
J King Saud Univ., Vol. II, Comp. & Info SCI., pp. 45-67 (i\H 141911999)

Associative Memories and Processors: The Exact
Match Paradigm

Sateh M. Jalaleddine
Micro Linear Corporation, 2092 Concourse Drive

San Jose, California 95131, USA

(Received 10 October 1996; accepted for publication 06 May 1997)

Abstract. Associative or content addressable memories (CAM) are crucial in the implementation of high
performance computing architectures for applications that require intensive data management or are cognitive
in nature. The basic architecture of associative memories can be based on either the exact match or neural
network models. This paper focuses on exact match associative memories. The milestone achievements in the
fIeld since the first associative memory implementation four decades ago are discussed. A classification of the
diverse associative computing architectures is presented. It comprises of two levels of distinction, the
associative memory organization and the processing capability which heavily depends on the application
domain. Recent development in associative processing applications are also discussed which include fast
routing in communication networks, memory management, database management image processing, and
artificial intelligence applications.

1. Introduction

The terms "associative" and "content addressable" have been synonymously used to
identify a class of memories in which data are accessed on basis of content rather than
data-location address. In contrast to conventional random access memories (RAM), a
content addressable memory (CAM) can be acquired (searched) in a time only weakly
dependent on the amount of stored information (e.g. words, patterns). In the past four
decades, development and implementation of two fundamental associative memory
architectures have evolved; namely the exact match and neural network models.

On one hand, the primitive operation of the "exact match CAM" involves finding
in parallel all stored words that match an input. The masking of bit fields can be
achieved at the input where only selected fields are allowed to participate in the match
operation. Also another type of masking can be accomplished by having the bit
representation of stored words ternary ("0", "1", and "don't care") instead of two-state

45

46 Sateh M. Jalaleddine

binary. Although all words are compared simultaneously, results are reached with no
interaction between stored words.

On the other hand, a "neural inspired CAM" operation requires merely all the
information in the memory to interact and collectively evolve to a decision (e.g. best
match). In particular, Neural CAMs possess outstanding capabilities in retrieving
patterns from noisy input data. For instance, a winner-take-all CAM dynamically finds
the best match (in Hamming distance sense) pattern to an input in one cycle, while an
exact match CAM requires several memory cycles to achieve the best match result [I].
From an architecture point of view, the "exact match CAM" involves employing a
comparator for each data entity (e.g. bit, word, block) which merely involves calculating
the exclusive - OR function, while a neural network CAM implements a biological
neural inspired model. Due to the large amount of contributions in each area, the scope
of this paper will be limited to the discussion of exact match associative memories. In
the rest of this paper, the term "exact match" will be implicit whenever CAM or
associative memories are mentioned unless otherwise stated.

The key feature of content addressing in associative memories makes such
devices very efficient search engines. When an associative memory is accessed, all data
elements (or selected bit fields of selected words) are compared in parallel against the
input data. Thus associative memories are naturally parallel single-instruction multiple
data (SIMD) machines, whereby one instruction (match) is broadcast to multiple data
elements to perform data-parallel search. The ability of an associative memory to
retrieve and process data eliminates the classical Von Neumann bottleneck. Memory
access and manipulation of pointers/indexes that constrain the performance of
conventional computing architectures are avoided. Since stored data in associative
memories are accessed by content, the need for data-location address is eliminated. This
provides system level flexibility; namely scalability and fault tolerance. Scalability of
memory size (from a system point of view) is facilitated since the number of data
elements is not limited by an address space. Also with content-based data storage and
deletion, faulty data elements can be easily bypassed (switched off) without the overhead
of ensuring a full address space as is the case in RAM-based systems.

The excellent search capability of associative memories makes them cost
effective for applications that consume a significant amount of processing time in
searching data structures. Many data structures can be supported by an associative
memory such as arrays, tables, trees, and graphs. Tables and arrays are the most natural
fit because of the two-dimensional physical organization of associative memories. Trees
and graphs can be mapped to an associative memory by numbering the different levels of
trees/graphs and appending these numbers (included as tag fields) to each stored node.
One-dimensional data structures such as strings of characters can also be mapped into an
associative memory where each string contains a linear array of characters.

Associative Memories and Processors .. 47

For assocIatIve systems to be cost effective, their architecture and functionality
has to be tailored for the targeted application. Several recent implementations of
associative systems as application-specific accelerators have been reported and will be
discussed in the paper. These associative architectures have been developed for a wide
range of high-performance applications with various degrees of complexity ranging from
virtual memory management subsystems to real time speech translation and image
processing systems. Such systems typically comprise of a relatively small size
associative memory and functional blocks that are optimized to execute application
specific operations.

This paper presents a unified framework for the diverse architectures of
associative memories and processors. It also presents their applications where emphasis
is placed on recent developments in the field. The following section gives a brief
genealogy of associative systems. In this section, no attempt was made to change the
wide range of terminology used in the literature (which is often confusing) to describe
associative architectures. The third section presents a classification of associative
computing architectures. This classification clearly identifies the salient differences
among exact match associative systems at two levels of distinction. At the first level, the
basic memory architecture can be either hardware implemented in a fully parallel fashion
or emulated by RAM in a bit/word serial structure. The second level of distinction
further classifies associative architecture according to their degree of functionality and
data processing capability. Eventhough the classification at this level is heavily
dependent on the application domain, the distinction is solely made on the basis of the
fundamental processing capability of the architecture. The last section discusses the
various associative computing applications using the terminology established in this
paper.

2. Milestone Achievements

The speed and flexibility of accessing data by content for information retrieval
was envisaged five decades ago. Inspired by the power of association in the human
mind, Vannevar Bush [2] described a storage device (the "memex") that performs fast
information retrieval based on association rather than indexing. In 1956, motivated by
the developments in superconductive circuits technology (cryotron), Slade and
McMahon [3] implemented the first associative memory (referred to as catalog
memory). For a basic CAM architecture, the reader is referred to Fig. 2 of this paper.
The constructed cryogenic memory consisted of 4-word by 5-bit fully parallel
associative memory capable of executing match and write operations. As the versatility
of the semiconductor technology was becoming evident in the early 1960s, proposals for
fully parallel associative memory circuits have been reported [4]. The fabrication of the
first integrated circuit associative memory which consisted of a I-bit cell was presented

48 Saleh M . .lalaleddine

m 1966 [5]. In the decade following the introduction of the cryogenic aSSOCIatIve
memory, a large number of small scale fully parallel associative memories
implementations involving a wide spectrum of technologies were reported and reviewed
in [6].

