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Abstract. The objective of this paper is to systematically study the bounded ness, persistence and stability of the 
nonlinear mal!JIia epidemic model with latent periods, first, we consider the simplified model with the 

approximation f' (I - T/) , when 11 is small enough so that the function f does not vary too rapidly over 

the time interval [t-11, I),and study the stability of the trivial and the positive equilibrium points, Second, when the 
latent periods are equal (and not small enough), we will investigate the stability of the positive equilibrium point 
and prove existence of Bifmcations and discuss the stability independent of the delays, Third, in tbe case 
when the latent periods are we will employ the Lyapunov functional method to establJsh some sufficient 
conditions for the local asymptotic stability of the positIVe equilibrium point. 

Introduction 

Mathematical models have been used to study the 
transmission and control of malaria since the first 
model that has been Ross in [23], The Ross 
model consists of two nonlinear differential 
in two state variables that 
proportions of infected human 

The focus of the original work was 
but this work was extended to develop a 

rather of disease transmission, 
MacDonald [16] added a of biological realism 
to these models by his careful attention to 
interpretation and estimation of the parameters, This 
work was based on Ross model and the collection, 

and of data 
the WHO 

G, 1980, 

popUlation transmits malaria, 
The quantitative character of much of this work is 

in part a consequence of the placed by 
MacDonald, G, 1957, in his simple model of the 

of malaria, The value of mathematical 
studies to the of malaria the 
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control programs and the interpretation of observed 
epidemiological tends has been a of 
considerable We refer the reader to the 
papers by and Glonville [3], 
MacDonald [15] and Martini [17] and for more 
details we refer the reader to the book by May and 
Anderson [18], 

The basic model of malaria as given in [18] 
consists of two nonlinear differential equations 

in the proportion of infected 
humans h and mosquitoes m, The model is given 

h'(t) (ab(NI m(t)[l h - ph (t) 
(1.1) 

mf ach( t )[1- m -8m( t), 

where: 
N is the size of human populations, N is size 

of female mosquito population ratio NfN defines 
the number of female 

(II) a is a rate 
number of bites per unit time), 

(III) b is the proportion of the 
infected when bitten an infectious 

(IV) ~l is the per rate of humans recovery 
from infection, 
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(V) c is the proportion of mosquitoes that become 
infected after biting an infectious person, 

8 is the per capita rate of 
mortality, 

(VU) ( N I is the inoculation rate, the 
rate at which currently infectious mosquitoes deliver 
infecting bites, 

The first of the system (1.I) describes 
the change in the proportion of infected humans and 
the second describes the change in the 
proportion of infected mosquitoes, In the first 

the term (I refers to the proportion of 
the population that are not infected, and the 
Formulation that all of these noninfectious 
individuals are and can contract the 
infection, The essential feature of infection that is 

i"f)f'nr",'~t,'fi in these equations is that infection of a 
human occurs whenever an infective mosquito bits a 
healthy human, and infection of a mosquito occurs 
when a healthy mosquito bits an infective human, 

In system (1,1) it is assumed that the total 
population of both humans and are 
constants, so that the variable are the 

infected in each population h(t) and met), 
The model assumes that there is no vertical 
transmission of the i.e" all newborn humans 

In addition, Ross 
death rate in humans was 

and 
concluded that 

with their recovery rate and 
held true For mosquitoes; the 

recovery rate In was in 
comparison with their death rate, There are a number 
of that limit the uti of this 
formulation, Because there is also recovery from the 
infection by the term this fiuther 

that there is no to reinfection (May, 
R. M, and Anderson R, M, 1995 ). The model in its 

form falls into the SIS class of epidemic 
models, Also the model assumes that an individual 
infected with malaria could not be infected until 
after complete recovery from the initial infection, Let 
square brackets [,J indicate units, Then 

, [,u] x 

bites-I, 

[0] = x 12 x[bcrl 

[be] people x mosquitoes x 

In this paper, we consider the modification of 
(1,1) to include incubation periods from Ross, 

R, 1921 to be T=0,5 month in human and (J=O,6 
month in mosquito, j,e., we consider the nonlinear 
delay system 

hi (t) 

m'( t) 

Where: 

h (t) ] yh 

ph(t)[1-m(~8m(t), 

abN IN), ~=ac, 

(1.2) 

where )11 is death rate in humans and am(t-T) is the 

new inoculation rate, the rate of un infected humans 
that become on the latent period of 
humans, 

