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A quantum mechanical formulation of the Boltzmann transport equation by 

using a density matrix is described. The relax.ation time is not included in 

an ad Iwe manner but is obtained in a natural way in the development of 

the transport equation. Starting from the formal manipulation of the density 

matrix, the theory emphasizes various approximations needed to formulate 

a transport equation of the Boltzmann type. This density matdx is then used 

to find the expectation value of the current operator and hence the electric 

conductivity. Some applications of the formalism are suggested. 

Electronic transport in the absence of a magnetic field or in a low magnetic field is 
conveniently described by using the semi-classical Boltzmann transport equation 
(see, for example, Nag 1972). This transport equation is a familiar "gain-loss" 
equation for the distribution function I: 

all all - +- =0 
a t field s a t collisio ns 

( I ) 

where the first term is the drift term and the second is the collision term. Classical 
arguments have been used to obtain explicit expressions for the two terms. Although 
successful, the Boltzmann transport equation has implicit in it many assumptions 
which are not always satisfied. A review paper by Dresden (1961) discusses in detai\.. 
various assumptions and approximations implicit in the Boltzmann transport 
equation, including the relaxation time approximation, which are not always satis
fied. Classical arguments are not valid in the domain where quantum effects are 
important (see, for example, Arora 1976). Arora and co-workers (Arora 1975; Arora 
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1976; Arora and Miller 1974; Arora and Peterson 1975) have shown the inadequacy 
of the Boltzmann transport equation for problems involving a magnetic field. Kohn 
and Luttinger (1956) emphasize that the familiar Boltzmann transport equation is 
valid in the limiting case of very weak or very dilute scatterers. They use the density 
matrix to investigate the electronic transport corrections which are of higher orders 
in the scattering interaction. Price (1966) has used the method of Kohn and Luttinger 
(J 956) to obtain a generalized Boltzmann transport equation, for electrons in solids, 
when the driving field has nonzero wavevector as well as frequency. By means of 
this equation, the behaviour of the electrons in response to the field may be followed 
from the quasi-classical limit to the quantal limit at large rates of change. In the 
work of Arora and Qureshi (1976), a frequency dependent relaxation time is obtained 
and included in a generalized transport equation. These works suggest very strongly 
the need of a more basic approach starting from the basic principles of quantum 
and statistical mechanics. 

Quantum statistical theory has been extensively used in the linear transport theory 
of Kubo (1956), Hubermann and Chester (1975), Edwards (1958, 1965), Greenwood 
(1958), Sigel and Argyres (1969, 1970), and Argyres (1961) . Kohn and Luttinger 
(1956) and Greenwood (1958), have derived the linearized inhomogeneous equation 
from first principles as a consequence of the Liouville's equation for density matrix. 
Magnetic corrections to the Boltzmann transport equation have been derived by 
Thomas (1966). Theory of Kohn and Luttinger has been extended by Argyres (1961) 
to include inelastic electron scattering by absorption and emission of phonons. Sigel 
and Argyres (1969, 1970) consider the case of an electric field of arbitrary q and w 

and derive the coefficients of the quantum transport equation in powers of the 
impurity density and for arbitrary strength of the one-impurity potential. No applica
tion of their formalism to the problems of physical interest is given. 

The formal linear transport formula or the density matrix found in literature offer 
very little in the derivation of transport coefficients. The expansion of the linear 
response formula for the electric conductivity in terms of the strength of the scattering 
potential resulted in divergence. An alternative was thought to use a resistivity 
formula. This resulted in conflicting results. Huberman and Chester (1975) review 
in detail these quantum mechanical attempts . They have explicitly shown that the 
conflict between resistivity and conductivity formula could be resolved provided 
the infiinite number of divergent terms in the expansion are summed. In concluding 
the work, they strongly suggest the development of an alternative procedure similar 
to Van Hove's" V 2 t limit" technique (1955) . 

Arora and Peterson (1975) by extending the scattering dynamics beyond the strict 
Born approximation have developed a formalism equivalent to Van Hove's tech
nique. An application of this formalism to elastic electron acoustic phonon scattering 
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has already been communicated in a short note (Arora and Gomber 1976). The 

purpose in this paper is to formulate the theory of electric conductivity starting 
from the quantum statistical density matrix equation and exhibit clearly the approxi
mations which are needed to derive the more complete Boltzmann transport equation. 

Basic Formulation 

The system under consideration consists of a number of independent mobile 

electrons in interaction with a scattering system, taken to be optical or acoustical 
phonons, or impurity interaction or any combination of them. The Hamiltonian of 
a single electron in the presence of a perturbing electric field E, turned on at time 
t = -00 can be written as 

H = Ho+H'(t), 

with 

Ho=lI2m*, 

H' = V + Fest = V + eE . rest, 

(2) 

(3) 

(4) 

(5) 

where Ho is the unperturbed Hamiltonian consisting of an electronic part He and 
a lattice part H L ; H' is the lattice Hamiltonian consisting of electron-lattice interac

tion V and electron-electric field interaction F = eE . r s is a small positive number 
(s -+ 0+) which describes the slow switching on of the electric field at time t = -00. 