Following the implementation of the catalog memory, the late 1950s and 1960s
have witnessed the development and consolidation of concepts in the architecture,
algorithms, applications, and implementation of associative systems. As an extension to
the concept of the fully parallel catalog memory, an associative computing architecture
based on the so called distributed logic memory was introduced in 1962 [7]. Its targeted
application was information retrieval in which variable length character strings can be
stored and retrieved. The architecture consists mainly of a linear array of
intercomm un icating cells. Each cell stores a character (or a set of characters) and posses
the necessary logic to match in parallel incoming data and to send control signals to its
neighboring cell. Many implementations based on the distributed logic memory concept
have been proposed, however an early practical implementation was exemplified in the
PEPE system developed for radar related problems [8]. Because of the large number of
proce~sing logic required in fully parallel architectures, bit-serial associative systems
have emerged [9, I 0]. Instead of having logic associated with each bit, a processing
element is allocated for each word (or a set of bits). Thus, the memory is processed in a
bit-serial word-parallel fashion. Since the number of processing elements is
considerably reduced especially for large size words, such architecture allows the
practical realization of complex parallel operations besides the search function. A
prominent implementation of an associative bit-serial architecture is the Goodyear'S
Staran system [II, 12]. For mass storage devices, an associative architecture based on
the so called block-oriented associative memory was introduced in 1970 [13]. This
architecture targeted database applications in which a processing element is associated
with each block of data (logic-per-track) of a fixed-head storage disk.

Arithmetic and relational search algorithms for associative memories that exploit
the content search primitive have been developed. Falkoff [14] presented algorithms
that can perform relational search functions such as maximum, minimum, greater than,
less than, between limits, nearest to (in magnitude), and sorting. These operations were
described for both fully parallel and bit-serial associative memory architectures. Estrin
and Fuller [15] introduced the sequential-state-transformation technique for performing
bit-serial word-parallel arithmetic operations. This technique requires only two primitive
operations, the exact match and multiwrite operation. The multiwrite operation involves
parallel write to selected bits of several selected words. An associative processor
employing the sequential-state-transformation technique developed for image processing
applications was reported in [16]. The processor content addressing was implemented
using fully parallel associative memory organization. A similar processor architecture
was proposed [17] with provision of using ternary associative memory cells [18] as

Associative Memories and Processors 49

opposed to two-state binary cells. The ternary associative memory, called a functional
memory, has been identified to be effective in image processing and tree/graph search
applications [17]. The first integrated circuit implementation of a dynamic ternary
associative memory cell was reported in 1972 [19].

The large number of contributions, as of early 1970s, discussing many aspects of
associative processing was manifested in two survey papers [20, 21]. A later survey [22]
also included such developments. The architecture and features of associative processors
developed in the 1960s and early 1970s are presented in [23,24,25]. In [25] associative
algorithms have been discussed and extended to cover many variants of arithmetic and
logical functions. The availability of VLSI in the 1980s has led to the improvement of
existing associative systems and the evolvement of new ones. A VLSI version of the
Staran for airborne radar tracking was developed [26,27]. Two bit-serial associative
architectures have also been reported [28, 29]. Many implementations of associative
architectures have been developed for various applications. These contemporary
implementations will be discussed in the following sections.

3. Classification of Associative Architectures

Renewed interest in associative processing have been steadily gaining ground
since the mid 1980s [30-34]. This can be attributed to (i) the technological advances in
microelectronics which paved the way for efficient and cost-effective implementation of
associative architectures, (ii) as conventional processor speeds are reaching their
physical limitations, associative solutions are becoming increasingly important in search
intensive applications, (iii) and the evolvement of new high speed applications (e.g.
LAN routers) in which the employment of associative memories is imperative for
maintaining high system performance. Many associative architectures with different
degrees of functionality have been developed for various applications. This section
presents an articulation of a classification for associative computing architectures. It
provides a distinctive view of the various memory organization, fundamental
architectural principles, and processing capability of associative systems.

Figure I shows a classification of associative computing architectures. At the
highest level, the basic distinction made is based on the type of associative paradigm
embodied in the architecture. The two fundamental associative models are the "exact
match" and "neural network" models. As mentioned earlier, this paper is concerned
with the "exact match" associative architectures. The first level of distinction in exact
match architectures is the associative memory organization. The choice of memory
organization is based on whether the match operation is hardware implemented in a fully
parallel fashion or serialized in one of the two memory dimensions. Associative
architectures are further classified according to their degree of functionality and data

50 Sateh M. lalaleddine

Emulation by RAM
bit/word serial
block-parallel

Associative computing architectures

Fully parallel
associative memory

Fig. 1. Classification of associative computing architectures.

processing capability. This level of distinction is heavily dependent on the application
domain. Four categories are identified; table lookup associative memories, associative
processors, associative array processors, and associative string array processors. Each
category features specific characteristics and unique architecture oriented towards
improving the performance of certain data processing functions. In the following sub
sections, first the different associative memory organizations will be discussed which
consist of either fully parallel or RAM emulated bit/word serial structures. Then as the
functionality of the basic associative memory is extended, the four associative
computing architectures are identified and presented.

3.1 Associative memory organization
The basic architecture of a CAM can be either hardware implemented in a fully

parallel fashion or emulated by RAM. Fully parallel associative memory is capable of
performing the match operation in one cycle at the expense of extra logic per storage
element. Associative memories emulated by RAM require less logic per storage element
while more than one cycle is needed to execute the match operation. In all CAM
configurations, a SIMD control style is assumed where a control unit broadcasts an
instruction to all memory elements.

Associative Memories and Processors 51

3.l.a Fully parallel associative memory
All rows and columns in a fully parallel assocIatIve memory are compared

simultaneously. Fig. 2 shows a typical n-word by b-bit fully parallel associative
memory. Each bit location consists ofa storage cell and a two-input Exclusive-OR. The
Exclusive-OR inputs are the stored bit and the corresponding bit of the input word. Each
row consists of a b-bit word and one match line. The match line is connected to ground
(logic zero) through a switch at each bit location in the row. I f any switch in the row is
turned on, then the match line for that row is at logic zero. The switch at each bit
location is controlled by the output of the Exclusive-OR. Thus whenever any bit in a
word mismatches the corresponding input bit, the Exclusive-OR output would be high
(logic one). Consequently the switch at that bit location turns on and the match line for
that word is at logic zero. Thus all the words that do not match the input word will have
their match line at logic zero.

The mask register shown in Fig. 2 provides the capability of having only selected
bits to participate in the match operation. This is an important feature in associative
memories since it allows the search of specific memory fields. The execution of the
exact match operation is performed by first precharging the match lines to logic high by
enabling the match line precharge signal shown in Fig. 2. The input data is then
presented at the bit lines as determined by the information stored in the 110 buffers and
the mask register. Only the words that exactly match the input will have their match line
stay at logic high, otherwise the match line discharge to zero. This information is sensed
by the sense amplifiers and stored in the word response registers.

VO Buffers

Mask Register

Fig. 2. n-word by b-bit fully parallel associative memory.

52 Saleh M. lalaleddine

Data storage and access in the fully parallel CAM are word-oriented. Recently, a
flag-oriented CAM has been proposed [35, 36]. It is realized by introducing a simple
masking scheme to the standard RAM address decoder. Depending on the input word,
the maskable address decoder can access several memory cells at a time. The memory
array is formed by a one bit column of a standard RAM. Each word is stored as a I-bit
flag by having the word value considered as the address to the I-bit flag cell. If the
content of a flag cell is "I ", this implies that a word with content equal to the
corresponding address of that bit cell is stored. The advantages of this architecture are
the easy extensibility of the memory size and the ordered nature of the stored words.
Cascading of the bit cells is simple since it is similar to that of a standard RAM. Since
the words are stored in an ascending order, relational search operations are facilitated. A
disadvantage of the flag-oriented CAM is that the size ofthe I-bit flag vector is 2il where
n is the number of bits per word. Thus, the practicality of such architecture is limited to
applications with small word length.