For epidemiological 
initial conditions for (I 

we consider the 
of the form: 

h ( 1.3) 

where T1=max and assume that fP, 

(fJj i= 1,2 (i.e" are bounded, continuous and 

functions on [-T1,0]. Let!, I be any norm 

of R2 and denote 

where qJ= ((fJI' 

S H the set of 

sUPu [-'1,0] 

In the following we denote 

continuous and bounded 

functions on [-T1,0] such that IIqJlIS:H where H is a 
T 

constant. Let (hi' m I ) be the vector 

of W whose components are defined 

hi h(t+ ,and ml m(t+ 0], (I 

According to (l A), and The 

(1 can be rewritten as: 

X '(t) = ) , ( 1 

with initial condition , where the vector 

I) is by: 

r) (X (1,6) 

Where: 
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FI(X,) = am( t -r )[ 1 - h( t -r )J- rh( t), 

F2(X,) = ,oh( t -a)[ l - m(t- a)J-om( t). 

Denote by X H for t2:0 the set of BC[ -11,0] such that 

II X I II:::;H for some H>O. Of course X H (0)= S H . A 

solution of (1.5) for t2:0 satisfying the initial 
conditions X(O)=(jl(O), is denoted by: 

x ( t ) = X( t, to, <p). ( 1.7) 

It is clear that the solution (1.7) of (1.2) which starts 

at (0, 0) in R \0 :={ uER2: u i >0, i= I ,2} will remain 

in R 2 +0 . (e.g Beretta, Y. and Takeuchi, Y. 1994). 

Provided that the solutions (1.7) of (1.2) are bounded 
for any CO, then the solution X(t, to,<P) can be 

uniquely continued to [0,(0) with its properties of 
continuous dependence on initial conditions (jl and of 
positivity of the solution. We remark that in the last 
decades there are some different models of malaria 
has been introduced and some studies form different 
angles has been considered. For convenience, we 
refer the reader to the papers Aron, 1. L. 1988, 
Bruce-Chwatt, L. 1. and Glonville, V . J. 1973, Feng, 
Z., Yi, Y. and Zhu, H. 2004, Gravenor, M. B. et al. 
2002, Gupta, S. and Hill, A. V. S. 1995, T. R. Jones, 
T. R. 1997, May, R. M. and Anderson R. M. 1995, 
Martini, C. 1921, McKenzie, F. E. and Bossert W. H. 
1997, Kwiatkowski, D. and Nowack, M. 1991, 
Nasell,1. 1991, Nedelman, J. 1985 and the references 
cited therein. 

Remark 1.1. We note that when there is no 
incubation periods admit to the model , i.e., when 
1=0=0, the system (1.2) becomes: 

In 

h'(t)= h(t)f(h , m) 

= h(t)[ -y +((am(t)) /(h(t)))-am(t)]. 

m'(t) = mg(h,m) 

= m ( t) [ -0 + ( (,Bh ( t ) ) I ( m ( t ) ) ) - ,Bh ( t ) ] . 

(\.8) 

aj 
- =fh(h m)<O 
8h ' 

this case, we have 

and og =g (h m)<O for h>O and m>O. Then by oh m , 

Bendixon-Dulac Theorem there is no periodic orbit of 
(1.8) in the interior of the first quadrant of the phase 
plane. In Section 3, we will see that the delays will 
change this case and there exists a Hopfbifurcation. 

The paper is organized as follows: In Section 2, we 
examine the boundedness and persistence of the 
solution of the system (1.2). A Iso we consider the 
simplified model after substituting the approximations 

h(t-a) == h(t) - ah'(t), 

h(t-r) == h(t)-rh'(t), 

m (t - a) == m (t) - am' (t), 

m(t - r)== m(t)-rm'(t) , 

and study the asymptotic stability of the equilibrium 
points. In Section 3, by employing the stability switch 
theorem due to Cooke, K. L. and Driessche, P. van 
den. 1986, we investigate the local asymptotic stability 
and prove that there exists a Hopf Bifurcation at the 

positive equilibrium point E. of (1.2) when the delay 

increases and consequently there is a periodic 
oscillations induced by the delay. This shows that there 
exists a major effect of the incubation periods in the 
behavior of the model. Also, we discuss the stability 
independent of the delays when the delays are equal as 
well as when the delays are different. In Section 4, we 
establish some sufficient conditions for local 
asymptotic stability by employing the Lyupanov 
functional method Kuang, Y. 1993 when the 
incubation periods are different. The global asymptotic 
stability of the positive equilibrium point still open and 
this will be of our interest in future. 

