this crossing are from the left to the right if F'(w >0,

and from right to the left if F'(a)) < () at a crossing
i@. Then, if B<D, F(@)=0 has a single positive
If B>D there are two
positive roots @, and @_ of F{o =0 given by

root and it is destabilizing,

W, =%{(cz +2B— A2 + Ay,

W :é-{(c2 +2B- 4% A2,

where

A=(C?*+2B- A?)?-4(B*-D?), with a_<aw,.

Therefore the following holds

207, —(C* =A% +2B) =+A1/D),
This implies that

sign(F (@) = 2w, sign{+ A1 Dy

where @, >0 . It is clear that the sign is positive for

@, and negative for @ _. From (3.5), when d=i@,

we see that w satisfies the equations

Casin(wr)+Deos(wr)+(B-w?) = 0,

~Dsin{@7)+ Cocos(wr)+ Aw= 0,

which after simplification imply that
sin{ @, ty~(( @, *-B)w, C-AD w Y(D*+ @, *C?),
cos{ @, 1):=(((D-AC) @, *-BDY/(D*+ @, *C?)).

Hence there are 4, 0<06. <27 such that

6. = w7, and

6. = arctan ((Q:Z—B)iC”ADi)
B ((D_Ac)wtz—BD) )

In the case of B<D, only one imaginary root exists,
h=iw, therefore, the only crossing of the imaginary
axes is from left to right as t increases, and the
stability of the trivial solution can only be lost and not
regained.

In the case B>D, crossing from left to right with
increasing t occurs whenever 1 assumes a value
corresponding to we, and crossing from right to left
occurs for values of 1 corresponding to w-. Then
according to w+ and w-we obtain the following two
sets of values of 1 for which there are imaginary
roots:
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I , for =0, 1,....

@y

In the case of (hs) only €'+0 needed be considered,

since the zero solution is asymptotically stable for
=0, where A+C>0. Then the zero solution remains

asymptotically stable until 71, and unstable

thereafter. At the value of z‘+0 (3.5) has pure

imaginary roots i @, .
In the case (hz), since the zero solution is stable

for =0, then it must follow that T+0 <7, ,since

the multiplicity of roots with positive real parts
cannot become negative, We observe that:

27 Im -
* [ ey

T . g ..
J+l 7 7+ i
o, W

Therefore, there can be only a finite number of
switches between stability and instability. Moreover,
it is easy to see that there exist values of the
parameters that realize any number of such stability
switches. In our case, there exists a value of 1,

* * cqe .
7 =17 such that at 7 =7 a stability switch occurs

from stable to unstable, and for 7> 7" the solution
remains unstable. So that the zero solution can either
be unstable for ©>0, or exhibit stability switches. As t
increased, the multiplicity of roots for Rei>0 is
increased by two whenever 1 passes through a value

of ff and it is decreased by two whenever 1 passes

through a value of rj_ . Now, since the zero solution

is stable for 1=0, k-switches from stability to
instability to stability occur when the parameters are
such

7 <ry <rT<nT <<t

Ty <t <
This show that there exists a Hopf Bifurcation which
takes place at 7= 2"&] and it is known that delay
induced periodic oscillations. It follows that the linear
stability of the equilibrium (h",m") is lost as the
delay in response increases and when 7 = r)'j .

From the above discussion, we have the following

stability result of the positive equilibrivm point of the
system (1.2} and the existence of Hopf Biturcations.

Theorem 3.1,

* *
m +h =1 and r=c=r1.

Assume  that  ofi>y6  ond
(aj. If =0, the equilibrium point (;2*,?7?*) is
locally asymptotically stable.
(bi. If (hy holds then the equilibrium point

(h".m’Y is locally asymptotically stable for t< T, .

{c). If (hz holds then the stability of the

.5 . * * .
equilibrium (h ,m ) can change a finite number of
times as t is increased, and eveniually it becomes
unstable.