3.1.b Emulation by RAM
Two practical associative memory configurations can be emulated using a RAM

which are bit-serial word-parallel (bit serial) and word-serial bit-parallel (word serial)
the bit cell area. Instead of having a comparison logic for each bit as in the fully parallel
case, a group of bits share a common comparison logic. Bit serial associative memory
includes comparison logic for each bit column (bit slice) and thus each memory column
is processed at a time. In the word serial case, each memory row or word has
comparison logic which allows each word to be processed at a time. A variation of these
two associative memory configurations is the block-parallel configuration. This entails
dividing the memory into blocks of words while bit/word serial processing is performed
within each block. for instance in a word-serial block-parallel configuration, all blocks
are processed concurrently while each block is processed in a word-serial bit-parallel
fashion.

The basic structure of a typical bit serial associative memory is shown in Fig. 3.
The memory array comprises of conventional storage cells with bit column access
capability. Data are stored horizontally and processed in a vertical fashion. The 110
buffer provides the external memory access for data read/write operations. Each memory
row has a I-bit comparison logic for bit serial processing. The comparison logic block
comprises of one bit comparator and a register for storing intermediate match results.
The final match results are stored in the word response registers. Bit-slice data
movement to the comparison logic can be achieved by either having the memory array
implemented as a block of circular shift registers or providing access capability to
individual bit-slices. The bit-slice memory access scheme is widely used and adopted in
the CAM shown in Fig. 3. One way to vertically access the memory is by having each
word in the memory array connected to the comparison logic through a one bit line.
Such connection provides the comparison logic with the content of the selected bit The

Associative Memories and Processors. 53

bit-slice selector selects a memory bit column by connecting each memory cell in the
selected bit-slice to its corresponding word line. The bit-slice selector is also responsible
for providing the comparison logic with the input bit which corresponds to the selected
bit column.

VO Buffers ~
b itl bit b b

Bit-S!iCeJ

~ ~ l 1 selector

) ...
Mem 1 1_ - - - - ~o,<! ~ - - - -I

1

Memcell Comparison r- Word response

Cell access Logic Register 1 ...
c-

,

, ,
, ,
, ..

c-

Memcell .. Comparison r- Word respons
Word n access Logic Register n

Fig. 3. A bit serial associative memory.

The operation of a bit serial CAM entails serial processing of memory bit
colurnns. The bit-slice selector unit selects one bit column at a time for comparison with
the corresponding input bits in the comparison logic block. After all bit columns have
been processed, the final match results are stored in the corresponding word response
registers. In such memory architecture masking of bit locations is achieved through the
bit-slice selector unit in which only the desired bit columns are accessed and allowed to
participate in the match operation. Bit serial associative memories are best suited for
applications where the average number of bits to be accessed in match operations is
relatively small compared to the word length. The most popular and early bit serial
associative memory implementation is that of the Staran associative system in which the
memory module consisted of 256-bit by 256-word. An extension to the bit serial
architecture is the byte-serial associative memory in which a number of bit-slices (byte
wide) are processed at a time instead of just one bit-column. Such associative memory is
usually employed in database applications where character (byte) matching is desired.
The degree of area-speed tradeoff is a design parameter which depends on the
application and specific s}stem requirements.

The operation of a word serial CAM is similar to that of a bit serial CAM except
that words (memory rows) rather than bit columns are processed serially. In a word
serial associative memory, all bits in a word are compared simultaneously while the

54 Saleh M. lalaleddine

memory words are time multiplexed through the comparison logic. The memory access
is needed only in the horizontal dimension for both read/write and comparison
operations. The number of I-bit comparison logic units needed for the word serial CAM
is equal to the number of bits per word. For efficient use of the comparison logic, the
word serial CAM is usually employed in applications where masked (through the input
mask register) match operations are infrequently needed. Moreover, for a reasonable
speed compromise the number of words should be kept relatively small.

3.2 Table lookup associative memories
This is the most basic category in which associative memories are employed as

simple table lookup memories. Applications in this category include virtual memory
management (translation-look-aside buffers) and address filtering in communication
networks. The effectiveness of the associative memory solution in such applications has
resulted in the introduction of the first commercial CAM [37]. This CAM is designed
for real-time address filtering in LAN bridges.

Associative memory architectures, discussed in the previous section, produce a
.word response vector as the outcome of a match operation. In table lookup associative
memories, the content of the word response vector is processed to arrive at a desired
outcome tailored to the targeted application. Typical table lookup associative memory
outputs are count of matched words, some/none match flag, and serial output of the
content/address of matched words. The some/none match flag indicates whether a match
is found. In case of a multiple match, the count signal provides a tally of the number of
matched words. Moreover, for serial retrieval of matched words, a multiple response
resolver is required. The mUltiple response resolver selects only one matched word at a
time. The selection order is immaterial to the CAM operation. However, the most
efficient implementation of a prioritizer is one that is based on physical word location in
which the first memory location is assigned the highest priority. The prioritizer output
can be either encoded to provide the address of the matched word or utilized to output
the data stored at the match location.

Depending on the application, the output of an associative memory in response to
a match instruction can be either the physical address or data content of the match
location. The write instruction of a CAM can also be based on either physical location
address or stored information content. The write instruction based on location address is
identical to that of a RAM. A more popular write scheme is one that is based on the
content of internal status registers. For instance, an empty/occupied flag bit could be
allocated for each word to identify whether a word contains useful data. Such addressless
write scheme allows the data to be stored anywhere in the memory regardless of location
address. The CAM content can also be modified by using the results of a match
instruction as the criterion to write certain memory locations. For example, a CAM may
be instructed to modify the content of all the words that were responders to a previous

Associative Memories and Processors 55

match instruction. This requires a multiwrite instruction where several words are written
in parallel. In table lookup associative memories such multiwrite operation is usually
used for memory testing purposes where all memory words are initialized to zero or one.
Many techniques for increasing the word length and number of words in associative
memories have been developed and summarized in [38].

3.3 Associative processors
Table lookup associative memories that encompass arithmetic or logical

processing capabilities are referred to as associative processors. the key function of an
associative processor is the parallel processing of match operation results. The basic
architecture of such an associative processor is illustrated in Fig. 4. It consists of a set of
processing elements (PEs) which are controlled by a control unit. Each PE comprises a
CAM row (word) along with processing logic and storage registers. The processing
logic typically implements Boolean functions for manipulating the match results. The
registers are needed for storage of intermediary results in bit serial arithmetic and multi
instruction operations. This also allows the conditional execution of CAM instructions
on selected rows based on previous instruction results.

M"tch

PEl CAM row 1
Processing

. Select unit 1

I I

I I

I I

I I

I I

Match

CAM row n Sele£t
Processing

unit n
PEn

Fig. 4. Assiciative processor architecture.

The main difference between an associative processor and a traditional parallel
processor is that the former uses the match results for data manipulation as opposed to
direct data manipUlation in the case of a RAM-based parallel processor. The processing
unit in an associative processor uses the match result as the basis for selecting the
corresponding CAM row for further processing (e.g. write, read). For instance, the
realization of bit serial word parallel arithmetic operations using the sequential state
transformation method [15] requires a series of match and write operations on selected

56 Sateh M. lalaleddine

bit fields. The implementation of such a processor is exemplified in the associative
processor presented in [39].