Persistence and a Simplified Model 

In this Section, we examine the bounded ness and 
persistence of the solution of the system (1.2). For 
more details about the persistence of biological and 
ecological systems, we refer the reader to the book 
Kuang, Y. 1993. Also, we consider the simplified 
model after substituting the approximations 
h(t-a)= h(t)-ah'(t) , 

h (t - r) = h (t) - rh' (t) , 

m ( t - a) == m ( t ) - am' ( t) , 

m(t-r) == m(t)-rm'(t), 

and study the asymptotic stability of the equilibrium 
points. 

Definition 2.1. The system (1.2) is said to be 
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positive solution (11 (t), 

h(t) > 0 

and the system is said to be uniformly persistent 

if there exists two positive numbers h1 and m1 such 

that solution (71(1), 

h(/»hIO 

m(t»ml >0 

Definition 2.1. We say that the solution (h(t), 

met)) is permanent if there exist 

constants C 1, D1 and D2 with 0< C 1<:;'C~0C! and 

Dl::D~OC! such that any positive initial positive 

conditions there exists a T>O which 

depends on the initial conditions such that 

t~T. 

From applications of view permanence 

guarantees the long term of the diseases. 

Theorem 2.1. Let (h(t), denote any 

solution (1.2). 

( I). 

(t)<oo, (2.1) 

then 

limSUPH",h( t) < 00, 

(2). limsuPHa)h (t) < 00, then 

limsuPHoom ( t) < 00, (2.3) 
exist m1>0 andM1>0 such that 

m1 :::; limirif-.rom ( t ) :::; limsuPHOOm (t ) :::; M 1 

then there exist constants h1 and H1 

(independent of the solutions) such that 

:::; liminj;-.ooh :::; limsuPHooh(t):::; (2.4) 

exist h1>0 and H2>O such that 

h1:::; limirif-.ooh(t) limSUPHCf;)h(t) H 2 " 

Ihen there exist constants m1 and M2 

!fIa'emma'em of the solutions) such that: 

m1 S limin/'-"}",m( t) s limsuPH",m( t) S; M2 (2.5) 

Proof. We prove (I) and since the of 

and (4) are similar and hence the details are 

omitted. Let (h(t), met)) denote any positive solution 

of (1.2). From (1 we see that h'(t)~-yh(t), 

which implies that: 

liminfHooh( t) 

we can see that 

IiminfHoom( t) 

Suppose that (2.1) holds, then we can see that there 

exist M1>0 and t1>0 such that: 

(2.6) 

From the first equation of (I 

yh(t) and this for 

we see that h'(t)~

cr} that: 

rr e-rCTh(t h(t) ?c. e - h(t - r), and h(/) (2.7) 

Also, from the second equation of (I we can see 

for , that: 

m(t) e -rr m(t and m(t)?c. -v). (2.8) 

Now, from (I we have: 

h (t) :s; h(t r)] 

- rh(t), 

for t2':tl+2max a}. Thus: 

for t2':t2=tl+max . On the other by the 

positivity invariance of the solutions, from (1 

(2.7), we have: 

= am2 

which 

- rh(t) 

+ r ]h(l), 

that 

(2.9) 

and 

10) 

for t~b>t2. For the proof of case (3), we can see from 

the above derivation that if m2 and !'vh are uniform 

lower and upper bounds of the second variable of aU 

the positive solutions of system (l then (2.9) and 

10) also hold uniformly for all positive solution of 

h(t) of (J The proof is complete. 
Next, we consider the simplified model and 
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the stability of the equilibrium points. Most studies 
on and start from 
the local stability 
(equilibrium points). For this purpose, the standard 
approach is to analyze the stability of the linearized 
equations about the special solutions, If the delay 
differential are autonomous and the 
solution is constant, then the linearized equation take 
the form of linear autonomous delay differential 

The stability of the trivial solution (zero 
solution) of the linearized equation depends on the 
location of the roots of the 
characteristic If the roots of the 
characteristic for the linearization at the 
equilibrium have real and if all the 
roots are uniformly bounded away from the 

then the trivial solution of the linear 
equation is asymptotically stable, 

Now, we assume that the (J and "( are 
and small enough, this can be true if the disease 

and 

for a long so that h(t) and m(t) do not 
over the time interval t], one 

h (t h( t h (t) 

m ( t u) '" m ( t - T ) ~ m ( t) - urn' ( t ). 

and after 
and considering the case a=~ 

becomes: 

(I-aum) + 1- h )m'( t) 
:::: am(l- rh, 

au(/ m)h'(t) (l-auh)m'(t) 

= ah(1 - rm. 

