

n-Compact and Scattered Spaces

H.Z. Hdeib Department of Mathematics, Faculty of Science, Yarmouk University, Irbid, Jordan

In this paper scattered and σ_n -scattered spaces are used to obtain some product theorems for *n*-compact spaces.

Some product theorems for *n*-compact spaces are obtained using scattered and σ_n -scattered spaces, where *n* stands for infinite cardinal number. For any family A, |A| denotes the cardinal number of the indexing set of A. Furthermore, for any set B, |B| will denote the cardinal number of B. We shall make use of the following definitions:

Definition 1

A subset A of a space X is called an F_n set iff A is the union of $\leq n$ closed subsets of X. The complement of an F_n set is called G_n set. A mapping $f: X \to Y$ is called a σ_n -closed mapping iff it maps closed sets onto F_n sets.

Observe that $F_{\psi \circ}$ sets are the F_{σ} sets and $G_{\psi \circ}$ sets are the G_{δ} sets. Therefore $\sigma_{\psi \circ}$ -closed mappings will be called simply σ -closed mappings.

Definition 2 (Ga'l 1957)

A space X is called n compact iff every open cover of X has a subcover with cardinality $\leq n$.

Definition 3

Let X be a given space. The G_n -topology of X is the topology generated by the G_n -sets of X. The G_{ψ_0} topology will be called simply G_{δ} -topology.

Definition 4 (Kuratowski 1966, p. 78)

A space X is called scattered iff every nonempty closed subspace A has an isolated point $x \in A$.

Definition 5

A space X is called σ_n -scattered iff it is the union of $\leq n$ closed, scattered subspaces. σ_{ψ_0} -scattered spaces were first introduced by Nyikos (1977). He called them σ -scattered spaces.

σ_n-Closed Mappings

Clearly every closed mapping is σ_n closed. However, the converse is not true. Indeed, let X be a given space, and X^* be the set X provided with the G_n topology of X. Let $f: X^* \to X$ be the identity mapping. Then f is σ_n -closed but it is not closed.

Remark 1

Let $f: X \to Y$ be a continuous mapping from X onto Y; then f is a σ_n -closed mapping iff for each y in Y and any open set U such that $f^{-1}(y) \subset U$, there exists a G_n set O_y such that $y \in O_y$ and $f^{-1}(O_y) \subset U$. The proof is an easy consequence of the definition.

Theorem 1

Let X be an *n*-compact space and Y be any space. Then, the projection $p: X \times Y \rightarrow Y$ is a σ_n -closed mapping.

Proof. Let $y \in Y$ and U be any open set in $X \times Y$ such that $p^{-1}(y) = X \times \{y\} \subset U$. For each $(x, y) \in X \times \{y\}$, let O_x and $O_y(x)$ be open neighbourhoods of x and y such that $(x, y) \in O_x \times O_{y(x)} \subset U$. Now $\{O_x | x \in X\}$ is an open cover of X; therefore, it has a subcover $\{O_{x_a} | \alpha \in \Lambda\}$ where $|\Lambda| \leq n$. Hence

$$X \times \{y\} \subset \bigcup_{\alpha \in \Lambda} O_{x_{\alpha}} \times O_{y}(x_{\alpha}) \subset U.$$

Let

$$O_{y} = \bigcap_{\alpha \in \Lambda} O_{y}(x_{\alpha});$$

then

$$X \times \{y\} \subset \bigcup_{\alpha \in \Lambda} O_{x_{\alpha}} \times O_{y} \subset U$$

188

and O_y is a G_n set. Thus, for each y in Y there is a G_n set O_y such that $y \in O_y$ and $p^{-1}(O_y) \subset U$. Therefore by Remark 1, p is a σ_n -closed mapping.

Theorem 2

Let f be a σ_n -closed continuous mapping of a space X onto a space Y such that for each y in Y, $f^{-1}(y)$ is n compact. Then X is n compact if the G_n -topology of Y is so.

Proof. Let $U = \{U_{\alpha} | \alpha \in \Lambda\}$ be an open cover of X. Since $f^{-1}(y)$ is n compact, $f^{-1}(y) \subset \bigcup \{U_{\alpha} | \alpha \in \Lambda_y\}$, where $|\Lambda_y| \leq n$. Let

$$O_y = Y - f\left(X - \bigcup_{\alpha \in \Lambda y} U_{\alpha}\right).$$

Since f is σ_n closed, O_y is a G_n set. Now $Q = \{O_y | y \in Y\}$ is a cover of Y consisting of G_n sets such that for each y in Y, $f^{-1}(O_y) \subset \bigcup_{\alpha \in \Lambda y} U_\alpha$ where $|\Lambda_y| \leq n$. Since the G_n -topology of Y is n compact, Q has a subcover of cardinality $\leq n$. Now X = union of $\leq n$ members of $f^{-1}(Q)$ and since each member of $f^{-1}(Q)$ is contained in the union of $\leq n$ members of U, it follows that X = union of $\leq n$ members of U. Hence X is n compact.

Products of n-Compact Spaces

In this section we shall prove some product theorems for n-compact spaces. For this purpose we need the following result:

Theorem 3

Let X be an *n*-compact scattered space. Then the G_{δ} -topology of X is *n* compact.