3.4 Associative array processors
The key characteristic of aSSOCiatIve array processors is that the PEs are

interconnected through an interprocessor communication network. Figure 5 shows a
generalized associative array processor architecture which is similar to that of the
associative processor except for the added feature of interprocessor communication
network. The PEs are relatively simple and achieve parallel operation by spatial
replication of instruction execution. However, the presence of the interprocessor
communication network provides the opportunity of having the array partitioned into
subsets of one or more PEs where distinct control signals could be applied to each
subset. This provides the realization of a dynamically reconfigurable multiple-instruction
multiple-data (MIMD) architecture.

PEl
f-+ Processing

CAM row 1
~

unit 1 f---

f-+
14-

I-- Inter-
processor

I I I commun-
I I I ication
I I I network
I I I
I I I
I I I , I

I

f-o Processing CAM row n
14- unitn I--PEn

Fig. 5. Associative array processor.

The selection of interprocessor communication network topology depends on the
requirements of the targeted application domain. For instance, the most popular
intercommunication network for image processing applications is the two-dimensional
mesh. Such topology entails arrangement of the PEs into a two-dimensional array in
which each PE is interconnected to its neighboring PEs. Depending on the desired
intercommunication complexity, each PE can be connected to its four or more
neighboring PEs. Fig. 6 shows a two-dimensional PE arrangement where each PE is
connected to its four nearest neighbors. The figure also shows the array partitioned into
subsets of PEs in which the execution of multi associative operations can be achieved. A
notable implementation of an associative array processor is the lowest level (pixel)
processor in a hierarchical image understanding architecture. An overview of
associative array processors can be found in [40-42].

Associative Memories and Processors ... 57

Fig. 6. Two-dimensional grid arrangement of PEs.

3.5 Associative string array processors
The key distinctive feature of associative string array processors is the local

intercommunication control between PEs. Figure 7 shows a basic associative string
array processor. The PEs are arranged in a linear array where neighboring PEs are
interconnected by a local physical link. The main utility of such local link is to propagate
the match result from one PE to its adjacent PE. This allows PE activation based on the
match result of its neighboring PE. Communication between distant PEs can be
accomplished through the intercommunication network. This provides the capability of
forming a contiguous set of PEs that are physically apat1. The application domain which
motivated the development of such processors is pattern or character string matching.
These processors have been referred to as distributed logic memory or cellular
associative processors.

Inter-communication network

, I

I i ---B ,--' -, ,------"----;

L~ PE ·~l
,----"

Fig. 7. Associative string processOI·.

58 Sateh M. lalaleddine

The concept of associative string array processors was proposed by Lee [7]. The
proposed architecture is based on local intercommunication between adjacent PEs.
Recent architectures such as the one in [42] provided intercommunication of control
signals among distant PEs through a global communication network as illustrated in
Fig.7. Data in associative string array processors are initially distributed along the PEs
for subsequent parallel processing. Functions are implemented as a sequence of
instructions. Execution of instructions results in activation of substrings based on their
content. Data within the activated substrings are then processed.

4. Applications

In high-performance applications where the speed of data search or pattern
matching is the major impediment to the aggregate system performance. associative
computing would be a cost-effective solution. Recently associative computing has been
employed in a wide range of applications. In this section we discuss these applications
which are fast routing in communication networks, memory management, database
management, image processing, and AI applications.

4.1 Fast routing in communication networks
As switching speed and bandwidth of communication networks increase, packet

routing in mUltiple interconnected networks has to be executed at high speed. The basic
function of packet routing is address table lookup at the interface between interconnected
networks. Thus, the use of an associative memory in such applications is indispensable.
In LAN bridges and routers, CAMS are very crucial for achieving fast address filtering
especially in high speed networks such as FOOl [43-46]. The clear advantage of CAMs
in the acceleration of address filtering in LAN bridges has prompted their commercial
availability. Since the introduction of the first commercial CAM in late 1988 by
Advanced Micro Devices, several manufacaturers have introduced similar CAMs which
are aimed at address filtering applications in LAN bridges [47]. These CAMs belong to
the table lookup associative memories category described in Section 3.2.

The central function of a LAN bridge is to pass packets between different
networks. A popular routing strategy is the non-source routing which is based on the
destination address of the addressed node. In such systems the only routing information
that is sent in the packet is the destination address. Thus the bridge must match each
packet address against an address list of all the active nodes that reside on an attached
network. This address matching has to be performed quickly so that network speed is
not degraded. Table lookup CAMs have been very effective in handling such address
filtering in high speed networks. CAMs have also been proposed for fast routing in
telephone networks where hierarchical addresses are employed [48-50].

Associative Memories and Processors. 59

4.2 Memory management
A widely known application of CAMs is the implementation of memory mapping

hardware used in virtual memory systems. In virtual memory computer architectures the
CPU issues a virtual address which must be converted to physical address before the
local RAM can be accessed. A fully associative cache known as translation lookaside
buffer (TLB) is often used to perform the virtual-to-physical address translation. This
associative hardware solution is crucial since the TLB is located in the critical timing
path between the CPU and memory. Each word in the TLB corresponds to a block or
page of words stored in the RAM. The TLB stores the most frequently used, or at least
the most recently used, virtual page addresses. When the CPU issues a virtual address,
the TLB searches for a match. If a match occurs, the TLB produces the physical address
of the corresponding page stored in the RAM. Discussions on TLB design issues can be
found in [51-53].

CAMs have also been utilized for memory reliability enhancement. As the size
of memory ICs increases, yield and reliability issues become important. CAMs have
been employed in improving memory yield by isolating hard errors (defects) through
redundancy. For memory system reliability improvement, CAM-based redundancy
approach has been reported to be more efficient than error-correction coding and page
swapping techniques [54]. CAM-based redundancy is accomplished by incorporating a
CAM into the memory system (multiple standard memory ICs) to provide replacement
for defective memory locations. Thus CAM locations are used to map into the address
space in place of faulty locations. When a faulty memory location is detected during
testing, its address along with the corresponding data are stored in the CAM. Once a
faulty location is accessed, the CAM matches the address and the corresponding stored
data in the CAM is accessed. The CAM access is in parallel with the memory access
which avoids increase in memory access time. A CAM-based redundancy approach has
also been used a improving the reliability of Flash IC memories by integrating a small
CAM on chip [55].

Another application of CAMs is in the implementation of the matching memory
for data driven processors. These parallel computing processors coordinate instruction
execution based on the availability of data operands. Instructions wait for the
availability of their operands before being executed. Thus, high speed data matching is
very crucial for such computing architectures. Several table lookup associative memory
implementations for data-flow processors have been reported [56-59].

4.3 Database management
The parallel search capability of associative memories makes such devices well

suited for database applications. Many associative memory systems have been reported
for relational database management [60-66] and text processing [67-72]. Relational
database machines are dedicated computing engines which accelerate relational

60 Saleh M. lalaleddine

operations such as Selection, Projection, Join, and Set operations. Text processing
systems are dedicated processors which accelerate text information retrieval operations
such as character string search.