for h'(t) and m'(t), we have: 

h'( t) ,m( t)) 

Dm 

11 ) 

where 

A= +oya), B=(a 

D (a+aoy), 
and M:= (l-a 2a 2

), 

A shows that the system 1) has 

trivial steady state mo)=(O,O), which is the 

state: 

= (-'----a--'- -'--a--'-

(2, I 

provided that a?y, we consider the free disease 

case (ho, mo)=(O,O), To the stability of(ho, 

the eigenvalues of its Jacobian matrix have to be 

investigated, The Jacobian matrix of system II) at 

(ho, is given 

Thus the characteristic by: 

0, 

and the the associated eigenvalues are: 
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Now, we note that if a>y and acr> 1, then the 
equilibrium (ho,mo) is a saddle point and then 
unstable. But jf u>y and acr< I then the (ho,mo) 
is a centre and then becomes stable. 
From the above discussion, we have the following 

result of the trivial librium point of the 
II). 

Theorem 2.2. Assume that y=b, and r=(J is 
small Then the (ho,mo) is: 

(a). Unstable if a>y and 
(b). Stable and a(J<i, 

we consider the endemic case ml). 
From (2. it is evident that for this non-trivial fixed 
point to be biologically the conditions 

and such that (I aO') > 0 must hold. Notice 
that the necessary condition (I aO') > 0 an 
upper bound for values of cr that are biologically 

one has acr< I, which that 

For simplicity, we consider the case In this 
case the equilibrium point becomes 
(h1, ((112),(1 and the coefficients 
become: 

A 4U'/2
, B=2r +1), C 1), 

D (U'I+I), L= (i-U'/), 

M (1-
The Jacobian matrix of system (2.11) at (h1,m1) IS 

given by: 

ah 

Thus the characteristic equation is by: 

+ + 
+ 22U'1 5) 0, 

and the the associated are: 
:1.1 - r l);j 2x 2 + 12x 5), 

Whe 
:1.2 = r;j 

rex=U'I. We note that when O'=(1/(2r)), this 

implies that the are zeros. Noting that the 
function f(x) 2x4 -2x 3 2x 2 +12x 5 is a 

function for 
o x <;; 0.46 

IS 

x > 0.46 and negative in the interval 
1/2, so that the value of the function 

whenO < yo- 0.46 < 1/2. This 

implies that the are real numbers and 

So that the point (h1,m1) is a saddle 

and thus it is unstable. This means that in the case 
when the equilibrium point is unstable. This 
biologically is very interesting and that, when 
the rate at which the infectious mosquitoes 
that deliver infecting bites is than the sum of 
recovery and death humans rates then there exists an 
endemic situation which is unstable. 

From the above we have the following 
stability result of the positive equilibrium point of the 
system II). 

Theorem 2.3. Assume that a=f3, 
r=(J is small enough such that 
positive equilibrium point is a saddle 
unstable. 

Stability and Bifurcations 

and 
Then the 
and thus 

Time plays an important role in many 
biological and epidemiological dynamical 
When the delays are the characteristic 

are functions of delays. As lengths of 
delays changes, the stability of the trivial solution 
may also Such is often refereed 
to as stability switches. In this 
local asymptotic stability of POSItive 

equilibrium point (h* ,m*), the existence of 

Bifurcations and discuss the independent of 
the when the are not small In order to 

the full characteristic equation, we make use 
Lemma which is the modification of 

the result by K. Land P. van den. 
1986. The Lemma is extracted from the book by 
Kuang, Y. 1993 

Lemma 3.1 [Kuang, Y. 1993]. Consider the 
characteristic of the form 
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=0, and 

IQ(i P(l) and 
imaginary zeros, P(O)+Q(O)tO, 
i OJ) OJ) real wand F( OJ) has at most a 
finite number real zeros. Then if has no 
positive real root then there are no stability switches 
as r increases, while stability switches are possible if 

has at least one positive roots. 
The system (1.2) admits both the trivial 

equilibrium mo)=(O, 0) which {'n,.,rp~r'nn,-,~ to 

the free disease case when 
positive equilibrium 

* * (h , m ) = --'----''-- --'--'---

and the 

provided that (a / > (y / P), which corresponds to 

the endemic case. Let: 

h(t) x(t) + h' and met) == 

* 

* +m , I) 

where , m) is the unique positive equilibrium 

point of (I Substituting from (3. I) into (1.2), we 

find that satisfies: 

* == a[y(t -T) + m ][1 
dt 

• r)- h ] 

* yh , 

dt 
* m] 

-0 yet) - om'. 