Remark 3.2. The statement on {c) of Theorem 3.1

imply that when m +%4 =1 and 1=0=1 the system
{1.2) undergoes a Hopf Bifurcation at the positive
equilibrium point (h",m") when 7= r',, for
=012

Next, we consider the Case (2). In this case upon

simplification, the characteristic equation (3.4) can be
rewritten as:

HA) =(A+y+am e ¥ YA+5+ph e ) =0.De

noting the two factors of H(A) by H+(R) and Ha(})
respectively, we have:

H{(A)=(A+y+am e ),
Hy(A)=(A+S+ph e ).

Now, the stability investigation, for discrete
delays is concerned with establishing that one of the

characteristic equations Ha(M)=0 and H=(A)=0 has

infinite numbers of zeros that have no positive real
parts. Suppose A=i @ with w real and @ >0. Then at
lest one of

. £ . w iy,
iw+y+ame ™ =0 or iw+S+ pBh e ™ =0,

holds. We suppose that the first is satisfied and
denoting

P(A)=A+y and O(A)=am .

One can easily see that P(0)+Q(0)£0, and



94 S.H. Saker: Stability and Hopf Bifurcations of Nonlinear Delay Malaria Epidemic Model

Fi{w)= o +(am )? -y =0.

It is ctear that F1(@) has a real positive root if and

only if
A>am = i 14 ?ﬁ
p+o 26+ 7

and then the positive equilibrium point (k*,m*) 15
locally asymptotically stable when t<te and unstable

when t>1eo, where 10=0+/ @ 1+, and

82

7 2

2~—‘ ap W , & =arccot(—f—).
\20+p) | @

Also, we can easily see that if the second case hold

and if

y>(112){((a(B-0))15),
then the positive equilibrium point (h°,m }is
locally asymptotically stable when o<oo and unstable
when o>, where co= {02/ @ 2} and

2

\2 .

o, = 52—{ p J W 0, = arccon ),
2y+a ) W

From above discussion we have the following
stability properties of the positive equilibrium point

(h',m") inthe case when m" +h' —1=h'm"

Theorem 3.2.
m ok —1=h'm". If

Assume  that  aff>y5, and

£ N VY
y > max I s J, l{a(ﬁ 5)],
\26+8) 2 ¢
then the positive equilibrium point (h*,mx} is locally
asympiotically stable when v < t,and unstable when
r>71,, where T, =max{ve, o}, and 1o and oo be as
defined above.

Remark 3.3. From Theorem 3.2, we see that
when m +h —1=hm the system (l 2) undergoes
a Hopf Bifurcation at the positive equilibrium point
(}z m ) when 7 =7, . In the case when

y=af/(26+ ) and §=ap/(2y +a), we see that
there is a zero solution of Fa{@) =0 and F,(w) =0.

However X is not a root of Hi(A)=0 and H(W)=0. It
remains to study the stability switches when
y=ap/{26+p)and S=af/(2y+a), T+ o and

m R 1t hm
Remark 3.4. For the trivial equilibrium Eo=t{ ho,

e, when yﬁwaﬁ, the corresponding characteristic
equation is given by:

A2+ id+B-Ee M =g, (3.7)

where A=3+y, B=y5 and E+«=¢ff. We note that in the
case when t+o=0, we see that (3.7) has a negative
root so that the fixed point Es is asymptotically stable.

If iw (w>0) is a root of (3.7), then as above we see
that w satisfies the equation

—-(2B-A?%)u =0, where 0* = u.
The last equation has no positive roots
since 2B - A?=2y5 {6 +y)* < 0. This implies that

there are no stability switches as 1+ increases.

Remark 3.5. In Theorems 3.1 and 3.2 according
to the delays we found that there exists a family of
periodic solutions bifurcate from the steady state E. at
the critical value of 7 =", (for j=0, 1,...) provided
that the condition (h2) hol d}s It would be interesting
to study the direction, stability and period of these
periodic solutions bifurcating from the positive steady
state. This question is open and the interesting reader
can use the idea of ), Hassard, B., Kazarinoff, D. and
Wan,Y. 1981 and derive the explicit formulas
determining these factors at the critical value of the
delays using the normal form and the center manifold
theory.