The relative high cost per bit of associative memories prohibits their use for
database mass memory storage. Thus, different approaches have been adopted to
overcome such limitation. One approach is to build associative processing capabilities
into the read/write mechanism of the mass storage device. This approach represents
early attempts for implementation of database accelerators which is known as logic-per
track concept [13]. It involves adding an associative processor to each read/write head of
a fixed-head disk. Stored data in each track are searched and only relevant data is
transferred from the disk. Placing a head for every track is not an economical approach
in modern disks [73]. In any case, attempting to modify the secondary storage device for
database acceleration is quite costly since specific design is needed for each storage
device type. Another approach to associative database acceleration is to implement an
associative memory as the database cache. However, such approach is costly since the
size of the associative memory needed to implement the database main memory is quite
large. Many early designs have adopted this approach [60-62] where the database
machine is built around an associative main memory.

Instead of attempting to modify the secondary storage device or main memory of
the database computer, recent approaches [63-72] involve implementation of associative
data filtering at the interface between main memory and secondary storage. Such
approach can be implemented using relatively small size associative memory and it can
be easily incorporated into existing secondary storage device controllers. The rationale
behind database filtering is to reduce the amount of data transfer from the mass memory
media to main memory (processor staging memory). All data read from secondary
storage are compared against some search conditions in order to determine the qualified
data that need to be transferred to the host computer. Besides data selection, data filters
often implement more complex database operations. For instance, relational database
filtering usually involves operations such as Projection, Join and Set operations which
are frequently used and require large data movement. Efficient associative memory
hardware implementation which is suited for relational operations is presented in [74].

4.4 Image processing
In real time image processing applications large amount of data arrays has to be

processed, using identical processing steps, at high speed. The inherent SIMD
processing and array oriented data structure in associative computing architectures make
them attractive for such real time applications. A wide range of image processing
applications have been implemented using associative architectures with varying degree
of functionality; computer vision [75-78], image processing tasks [79-88], pattern
matching [89], particle track finding [90], data compression [91-93], and filtering [94].

Associative Memories and Processors 61

In [85-94] table lookup associative memories are employed where the main operation in
these implementations is matching of an input vector against stored data. In image
processing applications, associative array processors are employed where image pixels
are spatially mapped into corresponding processing elements (PEs) in the array. PEs are
basically simple bit-serial associative processors which are connected through a
communication network. Recent implementations [75, 95] have employed dynamically
reconfigurable networks to support effective implementation of a wide range of
applications.

Typically, computer vIsIon involves three levels of abstraction. At the lowest
level, binary image pixels are mapped into an array of PEs where processing such as
filtering and local feature (e.g. region, edge, texture, etc.) extraction are applied. The
intermediate level involves relating the extracted features to image objects. Functions
implemented at this level include operations such as grouping of regions and statistical
measures of extracted information. At the highest leveL knowledge-based interpretation
of the intermediate level results is performed. A representative implementation of such
an architecture is the image understanding architecture (IUA) [75]. It consists of three
tightly coupled heterogeneous parallel processors with a pyramid structure. Associative
processing is extensively utilized at the lowest level where a 512 x 512 associative array
processor is employed [96]. Each PE is a bit-serial associative processor with 320 bits of
local memory. The PEs are connected in a two-dimensional mesh, however. the network
can be dynamically partitioned into several independent segments. This allows
multiassociative processing where each segment is able to operate on locally broadcast
values to locally compute its own responder summary in parallel with all other segments.

4.5 Al Applications
Production systems and logic programming are widely used in many artificial

intelligence applications. Such declarative programming approaches use some form of
If-Then rule-based programming. Pattern or symbolic strings matching is extensively
utilized in such programming environments. This makes associative computing very
attractive for accelerating the execution of these programming paradigms.

Many associative string array processor implementations have been reported for
artificial intelligence applications [97-110]. In [97-108] various approaches for
symbolic processing and especially for Prolog execution accelerations have been
presented. These implementations have focused mainly on the acceleration of functions
such as clause filtering, unification, and backtracking and dereferencing stack
management. Recently implementation of associative processing in AI real time speech
translation [109] and genetic algorithm-based machine learning [110] have been
reported.

62 Sateh M. 1alaleddine

5. Conclusions

This paper has presented a unified classification of associative architectures. It
clearly identifies the salient architectural differences at both levels of distinction; the
memory organization and the functional levels. At the memory organization level,
associative architectures can be either fully parallel or emulated by RAM. At the
functional level, four associative architectures have been identified which are table
lookup associative memories, associative processors, associative array processors, and
aSSOCIatIve string array processors. The paper also discusses the recent associative
applications which span a wide spectrum of areas which include fast routing in
communication networks, memory management, database management, image
processing, and Al applications.

The data search feature of associative memories will always make their level of
integration and cost per bit inferior to those of RAMs. However in high-performance
applications that require frequent data search or pattern matching, associative memories
have been shown to be cost-effective and in some cases the only solution for maintaining
the required high system performance. As the relative cost of high performance chip
fabrication is decreasing, the implementation of associative solutions in new applications
is becoming increasingly attractive. It is our hope that a unified view of associative
architectures would aid in expediting the developments in the field. As the first
commercial associative memory was introduced only few years ago, the full potential of
associative computing in all its aspects is yet to be seen.

References

[IJ 1alaleddine, S.M. and 10hnson, L.G. "Integrated Circuit Associative Memory Based on Neural Mutual
Inhibition." lEE Proc. Pt.G, 139, NO.4 (Aug. 1992),445-449.

[2J Bush, V. "As We May Think." Atlantic Monthly, 176, No. I (July 1945), 101-IOS.
[3] Slade, AE. and McMahon, H.o. "A Cryotron Catalog Memory System." Proc. Eastern Joint Computer

Conference, New York" Dec. 10-12 (1956),115-120.
[4J Lee. E.S. "Semiconductor Circuits in Associative Memories." Proc. IEEE l'aclfic Computer

Conference, (Mar. 1963), 96-IOS.
[5] Igarashi, R, Kurosawa, T. and Yaita, T. "A ISO-Nanosecond Associative Memory Using Integrated

MOS Transistors." Proc. International Solid-state Circlllts Conference - Digest o[Techl1lcal Papers,
(Feb 1966),104-105.

[6] Hanlon, AG. "Content-Addressable and Associative Memory Systems." IEEE Trails. Electronic
Computers, EC-IS, No.4 (Aug. 1966),509-521.

[7J Lee, CY. "Intercommunicating Cells, Basic for a Distributed Logic Computer." Pmc. AFlPS 1962 Fall
Joint Computer Conference, Philadelphia, PA (Dec. 4-6, 1962), 130-136.

IS] Berg, R. 0.. Schmitz, H.G. and Nuspl, SJ. "PEPE-An Overview of Architecture, Operation and
Implementation." Proc. IEEE National Electronics Conference (1972),312-317.

[9] Kaplan, A "A Search Memory Subsystem for a General-purpose Computer." I'roc. AFlPS 1963 Fall
Joint Computer Conference, 24 (Nov. 1963),193-200.

Associative Memories and Processors ... 03

[10] Ewing, R.G. and Davies, P.M. "An Associative Processor." Proc. AFJPS 1964 Fall Joint Computer
Coriference, 25 (1964), 147-158.