Then, the variational of (1.2) with 

the positive equilibrium point (h',m *) is 
the linearized system of (3.2), that is: 

dr:(t) • --+ yx(t) am -r) 
dt 

* +a(h - 0, 

+ yet 0') 

0. 

(3.2) 

fo 

(3.3) 

The characteristic to the 
is given by: 

+ 

where 

A r+o,B= 

= aom' ,D2 

+ 

+B 0 

* • CJ =am ,C2 Ph, 

pyh*,E=aP[m* h* -I]. 

(3A) 

We consider the effect of the delays and the 
characteristic equation (3.4) in two different cases: 

* * Case (I): m + h I and T=a=" 

Case (2): m* h* J m* and 

First, we consider Case (1). In this case, the 
characteristic equation (3 A) becomes: 

0, (3.5) 

Remark. 3.1. We note that in the case when 
the roots of (3.5) are real and since 

A + C > 0, so that the fixed 

asymptotically stable. 
In order to understand the stability switches of 

(3.5) in detail, it is crucial to determine the value of 

r at which (3.5) may have a of 
roots, where in the work of 

P. van den. 1986, 't is 
variable which may increase from zero to 
roots of are in the left-half plane for 
O:S; T < 00, that the equilibrium is 

stable for all T, the equilibrium is said 
stable. there may be 

values of T for which 
roots of the (3.5) cross the 

is from left to thus the equilibrium is 
and if the crossing from right to left an 

unstable equilibrium may be stabilized as T increases. 
We assume that ,,=i OJ, OJ >0 is a root of (3.5) for 

some ,>0. In (3.5), we denote: 

p( A):= ,1.2 + AA + and Q( A) CA + D. 
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It is clear that P (0) + Q (0) "" 0, this means that ),=0 

is not a root of This implies that: 

P(iw):=(B +iAw, and Q ::::D+iCw. 

Hence 

+2B 

It is clear that, there is a 
F( ()) if and only if there is a 

root w of 
real root 

u= ()) 2 of the equation: 

(3.6) 

From (3.6) it is clear that there exists a real 
root if B<D, while if 

(C2+2B-N}2<4(B2_D2) the roots of (3.6) are 

non-real and then no stability switches may occur. 
IfB>D and 

the roots of (3.6) are real, and are both if 

( C2 + 2B < ° , both if 

+2B-A2) > 0. 

Thus there is a positive real root of (3.6) if and 
only if either: 

(h1). B<D, or 

B 

and 

+2B N)2 4(B2 D2), 

+2B N)<O, 

which is equivalent to: 

So to Lemma 3.1 the switches 
are possible and it is possible for roots of the 
characteristic (3.5) to cross the imaginary and 
this crossing are from the left to the if F'( ()) »0, 
and from right to the left if F' ( w) ° at a crossing 

i ()) Then, if B D, F( w):::: ° has a positive 

root and it is destabilizing. If B>D there are two 

positive roots w+ and ())_ ofF(w by 

where 

A 

2 
w+ 

Therefore the 

± 

This implies that 

sign(F (w» 

+2B 

+2B 

holds 

+2B) 

where > 0 . It is clear that the sign is positive for 

for ())_. From (3.5), when )'=i ()), 

we see that w satisfies the equations 

Ccusin(cur)+Dcos +(B w2
) 0, 

-Dsin(wr)+Cwcos(wr)+Aw= 0, 

which after simplification imply that 

sine ())± C-AD (u± 

cos( 

Hence there are o < (L ~ 2Jr such that 

:::: W±f, and 

:= arctan ~:----:------:--'-

In the case of B<D, one imaginary root 
the only 

axes is from left to as t 

stability of the trivial solution can only be lost and not 

In the case B>D, from left to right with 
t occurs whenever t assumes a value 

corresponding to W+, and crossing from to left 
occurs for values of t to W-. Then 

to w+ and w-we obtain the two 
sets of values of t for which there are imaginary 
roots: 
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j for 

In the case of (h1) 0 needed be considered, 

since the zero solution is stable for 
where A+C>O. Then the zero solution remains 

asymptotically stable until to+, and unstable 

thereafter. At the value of o (3.5) has pure 

roots i 

In the case (hz), since the zero solution is stable 

for then it must follow that 0 < 0' since 

the multiplicity of roots with real parts 
cannot become We observe that: 

j+1 j 

Therefore, there can be only a finite number of 
switches between stability and instability. Moreover, 
it is easy to see that there exist values of the 
parameters that realize any number of such stability 
switches. In our case, there exists a value of t, 