Lyapunov Functional Method

In this Section, we establish some sufficient
conditions for local asymptotic stability of the
equilibrium point when t#c. Qur strategy in the proof
will be employed in a straightforward manner by
constructing a suitable function and prove that this
function is a Lyapunov functional of the system (3.3).
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Consider the autonomous system of the delay
differential equation (1.5) such that F{0)=0 and

F:C(~t ,0L,R*y—> R:, " >0,

is Lipshitzian, where C([—fg 01, R®) is the set of

“ . * .
continuous functions defined on [-—7 ,0] with the
norm

| 9(&)],

where |.| is any norm in R% The following lemma is
adapted from Kuang, Y. 1991, [Kuang, Y. 1993,
Corollary 5.2] and will be useful in the proof of the
main result in this section.

|¢] = max belc".0]

Lemma 4.1 [Kuang Y. 1993]. Let w(} and wz)
be nonnegative contiruous scalar functions such
{ﬁzalWﬂ(O):O, i=]2

lim, , w1(1)} =+, waAt)>0 for £>0. Let V:C—R

{0

be continuously differentiable scalar functional and §
a nonempty subset of C for which the following are

satisfied
V()2 wilj(0)1).
LV (9)lusys —wa{l 0 (0)1).

Then X=0 is asymptotically stable with respect to the
set 8. That is, solutions thal stay in S converge fo
X=0.

To simplify the statement of the theorem, the
following notations will be used:

ayy =am*,a12 =a(l-h),

ayy = PR ayy = 1 -

1 =an+y,faz=2az22+ 5,

Au= r[zanrn + a2l + 812311],

Asz = 7a1z[ 2212 + a1+ 11,

Az = o2amrn + azuaz + azan],

Azt = gax| 28z + a2z + rz2],

As= (z’ + 6’)[311321 +(1/2)311822 +(I;’2)a12a21},
Az=(7+ 0 )[araze +(1/2)araz2+(1/2)arnan].

Using the parameters in our model
become

these values

an-a(a/i’ 1)/ {a(B+8))),
au-a( (af~y8)/ (a+y)[3))),
arm = ﬁ((aﬁ ¥5)/ aw)ﬁ))
aor= B1-((aB - 78)/ (e ( 5+ ).
ri=af((ap /5)5 ﬂ+5)))+r,
rz = B(af-y5)/((a+7)B))+5.
Aw=c(alB)(r/(a+7))(B+5)
20(1-((ap-78)/((a+7)5)))
x| +al(ap-p0)/ (al(p+5))) |,
+a((ap-y8)i(a(p+6)))+y
An=o

005
”{ “‘Ef? )
*”3[ Zﬁ/@j AE)e

(af-y5)?
2(a+7)(B+7))

e
(ﬁ (5 a+y)(af- ,’5)7 |
?

(B+6)?
L (aB-ys) )
k2 a+y)(/3’+§)J
43}(?(&5 Wap—1r0)) |
B

(a+y)?

:/g (?(aﬂ—}@))
B (a+r)

+ay+2,8[

S

Aﬂ:

e 5) (ﬂ ¥5)
=€{(ﬁ/a)( HB+8))ap~15)+ps }
w2a(((B+8))/((a+7)* ) aB-r5)|

Now, we state and prove the main result in this
section.
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Theorem 4.1, Assume thataff > 6 . If

(H1). raz+ri1> 2arz+axn],

/3\; T2z
(Hz). | — iraa+ 82— — > Au+ Az + Aa
2) 2

(H3). %rzz-*—aﬁ—% > Azz+ Anz+ Az

Then the positive equilibrium point (h*,m*) is
locally asymptotically stable.