[II] Rudolph, 1.A. "A Production Implementation of an Associative Array Processor: STARAN." Proc.
AF1PS 1972 Fall Joint Computer Conference, 41, Pt. 1, Anaheim, CA (Dec. 5-7, 1972), 229-241.

[12] Batcher, K.E. "Flexible Parallel Processing and STARAN." Proc. 1972 WESCON Technical Papers,
Session I (Sept. 1972),1/5-1 - 1/5-3.

[13] Slotnick, D.L. "Logic Per track Devices." In: 1. Tou, (Ed.), Advances in Computers, New York, NY:
Academic Press, 10 (1970), 291-297.

[14] Falkoff, AD. "Algorithms for Parallel-Search Memories." Journal of the ACM, 9, NO.4 (Oct. 1962),
488-511.

[15] Estrin, G. and Fuller, R. H. "Algorithms for Content-addressable Memories." Proc. IEEE Pacific
Computer Conference (Mar. 1963), 118-130.

[16] Fuller, R.H. and Bird, R.M. "An Associative Parallel Processor with Application to Picture Processing."
Proc. AFIPS 1965 Fall Joint Computer Conference, 27 (1965),105-116.

[17] Wesley, M.A., Chang, S. K. and Mommens, J.H. "A Design for an Auxiliary Associative Parallel
Processor." Proc. AFIPS 1972 Fall Joint Computer Coriference, 41, Pt. 1, Anaheim, CA (Dec. 5-7,
1972),461-472.

[18] McKeeveer, B.T. "The Associative Memory Structure." Proc. AFIPS 1965 Fall Joint Computer
Conference, 27 (1965), 371-388.

[19] Mundy, J.L. et al. "Low-cost Associative Memory." IEEE J Solid-State Circuits, Vol. SC-7, No.5, pp.
364-369, Oct. 1972.

[20] Minker, J. "An Overview of Associative or Content-addressable Memory Systems and a KW[C Index to
the Literature: 1956-1970." Computing ReViews, 12, No. 10 (Oct. 1971),453-504.

[21] Parhami, B. "Associative Memories and Processors: An Overview and Selected Bibliography."
Proceedings of the IEEE, 61, NO.6 (June 1973),722-730.

[22] Kohonen, T. Content-addressable Memories. 1st ed., Berlin: Springer-Verlag, 1980.
[23] Thurber, KJ. and Wald, L.D. "Associative and Parallel Processors." Computing Surveys, 7, NO.4 (Dec.

1975),215-255.
[24] Yau, S.S. and Fung, H.S. "Associative Processor Architecture - A Survey." Computing Surveys, 9, No.1

(Mar. 1977),3-27.
[25] Foster, c.c. Content Addressable Parallel Processors. New York, NY: Van Nostrand Reinhold, 1976.
[26] Batcher, K.E. "Bit-serial Parallel Processing Systems." IEEE Trans. Computer, C-31, NO.5 (1982),377-

383.
[27] Davis, E.W. "Application of the Massively Parallel Processor to Database Management Systems." Proc.

1983 National Computer Coriference, (1983), 299-307.
[28] Stuttgen, HJ. A Hierarchical Associative Processing System, Berlin: Springer-Verlag, 1985.
[29] Fernstrom, c., Kruzela, I. and Svensson, B. LUCAS: Associative Array Processor-design. Programming

and Application Studies. Berlin: Springer-Verlag, 1986.
[30] Waldschmidt, K. "Associative Processors and Memories - Overview and Current Status." Proc.

International Conference on Computer Technology, Systems, and Applications. Germany: Hamburg,
(May 1987), 19-26.

[31] Chisvin, L. and Duckworth, RJ. "Content-addressable and Associative Memory: Alternatives to the
Ubiquitous RAM." Computer Magazine, 22, No.7 (July 1989),51-64.

[32] Special issue, "Associative Processes and Memories." lEE Proceedings, Pt. E., 136, No. 5(Sept. 1989).
[33] Special issue, "Associative Memories and Processors." IEEE Micro, Parts I and 2,12, Nos. 3 & 6 (June

and Dec. 1992).
[34] Special issue, "Associative Processing and Processors." Computer Magazine, 27, No II (Nov. 1994).
[35] Tavangarian, D. "Flag-algebra: A New Concept for the Realization of Fully Parallel Associative

Architectures." lEE Proceedings, Pt. E, 136, NO.5 (Sept. 1989),357-365.
[36] Tavangarian, D. "Flag-oriented Parallel Associative Architectures and Applications." Computer

Magazine, 27, No. 11 (Nov. 1994),41-52.
[37] Bursky, D. "Content-addressable Memory Does Fast Matching." Electronic Design, 36, No. 27

(Dec. 8, 1988), 119-121.

64 Sateh M. Jalaleddine

[38] Moors. T and Cantoni, A. "Cascading Content-addressable Memories." IEEE Micro, 12. NO.3 (June
1992), 56-66

[39] Stormon. C et al. "A General-purpose CMOS Associative Processor IC and System'-' II:L!:' ,\flero. 12.
NO.6 (Dec. 1992),68-78.

[40] Weems, CC "Architectural Requirements of Image Understanding with Respect to Parallel
Processing." Proceedings of the IEEE, 79, NO.4 (April 1991),537-547.

[41] Potter, J.L and Meilander. WC "Array Processor Supercomputers." Proceedtngs of lite IEEE. 77. No.
12 (Dec 1989).1896-1914

[42J Lea. R.M. and Jalowiccki, 1.1'. "Associative Passively Parallel Computers." Pmceedtngs oftite IEEE,
79. NO.4 (April 1991),469-479.

[43] Yamada. H. et al. "Real-time String Search Engine LSI for 800-Mbitlsec I.ANs' Proc. Custom
Integrated Circuits Conference, (May 1988), 21.6.1-21.6.4.

]44J Amltai. 7 "Address Filtering in FOOl LAN Bridges: the CAM Solution Proc Wescon/89
Conference, San Francisco. (Nov. 14-15,1989),235-239.

[45] Wvland, D.C and Amitai, Z. "YLSI CAM Applications - an Overvlc\\' Froc Weseon!89
Conference. San Francisco. (Nov 14-15, 1989),226-227.

[46J Wilnai, 0 "A General-purpose, Expandable CAM Board." Fmc H'escol1 89 Conference. San
Francisco, (Nov 14-15,1989),228-230.

]47] Gallant..I. "FOOl Routers and Bridges Create Niche for Memories.-- !oDS. 37, 'J() 8 (April 9. 1992),
61-68.

[48J McAuley, A J and FranCIS, P "Fast Routing Table Lookup USing CAMs ... Proc 12th AnnualJoint
Conference of the IEEE Computer and Commul1lcatlOns SOCieties. San Francisco, 28 (Mar.- I Apr.,
1(93),1382-1391

]49] McAuley, AJ and Cotton, Cl "A Selt~testing Reconfigurable CAM.-- IEEE Journal of Solid-State
Circuits, 26, NO.3 (Mar. 1991),257-261.