• 
1: = 1: such that at 1: a stability switch occurs 

from stable to unstable, and for 1: > 1:' the solution 
remains unstable. So that the zero solution can either 
be unstable for t>O, or exhibit stability switches. As t 
increased, the multiplicity of roots for ReA>O is 
increased by two whenever t passes a value 

of 'lj and it is decreased by two whenever 1: passes 

through a value of since the zero solution 

is stable for k-switches from stability to 
instability to stability occur when the parameters are 
such 

fO+ «I 

< <-k-I «\ '-k'" 

This show that there exists a Hopf Bifurcation which 
takes place at 7: = } and it is known that delay 
induced oscillations. It foHows that the linear 
stability of the equilibrium (h·, m *) is lost as the 
delay in response increases and when < = j . 

From the above we have the following 
result of the point of the 

system (1.2) and the existence of Hopf Bifurcations. 

Theorem 3.1. Assume that and 
• m + = I and r=o=r. 

• If FO, the equilibrium ,m) is 

locally ym/JlC)lIc'auy stable. 

hold5 then the equilibrium paint 

asymptolical~y r< 

If holds then the stability 

o . 

the 

• • eqUilibrium (h ,m ) can change a finite number of 

times as and it becomes 
unstable. 

Remark 3.2. The statement on of Theorem 3.1 

that when m' + h * 1 and t=CF1: the 
a Bifurcation at the positive 

equilibrium point (h * ,m *) when 7: = J' for 

Next, we consider the Case In this case upon 
simplification, the characteristic equation (3.4) can be 
rewritten as: 

the two factors of H(A) by 

we have: 

and rh(A) 

HIP·) (it+r+am* ), 

(it) +8+ e-Aa ). 

Now, the stability 
concerned with 

for discrete 
that one of the 

characteristic equations H1(1.)=0 and has 

infinite numbers of zeros that have no positive real 
A=i (v with w real and w>O. Then at 

lest one of 

• ia;+ r am ° or iw+8 + 

holds. We suppose that the first is satisfied and 

One can 

P(it) it+r and * am 

see that P(O)+Q(O)tO, and 

0, 
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Fi(co)=: * 2 " +(am) -r"- 0, 

It is clear that F 1( m) has a real positive root if and 

only if 

* 1> am =: =:> r > 
p + 8 28 P 

* and then the positive equilibrium point ,m ) is 

locally asymptotically stable when '"«'"(0 and unstable 

when .>ro, where '"(o=th/ m 1, and 

Also, we can easity see that if the second case 
and if 

r > (I 8) )/ 

then the equilibrium (h*,m*)is 

asymptotically stable when a<ao and unstable 

when a>ao, where ao= {9:J m 2} and 

From above discussion we have the following 
stability of the equilibrium 

(h*,m*) in the case when m* +h* l=h*m*, 

Theorem 3.2, Assume thai afJ>yfj, and 
• • • m + l=hm ,If 

• * then the (h ,m ) is locally 
asymptotically , < 'c and unstable when 

• where Tc =rn'nrUTn ro}, and ,0 and ao be as 
above, 

Remark 3.3. Theorem 
* • when m + h -I m the system ( 

a Hopf Bifurcation at the positive equilibrium point 
* * (h ,m ) when T Tc ' In the case when 

r ap + p) and 8 = ap , we see that 

there is a zero solution of F1(m) =0 and (m) =0. 

However 'A is not a root of and H2('A)=0. It 

remains to study the stability switches when 

r ap + P) and is = ( 2 Y + a), ,"" a and 

Remark 3.4. For the trivial Eo=(ho, 

which to the free disease case 

1. e" when yS=ap, the characteristic 
is given 

lA+B -1(aO') = ° , 
where and We note that in the 

we see that (3.7) has a 

root so that the fixed point & is asymptotically stable, 

If iw (w>O) is a root of then as above we see 
that w satisfies the equation 

u2 (2B-,4.2)u =0, where co2 u. 