Proof. From Theorem 3.1, we note that the
stability of the positive equilibrium (A ,m ) of
system (1.2} follows form the stability of the zero
solution of (3.3). The equations in (3.3) can be
rewritten as

1 ¢
i[x(!) - ay J. x(s)yds ~ayy f Ws)ds]
at (2 i~z
=-nx(0) —ap (1),

.1

H H
C00-az [ w5 -ay [ Hib]

i~ {—

= by Y(E) —ap {8},
We denote

{ H
X =[x()-ay [ x(s)ds—ay, [ ps)ds]
-7 -7
{ !
Yy=[y{h—apn J' y(s)ds —ay, j' x(s)ds].

-0 -

(4.2)

Let
Va(t) = X2(t)+ Wa(t), (4.3
where
W)=, +a5)
{1t [
ayy [ [P @)eds+ay, | [y (2)deds),
{~7 8 {—rs
Va(t) = Y3{t)+ Wa(t), (4.4)
where

Wo(t) = (ryy +ayy)

i !
ay, [ [y (oxdeds+ay | [x*(2)deds),

-8 t—os§

and let

Va(t)=-X(t) Y (t)+ Wa(t), (4.5)

Where

1
Wi () 1=5(an +ap3)

¢ 1
X ayy j J'xz{z)dzd5‘+a21 _[ J‘yz(z)dzds}

f—r ¥ i—as
+{ay; +ay)

‘1 '
ey f fxz(z)dza‘s«t—au I J‘yz(z}dzds],

i-78 t-75
We define the function V(t) by
V{(t)=Vat)+ Va(t)+ Va(t). (4.6)

Now, we prove that the function V{t) is a Lyapunov
functional for the system (4.1). From the fact that
X*H+y22xy>ry, we see that V(1)>0. Now, we calculate
that derivative of the function V(1) along solutions of

the system (4.1). We start with the derivative of Va(t).

By calculating the derivative of X*(t) along solutions
of (4.1), find that

2
PO = 2n 120 - 20505 )

! i
+2ryayx(0) [ x(s)ds + 2ryappx(0) | y(s)ds

=~z =7

/
+2aya1,5(1) | x(s)ds

{=~7

i
+2a%, (1) [ y(s)ds
{7

Using the inequality a>+b®»2ab, we have

2
C{X_dt-(—q < -2n lxz(t) = 2a,x(H)y()

i
+ray [t () + J‘ x*(s)ds]

-7

£
+ryalrx? (0 + [y (s)ds]

i-7
{
sayap [ty () + J x7 (s)ds]

t~7

{
+a’p eyt () + [y (s)ds]
fr
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=25, X% (1)~ 2a,x(O (D)
+a !r[mxz +ajz}f2]
+aptlnx* () + ap? (0] (4.7

{
2
+ay[ny +ay [ X7 (s)ds)
-7

¢
+aln +a | yE(s)ds].
-7

From the definition of Wa{t), we find that: Y

d
EW’(‘) = {1y +ap)ayg
H
x[rxz(z)— J'xz(s)ds] (4.8)

f-r

B
oy +apdaplry® = [ v (s)ds].
-7

Then form (4.7) and (4.8), we get

—;\h(t) < = 2nx (1)~ 2ammx (1) y (1)

¢

+anr[rnx2(t)+a«zy2(t)]
+a12T[r11X2(t)+ amyg(t)]
+(!‘n+312)8117X2(t)+(r11+812)812‘[)/2({}
= ~[2i‘11—2ﬁn!’11§—3{12(11? —3123112']?(2{{)

~2a12x (t)y(t)+
+[2a1237 + a2t + maaset Jy? (1),

and this implies that:

%V1(t)s~[2rn—AﬂJx2(f)

-a12)((t) y(t)+ A12y2(t).

