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A new type of mapping having property (£ ) not closed but preserving the 

counterimages of expandable spaces is defined. A product theorem for 

expandable spaces is proved . Several sum theorems are obtained. 

Krajewski (1971) introduced the notion of expandable spaces and obtained various 
related results. Smith and Krajewski (1971) characterized expandable spaces in 
terms of open Au covers. 

In this article open Au covers are used to define a new type of mapping that has 
property (E), that is, not closed but preserving the counterimages of expandable 
spaces. Then, a product theorem is proved for expandable spaces. Also, several sum 
theorems are obtained . All spaces are assumed to be Tl topological spaces. 

To proceed we need the following definitions and facts: 

Definition 1 (Krajewski 1971) 

A space X is called expandable iff for every locally finite collection {Fa la E A} 
of subsets of X there exists a locally finite open collection of subsets {Gala E A} 
such that for each a E A, Fa S; Ga. 

Definition 2 (Burke 1969) 

A space X is called subparacompact iff every open cover has a a-locally finite 
closed refinement. 
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Definition 3 (Smith and Krajewski 1971) 

A cover {J of a space X is called Au cover iff {J has a u-locally finite refinement 
(not necessarily open) . 

Theorem 1 (Smith and Krajewski 1971) 

A space X is expandable iff every open Au cover has an open locally finite 

refinement. 

Definition 4 (Dieudonne 1944) 

A Hausdorff space X is called paracompact iff every open cover of X has an 
open locally finite refinement. 

Theorem 2 (Smith and Krajewski 1971) 

(i) Every paracompact space is expandable. 
(ii) Every regular subparacompact expandable space is paracompact. 

Definition 5 (Katuta 1967) 

Let 1 be a family of subsets of a space X well ordered by <. 1 is called an order 
locally finite family iff for each A E 1; {A'IA' < A} is locally finite at each point of A. 

Definition 6 

A mapping f: X ~ Y is said to have property (E ) iff for each open A u cover {J 
of X there is an open Au cover y of Y and an open refinement W of {J such that 
for each V in y,r 1( V ) cU{WIW E Wv}, where Wv is locally finite and Wv c W. 

Definition 7 

A subset F of a space X is called expandable relative to X iff every open A u 
cover of F in X has an open locally finite refinement in X. 

Expandable Spaces 

Theorem 3 

Let f be a continuous mapping from a space X onto an expandable space Y. 
Then X is expandable iff f has property (E). 
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The proof follows from the following two lemmas: 

Lemma 1 

Any continuous mapping defined on an expandable space has property (E). 

Lemma 2 

Let f be a continuous mapping from a space X onto an expandable space Y. 
Then X is expandable if f has property (E). 

Proof of Lemma 2. Let U be an open Au cover of X. Since X is expandable, 
U has an open locally finite refinement W. Now {Y'} is an open Au cover of Y such 
that rl ( Y) is contained in the union of members of W. Thus f has property (E). 

Proof of Lemma 3. Let U be an open A u cover of X. Since f has property (E), 
there is an open A u cover y of Y and an open refinement W of U such that for 
each V in Y, r l (V ) is contained in U {W1 W E W v}, where W v is locally finite and 
Wv c W. Since Y is expandable, Y has an open locally finite refinement Ij. Let 
S = {rl(H) n WIH E H, WE Wv }. It is easy to see that S is an open locally finite 
refinement of U. 

Theorem 4 

Let M be a closed expandable subset of a space X. If F is closed in the interior 
o of M, then F is expandable relative to X. 

Proof. Let U be an open A u cover of F inX. Then.? = {U nMIU E U} u {M -F} 
is an open Au cover of M . Since M is expandable, lJ has an open locally finite 
refinement with respect to M . Let Y be the collection of members of this refinement 
such that each V in Y is contained in some member of {U nMIU E U}. Let 
W = {V n 01 V E V}, then W is an open locally finite refinement of U in X. 

Corollary 1 

A closed subset of an expandable space X is expandable relative to X. 

Theorem 5 

Let f be a closed continuous mapping from a space X onto a regular subparacom
pact space Y. If for each y in Y, r 1 (y ) is expandable relative to X, then f has 
property (E). 

Proof. Let U be an open Au cover of X. Since r\y) is expandable relative to X, 
U has an open locally finite refinement in X, say, 1 y = {A",la E Ay} and ~ y covers 
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r1(y) . Let Oy = Y - f(X -U"EAy A,,). Since f is closed, Oy is open in Y and 
r1(Oy)cU" EAyA". Now ~ ={~YlY E Y} is an open refinement of '1. Since X is 
subparacompact, {Oy ly E Y} is an open Au cover of Y such that for each y E Y, 
rl(Oy) is contained in the union of members of 6\.y and 6\.y is a locally finite 
subfamily of 6\.. Thus f has property (E). 

Remark 1 

The converse of the above theorem is not true. A counterexample can be obtained 
by taking the identity mapping f from the Sorgen frey line onto the reals with the 
usual topology. Since the Sorgenfrey line is expandable, by lemma 2 f has property 
(E). However, f is not closed; indeed let A = [0, 1) and then A is closed in the 
Sorgen frey topology but f(A) = [0, 1) is not closed in the usual topology of the reals. 

Theorem 6 

Letf be a closed continuous mapping from a space X onto a regular subparacom
pact expandable space Y. Then X is expandable iff for each y in Y, rl(y) is 
expandable relative to X. 

Proof. Suppose X is expandable. For each y in Y, rl(y) is closed in X; hence 
by corollary 1, rl(y) is expandable relative to X. 