The last equation has no positive roots 

since2B N 2y8 + 2 O. This implies that 

there are no stability switches as '"(+cr increases, 

Remark 3.5. In Theorems 3.1 and 3.2 
to the we found that there exists a family 

solutions bifurcate from the state E. at 
critical value of ,=,+ (for I, ... ) provided 

that the condition (h2) It would be 
to the stability and period of these 
UvlIVUlv solutions from the steady 
state. This question is open and the interesting reader 
can use the idea of), Kazarinoff, D. and 

1981 and derive the formulas 
these factors at the critical value of the 

delays using the normal form and the center manifold 

Lyapunov Functional Method 

In this we establish some sufficient 
conditions for local stability of the 
equilibrium point when #0. strategy in the proof 
will be employed in a manner by 

a suitable and prove that this 
function is a Lyapunov functional of the (3.3). 
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Consider the autonomous of the delay 
differential equation (I such that F(O)=O and 

F: * 2 2' ,O],R )-'?R ,1: >0, 

IS where C([ -T' ,0], R 2) is the set of 

continuous functions defined on [- -T' ,0] with the 
nonn 

,0] I ¢( B) I, 
where 1.1 is any norm in R2. The following lemma is 
"' .. w.""." from Kuang, Y. 1991, Y. 1993, 
Corollary and will be useful in the proof of the 
main result in this section. 

Lemma 4.1 [Kuang Y. J993}. Let W1(.) and w2(') 

be continuous scalar such 

thatw i (0) 0, 

limHOOw 1(/) +00, w2(t»O for 1>0. Let V:C ........ R 

be continuously fJlllPrI"rm,nn,w scalar jUnctional and S 
a nonempty subset C for which the following are 
satisfied 

~(o) I), 
::;-w2(1~(O)I). 

Then X=O is asymptotically stable with respect to the 
set S. That is, solulions thai stay in S converge to 
x=O. 

To simplify the statement of the theorem, the 
following notations will be used: 

* • 
all am ,al2 =a(J-h ), 

022 = ,(121 /3(l m 
[11 a11 + y,[22 == a22 + 8, 

A11 + a12r11 + 

+(11 

+(11 +(11 
the parameters in our model these values 

become 

a11=a((a/3 

a12 a ( I (( a/3 

a22 == /3 ((a/3 y8)1 

a21 /3 ( I (( a/3 

r11 = a (( a/3 -

[22 /3((a/3 

(a(/3+8))), 

+y)/3))), 

+ Y)/3)), 

(/3+8)))), 

+y, 

+ 

A12 1:(a/ (a+Y))(/3 8) 

(1- (( a/3 - r8) 1 (( a + 

(/3 

+8)))+y 

kFu(l/a)/38(a+
y

) 
/3+8 

a)(81(/3+8))(a/3 

(((/3+ /((a 

Now, we state and prove the main result in this 
section. 
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Theorem 4.1. Assume that af3 > . If 

[22 r11:::>: + 

• Then the positive equilibrium point ,m) is 

locally asymptotical(y stable. 
Proof. From Theorem 3.1, we note that the 

stability of the equilibrium (h* ,m·) of 

system (1.2) follows form the stability of the zero 
solution of The equations in can be 
rewritten as 

I I 

aJi I x(s)ds al2 I y(s)ds] 
/-, /-r 

I-(]' 

/ 

I x(s)ds] 
I-(Y 

= -lj Jx(t) aI2y(t), 

d I 

-[y(t)-a22 I y(s)ds-a21 
dt 

(4.1 ) 

We denote 
/ / 

XU) [x(t)-all f x(s)ds-aJ2 I y(s)ds] 
1-, 1-, 

/ I 

=[y(t)-a22 I y(s)ds-a2J I x(s)ds]. 
I-(]' I-(Y 

Let 

where 

WI (I) (lj I + 
1 / I I 

x[oJ I I +°12 f fy 2(z)dzds], 
/-, s /-, s 

:= Y2(t)+ W2(t), (4.4) 

where 
W2(t) (r22 +a21) 

1 I I I 

f Ii +°21 I fx2 (z)dzds], 
I-(]' S /-(Y S 

and let 

V3(t):=-X Y(t)+W3(t), 

Where 

I 1 1 I 

x[a21 I Ix
2

(z)dzds+a21 I Iy 2(z)dzds] 
I-(]' 

+(021 +022) 
I 

x[all I 
1-1' S 

I-(]' S 

I I 

+a12 I fy 2(z)dzds], 
/-1' s 

We define the function Vet) by 

v ( t) := V 1 ( t ) + V 2 ( t) + V 3 ( t ) . (4.6) 

Now, we prove that the function Vet) is a Lyapunov 
functional for the I). From the fact that 

we see that V(t»O. Now, we calculate 
that derivative of the function Vet) solutions of 

the system We start with the derivative ofV1(t). 

calculating the derivative of X2(t) along solutions 
of (4.1), find that 

dX 2 
(I) 