4.9

Now, we calculate the derivative of Va(t) along

solutions of (4.1). By calculating the derivative of

Y3(t) along the solutions of (4.1}, we obtain after

using the inequality x*+y*>2xy,

dar’()
dt

2 2 2 2
a0l ¥ +ay x|+ ayolmay D+ ayx” (0]

= _2,«22};2 (1) —2a;x(1) y()

(4.10)

4 !
2 2
taplry +ay [ Y ()ds)+ay[ry +ay [ 2 (s)ds).
fiF i~

From the definition of the function Wa(t), we get:

d i
= =0z +ayanloy’ (O~ [ ¥ (s)ds]

-

(4.11)
t
g + ayayox’ ()~ [ x*(s)ds).
" t—c
From (4.10) and (4.11), we find that:
d
g\f’z(t) L [2r2— Azzly? — 2azxy + Azx?. (4,12)

Next, we calculate the derivative of the function
Vi(t). By calculating the derivative of -X(t)Y(t) along
solutions of (4.1) and the fact that -rs1<-an and -rz2<-
azz, we have:

d
S CAOY)

< aqug(t)-l- ar2y? {1} + (rzz + X (l)y(t)

i i
~apagn (i) | x(s)ds - apayy(t) | yis)ds

t=7 =7

(4.13)

! i
—ayiayyx(t) [ x(s)ds - ayyay,x(0) [ y(s)ds

{7 -7

f H
~ayjagx(1) [ y(s)ds —ayayx(t) | y(s)ds

- f-cr

{ i
—ayyan y(0) | y(s)ds—ayyay9(1) | x(s)ds.

- -

From the definition of the function Ws(t), we have

d
— -
dt 3(0)

{
[(a” +a12)02](0'x2(t)— I XZ{S)dS]
[Eates

1
2

!
+%[(an+a!2)322(0'y2(t)~ [ Y(®as1 (414

-

{
+ 2l +aay (27 () [ 5(5)]
{7

| t
+5[(a21+a22)a12(ry2(£)— J'yz(s)ds].

~7
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From (4.13) and (4.14), we have:

d 2
“Vas (@t Ay (t) (4.15)

+Haw+ Az)yz(t>+(r22+ l‘ﬁ)X(t)y(t).
Then from {4.9}, (4.12) and (4.15), we find that:

d

EV(t)S ~[2ri— Anx3(t)
=2a12x (1) y(t)+ Arzy?(1)

[2rzz— Azly* (1) - [2r22— Azzly? (1)
—azix (t) y(t)+ Azix(t)

+Hazi+ A)x2(t) + (arz + Az)y*(t)
+(raz +m}x(t) y{1).

From (Hi), and the fact that x*+y*>2xy,

we obtain

<v(o

< —[21‘11—A11—A21—'d21—Aﬂxz(t)
—[2r22~A22—A12~a12+A2]y2(t)

+[(1,"2)(r22 +r11)—(a1z+az1)] Xz(t)

+H[{(1/2)(tz2 + r11) = (ar2 + a20)]y*(t).
This implies that:

d

Zv(t)g_g1xz(r);gzyz(c), @.16)

where

(;1 = [(3f2)r11+a1z—(1/’2)r;2
~Agt—Az1— Ad] -
(2= 1(3/2)1”22%-&21—(1/2)1”11
—Azz — A1z — Az].
The conditions (Hz) and (Hs) show that (>0 and (>0
and therefore -(ax¥)-C2y*(t) is negative definite.
Now, since the solutions are bounded, Lemma 4.1
ensure that lim, ,,x{t)=0 and lim,umy*(t)=0
and hence limy_  hlty="h and
limy_ym(t) = m' . The proof is complete.

Biscussion

In this paper, we consider the delay malaria
epidemic model.  We  have established some
sufficient conditions for stability of the equilibrium
points. The main results are proved by two different
methods. The first one is a complete analysis of the
characteristic equations, when the delay are equal, of
the corresponding linearized equations and proved
that there exists stability switches and a there is a
hopf bifurcations. In the case when the delays are
different we used the Lyapunov method and
established some sufficient conditions for local
stability. The local stability means that the disease
will persist if there is no immigration or emigration of
the population.
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