The steady state Hamiltonian is obtained by taking the limit s -+ 0+. The electric 

field is assumed to be small in the Ohmic limit. This provides the convenience of 
making the electronic distribution uniform in the absence of a perturbation. At high 
fields when spatial distribution of carrier gas is non-uniform and electric field cannot 
be treated small, a different formulation is required (Weismann 1976). 

For large samples and weak perturbation, p commutes with the Hamiltonian. 
Then, p or k = pi h can be taken as constants of motion. In that case, the electronic 

state can be well represented by a plane wave-function 

(6) 

where V is the volume of the crystal, and k stands for (k;o ky , kz)' For strong 
perturbations, i.e. large electric fields (hot electrons) and strong electron lattice 
interactions, (kx, ky, kz ) do not make a good set of quantum numbers. For example, 
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electronic wave functions are Bessel functions instead of plane waves for strong 
electric fields. 

In the absence of perturbation, the electronic state is well characterized by a 
wave-function of the form given by (6). But, in the presence of perturbation, we 

loose the preciseness of the electronic state, necessitating an expansion of the 
wave-function 'lr i of the ith electron in terms of an orthonormal set of wave-functions 
of the type given by (6 ): 

'lri(t ) = L a~(t ) lk) , (7) 
k 

where la~(tW is the probability of finding an electron in electronic state Ik) after 
perturbation is switched on. The N-electron ensemble average (J) of the electron 

current operator J op can then be written as 

I '1 I . (J ) = N ~('Ir ' Jop 'Ir ') , 

= L (klplk ')( k 'IJoplk) = Tr (pJop), (8) 
k.k ' 

with 

(k lpl k' ) == ~La ~(t)a;J( t). 
N i 

(9) 

The time-dependence of a ~(t) can be obtained from the time-dependent Schrodin
ger equation for 'lr i( t) by using the orthonormality of plane wave-functions k: 

iii da~ = L( klH'lk') a~ , (t) . 
dt k ' 

(10) 

The time-dependence of the density matrix of Eq. (9) then immediately follows: 

dp i i 
di=h (pH - Hp)==h[P, H). (II ) 

In order to solve this equation, we separate the density matri x into an equilibrium 

part and a time-dependent non-equilibrium part : 

p = Po+P' eM, ( 12) 

where Po is the uniform density-matrix independent of an electric field. The matrix 
elements of Po are Fermi-Dirac distribution functions: 

( 13) 

where 

( 14) 

are the unperturbed energy levels . (is the Fermi energy evaluated from the norma liz-
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ation condition 

( 15) 

For an electric field applied in the x-direction, the substitution of Eq, (12) in Eq, 
(II) results in a coupled equation 

with 

_ih 2 df 
(E k'k - ilis)(k'lp'lk") = - , - eEk)5 k'k 

m'" dEk 

+ fk 'k(k'i Vlk) e-sl 

+(kll[p',H']lk), (16) 

( 17) 

(18) 

This equation is usually solved by a linearization procedure (see, for example, 

discussion by Huberman and Chester 1975), According to this procedure, [p', H'] 

is neglected on the basis that this contains higher order terms, This linearizes p' in 
terms of F and V. The higher order terms are then generated by an iteration process 
giving an infinite series to be summed for (k'lp'lk), As discussed by Huberman and 

Chester (1975), this expansion is the cause of divergence difficulty encountered by 

several workers, To avoid this divergence difficulty and get the results for (k'lp 'lk) 
in the summed form, we follow the procedure outlined earlier (Arora and Gomber 

1976) and solve Eq, (16) formally as 

'1'1 - -ih 2/ m*(df/dEk)eEkx +fk'k(k'lvlk) e-s
, +(k'l[p',H']lk) 

(k p k) - E _ ~_ ' 
k'k mS 

(19) 

which can be used in the last term of Eq, (16) to get an expanded form of the 
coupled equation for matrix elements of p ': 

(En - ihs)(k'lp'lk) 

ih2 df 
= - m* dE

k 
eEkxok'k +fk'k(k'i Vlk) est 

+ L: (- ih
2 

/ m*)( df/ dEdeEk~ok ' k " + fk'~"(k'~ Vlk")e- SI +(k'l[p', H']lk") 

k" E k'k" - Ihs 

x(k"IH'lk) - L:(k'IH'lk") 
k" 

(20) 
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This iteration procedure can be continued further. But at this iteration we see the 

terms of the form p' W-type in Eq. (20), which describe the collision effect with 

the lattice. If we use the Fourier expansion V = Lq Vq e iq
. r of the scattering potential, 

in taking the ensemble average, all first order terms in V drop out. Thus, only the 
electric field part of H' drives the non-equilibrium density matrix elements of interest. 