[50J DjemaL R .. Mazare. G. and Michel, G. "Towards Reconfigurable Associative Architecturc for High
Speed Communication Operators." Proe. IEEE Symposium and Workshop on Engtneer1l1g of Computer
Based Systems, Germany Friedrichshafen, (Mar. 11-15,1996).74-79.

[51] ramura, LR. et al. "A 4-ns BiCMOS Translation-Iookaside Butler." IEEE Journal of Solid-state
Clrel1lt, 25. NO.5 (Oct 1990), 1093-1101

]521 Goksel, A.K et al. "A Content Addressable Memory Management Unit with On-Chip Data Cache."
IEEE Journal of Solid-State Circuit, 24, NO.3 (June 1989), 592-596.

[53 J Yenkataraman, M" PaL M. and Canaga, S "A 7ns Cycle, High Speed Dual Compare CAM in 06mm
GaAs." Pmc. IEEE GaAs Ie Symposium, San Diego, CA (Oct29- Nov. I, 1995).315-318

[541 Lucente, MA, Harris, C.H. and Muir, R.M. "Memory System Reliability Improvement Through
Associative Cache Redundancy." IEEE Journal of Solzd-State Circuits, 26. NO.3 (Mar. 1991).404-409.

[55] .lex, l and Baker, A "Content Addressable Memory for Flash Redundancy" Proc. IEEE Paqfic Rim
Conference on Communications, Computers, and Signal ProceSSing, (May 9-10, 1991). 741-744.

[56] Kadota. II. et al. "An 8-kit Content-Addressable and Reentrant Memory." IEEE J01lrnal a/Solid-State
Circuits, SC-20, NO.5 (Oct. 1985),951-957.

157J Uvieghara. G.A et al. "An On-chip Smart Memory for a Data-flow CPU." IEEE Journal of Solid-State
Circuits, 25, No. I (Feb 1990), 84-94.

[58] Takata., H. et al. "A 100-Mega-access per Second Matching Memory for a Data-driven
Microprocessor." IEEE Journal of Solid-State Circuits, 25, No. I (Feb. 1990),95-99.

[5<)1 Bergh, H, Eneland, l and Lundstrom, L. E. "A Fault-tolerant Associative Memory with High-speed
Operation." IEEE Journal of Solid-State Circuits, 25, NO.4 (Aug. 1990),912-919.

[601 Su, S.Y.W. Database Computers, New York, NY: McGraw-Hili, 1988.
161] Berra, P.B. and Oliver, E. "The Role of Associative Array Processors in Database Machine

Architecture." Computer Magazine, 12, NO.3 (Mar. 1979),53-61
[62] Hurson, AR. et al. "Parallel Architectures for Database Systems." In: MC YOVltS, (Ed), Advances in

Computers, Boston, MA: Academic Press, Vol. 28 (1989),107-151.
[63] Zeidler, H.Ch. "Content-addressable Mass Memories" lEE Proceedings, Pt. E. 136. No.5 (Sept. 1989),

351-356.

Associative Memories and Processors. 65

[64] Wade, 11'. and Sodini, CG. "A Ternary Content Addressable Search Engine." IEEE Journal o/Solid
State Circuits, 24, NO.4 (Aug. 1989),1003-1013.

[65] Faudemay, P. and Mhiri, M. "An Associataive Accelerator for Large Databases." IEEt' Aiicro, 11. NO.6

(Dec. 1991),22-34.
[66] Mishra, I' and Eich, M.H. "Join Processing in Relational Databases." ACAI Computing Surveys. 24, No.

1 (Mar 1992),63-113.
[67] Yamada, H. et al. "A High-speed String-search Engine." IEEE Journal o/Solid-State Circuits. SC-22.

NO.5 (Oct 1987), 829-834.
[68] Hirata, M. et al. "A Versatile Data String-search VLSl." IEEE Journal o/Solid-State Circuits. 23, No.2

(Apr. 1988),329-335.
[69] Takahashi, K .. Yamada, II. and Hirata, M. "A String Search Processor LSI" J In/ormation

Processing. 13. No.2 (1990),183-189.
170] Motomura, M. et al. "A 1.2-Million Transistor, 33-Mhz. 20-8 Dictionary Scarch Processor (DISP)

ULSI with A 160-Kb CAM" IEEE Journal o/Solid-State Circuits. 25. NO.5 (Oct. 1990), 1158-1165.
[71] Lee, D.L. and Lochovsky, F.L. "HYTREM - A Bybrid Text-Retrieval Machine fl)r Large Databases"

IEEE Trans. Computers, 39, No. I (Jan. 1990), 111-123.
[72] Lipovski. G. J. "A Four Megabit Dynamic Systolic Associative Memory Chip" Journal 01 I 'LSI Signal

Processing. Vol4 (1992), 37-51.
[73] Katz, RIL Gibson, G.A and Patterson, D.A "Disk System Architectures for High Performance

Computing." Proceedings o/the IEEE, 77, No. 12 (Dec 1989),1842-1858.
[74] Jalaleddinc, S.M. and Johnson, L.G. "Associative IC Memories with Relational Search and Nearest

match Capabilities." IEEE Journal 01 Solid-State Circlllts, 27, NO.6 (June 1992). 892-900.
[75] Weems, c.c. et al. "The Image Understanding Architecture." Interna!. J COllljJU!. I'ision,

2.No. 3 (1989), 251-282.
[76] Weems, CC et al. "The DARPA Image Understanding Benchmark for Parallel Computers" Journal 0/

Parallel and Distributed Computing, II, No. I (Jan. 1991). 1-24
[77] Krikels, A "Computer Vision Applications with the Associative String Processor" ./01lrnal 0/ Parallel

and Distnbuted Computing, 13, No.2 (Oct 1991). 170-184.
[78] Storer R. et al. "An Associative Processing Module for a Heterogeneous Vision Architecture." ItEE

,\ficro, 12, NO.3 (June 1992),42-55.
[79] Duller AW.G. et al. "An Associative Processor Array for Image Processing" IlIIage and I'lsion

Computmg. 7, No.2 (May 1989), 151-158.
[80] Herrmann, F.P. and Sodini, CG. "A Dynamic Associative Processor for Machine Vision Applications."

IEEE lv/icro, 12, NO.3 (June 1992),31-41.
[81 J Grosspietsch, K.E. and Reetz, R. "The Associative Processor System CAPRA Architecture and

Applications." IEEE Micro. 12, NO.6 (Dec 1992),58-67.
[82] Lea, R.M. "SCAPE: A Single-chip Array Processing Element for Signal and Image Processing" lEE

Proceed/l1gs, PtE, 133, No.3 (1986),145-151.
[83] Jones, S.R. et al. "A 9-Kbit Associative Memory for High-Speed Parallel Processlllg Applications."

IEEE Journal 0/ Solid-State Circuits, 23. No.2 (Apr. 1988),543-548
[84] Duller. A.W.G. et al. "Design of an Associative Processor Array." lEE Proceedlllgs.I'r.F .. 136. NO.5

(Sept. 1989).374-382.
[85] Shin. YC et al. "A Special-purpose Content Addressable Memory Chip for Real-time Image

Processing." IEEE Journal of Solid-State Circllits, 27, NO.5 (May 1992). 73 7-744
[86] Hariyama, M. and Kameeyama, M. "Design ofa CAM-based Collision Detection VLSI Processor for

Robotics." IEfCE Trans. Electron., E77-C, NO.7 (July 1994), 1108-1115.
[87] Hanyu. T. et al. "2-Transistor-cell 4-valued Universal-literal CAM for a Cellular Logic Image

Processor." Digest IEEE International Solid-State Circuits Con/erance. San Francisco. CA (Feb 6-R,
1997), 46-47.