Proof. Let U be an open cover of X by G_{δ} sets. Let $A = \{x \in X | x \in U \text{ and } U \text{ is open } \Rightarrow U \text{ cannot be covered by the union of } \leqslant n \text{ members of } U\}$. Obviously A is closed. Assume that $A \neq \emptyset$. Since X is scattered A has an isolated point x, so there is an open set $V \subseteq X$ such that $V \cap A = \{x\}$. Choose $U^* \in U$ such that $x \in U^*$. Without loss of generality we can assume that $U^* = \bigcap \{V_i | i = 1, 2, ...\}$, where V_i is open for each i = 1, 2, ... and $\overline{V}_{i+1} \subseteq V_i$. For each $i = 1, 2, ..., (\overline{V}_i - V_{i+1}) \subseteq X - A$; therefore each $y \in (\overline{V}_i - V_{i+1})$ has an open set M_y that can be covered by the union of $\leqslant n$ members of U. Since $\overline{V}_i - V_{i+1}$ is n compact, the collection $\{M_y | y \in \overline{V}_i - V_{i+1}\}$ has a subcover of cardinality $\leqslant n$. Hence each $\overline{V}_i - V_{i+1}$ can be covered by a subcollection U_i of U where $|U_i| \leqslant n$. Let $H = \{U | U \in U_i, i = 1, 2, ...\} \cup \{U^*\}$; then H is a subcollection of U that covers V and $|H| \leqslant n$. But this contradicts the

fact that $x \in A$. Hence $A = \emptyset$. Therefore for each $x \in X$ there is an open set G_x such that G_x can be covered by the union of $\leq n$ members of \mathcal{U} . Since X is n compact and $\mathcal{G} = \{G_x | x \in X\}$ is an open cover of X, \mathcal{G} has a subcover \mathcal{G}^* , where $|\mathcal{G}^*| \leq n$. Now each member of \mathcal{G}^* can be covered by the union of $\leq n$ members of \mathcal{U} . Hence \mathcal{U} has a subcover of cardinality $\leq n$.

Corollary 1

Let X be an *n*-compact, σ_n -scattered space. Then the G_{δ} -topology of X is an *n*-compact.

Proof. Let U be an open cover of X by G_{δ} sets. Let $X = \bigcup_{\alpha \in \Lambda} F_{\alpha}$, where $|\Lambda| \leq n$ and F_{α} is a closed scattered subspace for each $\alpha \in \Lambda$. By theorem 3, for each $\alpha \in \Lambda$, the G_{δ} -subspace topology of F_{α} is n compact. Hence U has a subcover U_{α} such that $|U_{\alpha}| \leq n$ and U_{α} covers F_{α} . Now $U^* = \bigcup \{U_{\alpha} | \alpha \in \Lambda\}$ is a subcover of U that covers X and $|U^*| \leq n$.

Theorem 4

Let X be a Lindelöf space and Y be an *n*-compact, scattered space. Then $X \times Y$ is *n* compact.

Proof. By theorem 1 the projection $p: X \times Y \to Y$ is a σ -closed mapping. The rest of the proof follows from theorems 2 and 3.

Corollary 2

Let X be a Lindelöf space and Y be an n-compact σ_n -scattered space. Then $X \times Y$ is n compact.

The proof follows from theorem 4.

Theorem 5

Let X and Y be n-compact spaces. Let K be a compact subset of X such that $F \times Y$ is n compact for every closed set $F \subseteq X - K$. Then $X \times Y$ is n compact.

Proof. Let \underline{A} be an open cover of $X \times Y$. For each y in $Y, K \times \{y\}$ is compact. Thus $K \times \{y\} \subset \bigcup A_y$, where \underline{A}_y is a finite subcollection of A. Let U_y be an open set in X and V_y be an open set in Y such that $K \times \{y\} \subset U_y \times V_y \subset \bigcup A_y$. Now $\{V_y|y \in Y\}$ is an open cover of Y, so it has a subcover $\{V_{y_\alpha}|\alpha \in \Lambda\}$, where $|\Lambda| \leq n$. Since $\{U_{y_\alpha} \times V_{y_\alpha} | \alpha \in \Lambda\}$ is an open cover of $K \times Y$, it follows that $\bigcup \{A_{y_\alpha} | \alpha \in \Lambda\}$ is an open cover of $K \times Y$. But $(X - U_{y_\alpha}) \times Y$ is n compact, therefore \underline{A} has a subcover \underline{A}_α that covers $(X - U_{y_\alpha}) \times Y$ and $|A_\alpha| \leq n$. Let $\underline{S} = [\bigcup \{A_{y_\alpha} | \alpha \in \Lambda\}] \cup [\bigcup \{A_\alpha | \alpha \in \Lambda\}]$. Then S is a subcover of \underline{A} and $|\underline{S}| \leq n$.

References

Ga'l, I.S. (1957). Proc. Nederl. Wetensch 60, 421-435.

Kuratowski, K. (1966). Topology. New York, London, Vol. I.

Nyikos, P.J. (1977). Topology Proceedings, 509-542.

الفضاءات المحكمة من النمط ن والفضاءات المستتة

حسن زارع هـديب قسم الرياضيات - كلية العلوم - جامعة اليرموك - اربد - الاردن

فى هذا البحث استخدمت الفضاءات المستتة فى اثبات مبرهنات -حول جداءات الفضاءات المحكمة من النمط ن •