/ I 

J + I012 x{i) J y(s)ds 
/-f 

/ 

IOt2y{i) J x(s)ds 
I-I 

/ 

2y(l) J y(s)ds 
/-T 

Using the inequality 

S (I) 2at 

I 

+rllall (I) + J (s)ds] 
/-7 

/ 

+rllal (I) + f (s)ds] 
1-[ 

/ 

+allol2 (1)+ f (s )ds] 
/-, 

/ 

2 [1' y2 + f (s)ds] 
/-[ 

!-T 

we have 
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(t) 2aI2x(t)y(t) 

I 

+°11 ['11 + a12 J 
/-, 

I 

+°12['11 +a12 J 
{-, 

(I)] 

From the definition ofW,(t), we find that: 

I 

- f 
/-T 

Then form (4.7) and (4.8), we get 

d -V1(t) $; 2rl1x 2(t)-2a12x(t)y(t) 
dl 
+a 11 2(t)+a12y2(t)] 

+a'2,[rl1X 2 + a!2y2 (t)J 
+(r11+a'2)a11Tx 2{t) (r11 a12)a12Ty2(t) 

, - a'2a", Jx 

-2a'2x y + 

+[2a 1.2, + ana,.; + ["a" r 1Y 2 ( t ). 

and this implies that: 

(t) 

Now, we calculate the derivative of V2(t) 

(4.7) 

(4.8) 

(4.9) 

solutions of I). By calculating the derivative of 
Y2(t) along solutions of (4.1), we obtain after 

the inequality 

(4.10) 

From the definition of the function W:<{t), we get: 

I 

+a21 (I) J (s)ds]. 
I-a 

From 10) and II), we find that: 

d 

dt 
t)::;-[2r22-

II) 

Next, we calculate the derivative of the function 
calculating the derivative of -X(t)Y(t) along 

solutions of (4.1) and the fact that -f11::;-all and -r22::;
a22, we have: 

d 

dl 
x (I) ) 

I-r 

I 

J yes )ds 
I-r 

I 

-G21 a ll x (1) J x(s)ds 
I 

GI2 G21 x (t) f y(s)ds 
I-T 

I I 

-arr a 22 x (t) J y(s)ds GIIGZIXU) J y(s)ds 
I-v 1-0' 

I I 

J y(s)ds - a12 G2Iy(t) J x(s)ds. 
t -(y I-a 

From the definition of the function W3(t), we have 

d 
-W3(t) 
dt 

1 I 

-[(all +a12 (ax2(t) J x2(s)ds] 
2 

/-0' 

t 

13) 

I 
+ I +a12 (crier) J (s)ds] (4.14) 

2 
/-0' 

I 2 
t 

+-[(a21 +a22)all(rx (t) J x2 
2 

1-; 

I 

1 + a22 (1)- J 
/-, 
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From (4.13) and 14), we have: 

d 
V3~(<121+A1)X2(t) 

dt 
+(a12+ (t)+ +r11)X(t) 

Then from 12) and (4. we find that: 

~v [2r11 A11]X 2 (t) 
dt 
-2a12x( t) y( t)+ A12y2( t) 

- Ax.!]y2 (t) - [2r22 Ax.!]y2 (t) 

-a21X ( t) + A21X 2 ( t) 
+Al)X2(t)+ k)y2(t) 

+ (11)X (t) y(t). 

From (H1), and the fact that ....-T·V-~· L. 

we obtain 

d 
dl V( t) 

~ -A1l A21-a21 A1]X 2 (t) 
[2r22 Ax.! A12 a12 + k]y2( t) 

+[(1/2)(r22+r11) +a21)Jx 2 (t) 

+[(lI 2)(r22 +(11) (a12+ 

This implies that: 

where 

~V(t)~ 
dt 

[(3/2)r11+a12-(1I f22 

-A11-A21 A1]-

12) f22 + <121- (112) f11 

-Ax.! A12 

(4. 

(4.16) 

The conditions show that ~1>O and 
and therefore is definite. 

Now, since the solutions are bounded, Lemma 4.1 

ensure that limHoo x ( t) = 0 and limHooY ( t) = 0 
• and hence limHooh(t) hand 

liml~m(t) = m·. The proof is complete. 

Discussion 

In this paper, we consider the delay malaria 
model. We have established some 

sufficient conditions for stability of the equilibrium 
The main results are proved by two different 

methods. The first one is a of the 
U"'lVIl". when the delay are equal, of 

linearized equations and proved 
switches and a there is a 

hopf bifurcations. In the case when the delays are 
different we used the Lyapunov method and 
established some sufficient conditions for local 
stability. The local stability means that the disease 
will if there is no immigration or emigration of 
the population. 
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