For the converse, let f be a closed continuous mapping from the space X onto 
the regular subparacompact space Y such that for each y in Y, r 1(y) is expandable 
relative to X. Then by theorem 5, f has property (E). Therefore, by theorem 3, X 
is expandable. 

Theorem 7 

For any closed set F of a space X, the following are equivalent: 

(a) F is expandabl'! relative to X. 
(b) F is expandable and the boundary Bd(F) is expandable relative to X. 

Proof. (a):::} (b). It is clear that F is expandable. Let {U"la EA} be an open Au 
cover of Bd(F) in X. Let V = F - Bd (F); then there is an open set U in X such 
that V = U nF. Now {1 = {U}u {U"la E A} is an open Au cover of F in X. Therefore 
{1 has a locally finite open refinement in X. Now it is easy to see that Bd(F) is 
expandable relative to X. 

(b):::} (a). Let lj = {U" la E A} be an open Au cover of F in X. Since F is expand
able there is a locally finite open (in F) refinement {Wi3 I{3 E r} of {F n Uala E A}. 
For each {3, let W~ = Wi3 n Int (F). Since Bd (F) is expandable relative to X, {! 
has an open (in X) refinement f;J which is locally finite in X and covers Bd (F). 
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Now, {W~ I~ E f} u {HIH E ij} is an open locally finite refinement of V in X which 
covers F. 

Theorem 8 

Let f be a closed continuous mapping from a space X onto a regular subparacom
pact expandable space Y. Then X is expandable iff for each y in Y, r1(y) is 
expandable and the boundary Bd (f-l(y)) is expandable relative to X. 

Proof. Suppose X is expandable. For each y in Y, r \y) is closed in X, therefore 
by corollary 1, rl(y) is expandable relative to X and hence by theorem 7, rl(y) 
is expandable and the boundary Bd (f- l(y)) is expandable relative to X. 

For the converse, let f be a closed continuous mapping from the space X onto 
the regular subparacompact space Y such that for each y in Y, f-l(y) is expandable 
and the boundary Bd (f-l(y)) is expandable relative to X. Then, by theorem 7, we 
obtain that for each y in Y, r 1 (y) is expandable relative to X. Hence by theorem 
6, X is expandable. 

Theorem 9 (Krajewski 1971) 

Let X be an expandable space and Y be a compact space. Then X x X is 
expandable. 

Theorem 10 

Let X be a regular subparacompact expandable space and Y be an expandable 
space. Then X x Y is expandable iff for each x E X there is an open neighbourhood 
Ux of x such that Ox x Y is expandable. 

Proof. The "only if" part of the proof is obvious; for the "if" part it suffices to 
show that the projection p: X x Y -+ X has property (E). Let fj be an open Au 
cover of X x Y. For each x E X there is an open neighbourhood Ux of x such that 
Ox x Y is expandable. Since X is regular there is an open neighbourhood Vx of x 
such that Vx x Y c: \Ix x Y c: Ux x Y c: Ox x Y. By theorem 4, \Ix x Y is expandable 
relative to X. Therefore fj has an open locally finite refinement in X, say, ..:\X such 
that \Ix x Y c: U ..:\x' Now ..:\ = U x EX..:\X is an open refinement of fj and 
{Vxlx EX} is an open cover of X such that p-l(Vx) is contained in the union of a 
locally finite subfamily of..:\. Since X is subparacompact, {Vxlx EX} is an open Au 
cover of X. Thus, for each open Au cover V of X x Y there is an open Au cover 
{Vxlx EX} of X and an open refinement..:\ of fj such that for each x EX, p-l(Vx) 
is contained in the union of a locally finite subfamily of ..:\. Hence, the projection 
p: X x Y -+ X has property (E). By theorem 3, X x Y is expandable. 
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Corollary 2 (Smith and Krajewski 1971) 

Let X be a paracompact locally compact space and Y be an expandable space. 
Then X x Y is expandable. The proof follows from theorems 2,9, and 10. 

Theorem 11 

Let {F" la E A} be a locally finite cover of a space X such that for each a E A, Fa 
is expandable relative to X. Then X is expandable. 

Proof. Let Tj be an open Aa cover of X. For each a E A, Tj has an open (in X) 
locally finite (in X) refinement, say, ~" = {AI3I~ E I"} that covers Fa. Let y = 
{AI3I~ E I", a E A}; then y is a locally finite refinement of Tj. Indeed, let x EX; then 
there is an open-boundary Mx of x such that Mx n Fa = 0 for all except finitely 
many indices, say, aj, a2, ... ,an; we can assume that x E F"" i = 1, 2, ... ,n. Since 
each one of the collections ~ "I, ... , ~ an is locally finite, for each i = 1,2, ... , n 
there is an open set Wi such that x E Wi and Wi intersects at most finitely many 
members of ~ "'. Hence W j n W 2 n' .. n Wn nMx is an open-boundary of x that 
intersects finitely many members of y. 

Theorem 12 

Let y = {Va la E A} be an order locally finite open cover of a space X such that 
the closure of each member of Y is expandable relative to X. Then X is expandable. 

Proof. For each a E A, put F" = Va - U {VI3I~ < a} and f = {F" la E A}. By a similar 
method used by Katuta (1967), one can show that f is a locally finite closed 
cover of X. Now, for each a E A, F" is expandable relative to X; therefore, by 
theorem 11, X is expandable. 

Theorem 13 

Let y = {V" la E A} be an order locally finite open cover of a space X such that 
for each a E A, Va is expandable and the boundary Bd (V,,) is expandable relative 
to X. Then X is expandable . 

The proof follows from theorems 7 and 12. 
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