[88 J Parhami. B. "Performance Analysis and Optimization of Search and Selection Algorithms for Highly
Parallel Associative Memories." ProC. Fourth International Workshop on Modelillg. Analysis. and
Simulation 01 Computer and Telecommunication Systems, San Jose, CA (Feb 1-3, 19(6),217-221

66 Sateh M. lalaleddine

[8S'I Chae, S.1. et al. "Content-addressable Memory for VLSI Pattern Inspection. ' IEEE Journal of Solid
State Circuits, 23, No. I (Feb. 1988),74-78.

[90] Doughty, D. C. et al. "'The Use of Content-addressable Memories in the Level 2 Trigger lor the CLAS
Detector atlEBAF" IEEE Trans. on Nuclear Science, 43, No. I (Feb 19(6),111-117.

[911 Panchanathan, S and Goldberg, M. '"A Content-addressable Memory Architecture for Image Coding
USlllg Vector Quantization." IEEE Trans. on Signal Processing, 39, NO.9 (Sept. 1991),2066-2078.

[92 J Jones, S. ", I 00 MbiUs Adaptive Data Compressor Design Using Selectivelv Shiftable Content
addressable Memory" lEE Proceedings, Pt. G, 139, NO.4 (Aug. 1992). 498-502.

[93] Lee, c.Y. and Yang, R.Y. "High-throughput Data Compressor Designs Using Content-addressable
tvlemorv" lEE Proceedings - Circuits Devices Syst, 142, No. I (Feb. 1995).69-73.

[94] Lee. C Y, IIsieh, PW and Tsai. JM. "High Speed Median Filter Designs Using Shiftable Content
addressable Memory." IEEE Trans. on Circuits and Systems for "Ideo Technology. 4. NO.6 (Dec
1994).544-549.

[95] Lea. R.M. "'ASP: A Cost-effective Parallel Microcomputer." IEEE Micro. 8. NO.5 (Oct. I(88). 10-29
[96] Shu. D. et al. "A Content-addressable, Bit-Serial Associative Processor." In R.W Broadersen. and H.S.

'vl()scovitz, (Eds), VLSI signal processing, !If, New York, NY: IEEE Press, (1988). 120-128
[Y7] Dclgado-Frias, JG. and Moore, W.R. (Eds.), VLSI for Artificial Intelligence, Boston. MA Kluwer

Academic Publishers, (1989), 93-129.
[98] Oldfield, .IV "'Logic Programs and an Experimental Architecture for Their Execution." lEE

Proceedings, Pt. E.. 133, NO.3 (May 1(86), 163-167.
1991 Ribeiro, JCD.F. et al. "Content-addressable Memories Applied to Execution of Logic Programs. ' lEE

Proceedings, PI. E., 136, NO.5 (Sept. 1(89),383-388.
[100] Naganuma, .I et al. "'High-speed CAM-based Architecture for a Prolog Machine (ASCA)" IEEE Trans.

on Computers, 37, No. I I (Nov. 1(88),1375-1383.
[101] Ogura, T. et al. "A 20-Kbit Associative Memory LSI for Artificial Intelligence Machines." IEEE

Journal of Solid-State Circuits, 24, NO.4 (Aug. 1(89), 1014-1020.
[102] Shankar, S"A Hierarchical Associative Memory Architecture for Logic Programm1l1g Unification."

Proc. 5th International Conference and Symposium on Logic Programming. (Aug. 1(88), 1428-1447
[103] Ali-Yahia, T. and Dana, M. "High-performance CAM-based Prolog Execution Scheme" ProG.

Applications oj Artificial Intelligence IX -SPIE, 1468, Orlando, Florida. (Apr. 2-4, 19Y 1).950-959.
[104 J Dou, C and Wu, S.M. "An Efficient Pattern Match Architecture for Production Systems Using Contcnt

addressable Memory." Proc. 1991 IEEE International Conference on Computer DeSign. ITSI in
l'omputer and Processors, Cambridge, MA, (Oct. 14-16, 19(1),374-378.

[lOS] Potter, lL. Associative Computing, New York, NY: Plenum Press, 1992.
[106] Correa, N. et al. "An ASIC CAM Design for Associative Set Processors. ,. Proc. -Ith Annual IEEE

international ASIC ConJerence and Exhibit, Rochester, NY, (Sept 23-27, 1991).1'18-3.1 - 1'18-3.4
[1071 Robinson, l.N. "Pattern-addressable Memory." IEEE Micro, 12, NO.3 (June 1992).20-30.
[108] Kasabov, N. K. et al. "Model for Exploiting Associative Matching in AI Production Systems."

Knowledge-Based Systems, 8, No. I (Feb. 1995), 14-20.
[109] Higuchi, 1. et al. "The IXM2 Parallel Associative Processor for AI." Compllter Maga~ine. 27, No. 11.

(Nov. 1994),53-63.
[110] Twardowski, K. "An Associative Architecture for Genetic Algorithm-based Machine Learning"

Computer Magazine, 27, No. II (Nov. 1(94),27-38.

Associative Memories and Processors .

.).!J.JI J'k .~,.,

y0~ifJ~ r· '1 r '~Jf.JLI J."!Y .J~L..

~/ YI ;..&..:.f.1 ..:--~ YJI , '1 c , r-, f.,.,jyi)LI 'if r ~L.

67

~b'Jl Q\~ J,:!I ~GlI Y~"~ l) l.~ \)y ~ ~)I o.?ljJl. ~\ ~

.J':!I ~GlI l) 4,j)j><l1 uL.}Jl.U y ~I ~ (:!~ ~))? Y\).I 0..\...1. 0) .JWI

c~y--i)1 rl:JI J.!lk:J1 c~yi Js- §0; ~)I o.?,jJl ul~ Y\).I 0..u.l,?'L.'J1 ~)I

.~u~

ul)yk.:JI ~I J'I~I ~) rl:JI J.!lk:JI Q\~ ~)I 0)"1 jJ 1 Js- ? .f.. ~I 1..\...1.

~~ ___ 0 _ a' Js- ~(~I 1..\...1. ~p; .)~~) L ~)I o.?,jJl o~ "L.,jl L

~I) ~L.:lI Q\)..GilI) ~)I 0)"1 jJ 1 ~ ; ~ ~_ ~I 1..\...1.) .y\).1 o..u. J-L.:;,)

u~l) Q\)pl 0...\.;>-1 \.r.>-\ ~I 1..\...1. J-iL,) .u~1 JLs; Js- Ws- \~~I ~
o)bl" ,"u'Jl-a.J'J1 ~ l) uL. yk.JJ (:!r (:!j./' :~ JI) ~)I 0 .?ljJl ~ l)

. "Jl5:..::.'J1 ~L.t.." '''l/'~'J\ ,,\.) jJI" ,"uL.)..JI ~ Y.Y'

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