Secondly, for the large class of scattering interactions we can use the property: 

L g(k, k', k")(kl Vlk")(k"l Vlk') = 0, unless k = k', (21 ) 
k " 

where g(k, k', k") is an arbitrary function. In those terms, where the matrix elements 

of p' are sandwiched between those for V, i.e. the terms of the type (k'i Vlk") 
(k"lp'lk"')(k"'1 Vlk), we can use the fact that (k"lp ' lk"') ak~8k" k '" in the lowest order 

approximation. Since we are dealing with currents in the Ohmic limit linear in an 

electric field, we neglect all the higher order terms in the electric field interaction. 
Finally we use the identity 

limit I/(x-is)= P(I / x)+i1T8(x), (22) 
S ~ O 

where P is the principal part. For elastic scattering process, the contribution of the 

principal part to the electronic current vanishes. But, for inelastic scattering process, 

the principal part provides a small second order perturbation correction to energy 

levels E k• If this correction is neglected, the use of the procedure outlined above 

results in a simplified expression for (k'lp 'lk): 

ih2 df ih 
E k'k(k'lp'lk ) = --; -d eEkx8k'k +- (k'lp'lk), 

m Ek Tk 
(23) 

(24) 

The last term in Eq. (23) is equivalent to summing an infinite series and is 

equivalent to the technique mentioned earlier (Van Hove 1955; Hubermann and 

Chester 1975). The presence of (I - k~/ kx) in (24) describes the anisotropic nature 

of the scattering and is important, especially for impurity scattering. For any 

scattering interaction which is an even function of k", the anisotropic part involving 

k~ in Eq. (24) vanishes. Eq . (23) can be easily solved for the matrix elements (k'lp'lk) 
to give 

(25) 

This non-equilibrium part of the density matrix which is diagonal in plane-wave 

representation is equivalent to the non-equilibrium Boltzmann transport function. 
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Applications 

As an application of the above formalism, we evaluate the expectation value of 
the current operator J op = -ep/ m* using the recipe given by Eq. (8) . The matrix 
elements of J op in the plane-wave representation are diagonal: 

The ensemble average of the electric current is then given by 

df 1i2k 2 
(J) = - e 2 L -- ----;f TkE. 

k dEk m 

(26) 

(27) 

The electric conductivity 0" in the Ohmic limit is then the coefficient of E on the 
left-hand side of Eq. (27): 

0" = _e2 L df (1i~)2 Tk. (28) 
k dEk m 

For isotropic crystals, since (k~) = (k;) = (k~) = t k 2
, we can rewrite this expression 

as 

0"=- e
2 
L df (1'1.:)2 Tk. 

3 k dEk m 
(29) 

For strongly degenerate electrons df/dEk behaves like a delta function: 

(30) 

In that case, expression (29) becomes 

(31 ) 

which is the classical result. 

For non-degenerate electons, the derivative of f with respect to energy is given by 

df = _ e(r:-Ek) /k.T/k T 
dE

k 
B , 

(32) 

where ~ could be found from Eq. (15). 

V 
Converting summation to integration by L -+ -( )3 J dkx dky dkz, and using Eq. 

k 27T 
(15), we get the familiar result (see, for example, Conwell 1967) 

(33) 
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for elastic acoustic-phonon scattering for which 

T;' = (J2 E;m*J(2 kBT / 7Tpu 2h4) E 112, (34) 

where El is the deformation-potential constant. This is in agreement with the result 
obtained from the Boltzmann transport equation with ad hoc insertion of Tk' 

As another application, we suggest the inelastic acoustic-phonon scattering, where 
energy of the phonon is not neglected compared to the energy of an application. 
In that case, even the principal term of Eq. (22) will also contribute to conductivity. 
This is especially important in electronic transport at low temperature and will be 
discussed in a separate communication . 

For non-linear effects, where electron electric field interaction cannot be treated 
small, as has been discussed in the previous section, plane wave representation 
cannot be used, as k is not a constant of motion . Moreover, the term involving 
[p', F] in Eq. (20) cannot be neglected . This interesting area of "hot electron effects" 
can also be studied in the framework of the above formalism . 

For polar semiconductors, where the selection rule of Eq. (21) is not valid, the 
decoupling of Eq. (20) for matrix elements (k'lp'l k) warrants special attention. These 
are some of a few suggested applications where the above formalism may be 
successfully applied. 

Conclusion 

A quantum-mechanical formulation of the density matrix for studying the elec
tronic transport properties is described. For the special case of elastic acoustic
phonon scattering, the theory is found to be equivalent to the Boltzmann transport 
equation approach. No ad hoc insertion of relaxation time was made in the theory. 

No divergence difficulty (see, for example, Huberman and Chester 1975 and references 
therein) is encountered because by avoiding the linearization procedure, we have 
summed the perturbation series in a natural way. Some application of theory are 
suggested. 
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