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Abstract. Associative or content addressable memories (CAM) are crucial in the implementation of high 
performance computing architectures for applications that require intensive data management or are cognitive 
in nature. The basic architecture of associative memories can be based on either the exact match or neural 
network models. This paper focuses on exact match associative memories. The milestone achievements in the 
fIeld since the first associative memory implementation four decades ago are discussed. A classification of the 
diverse associative computing architectures is presented. It comprises of two levels of distinction, the 
associative memory organization and the processing capability which heavily depends on the application 
domain. Recent development in associative processing applications are also discussed which include fast 
routing in communication networks, memory management, database management image processing, and 
artificial intelligence applications. 

1. Introduction 

The terms "associative" and "content addressable" have been synonymously used to 
identify a class of memories in which data are accessed on basis of content rather than 
data-location address. In contrast to conventional random access memories (RAM), a 
content addressable memory (CAM) can be acquired (searched) in a time only weakly 
dependent on the amount of stored information (e.g. words, patterns). In the past four 
decades, development and implementation of two fundamental associative memory 
architectures have evolved; namely the exact match and neural network models. 

On one hand, the primitive operation of the "exact match CAM" involves finding 
in parallel all stored words that match an input. The masking of bit fields can be 
achieved at the input where only selected fields are allowed to participate in the match 
operation. Also another type of masking can be accomplished by having the bit 
representation of stored words ternary ("0", "1", and "don't care") instead of two-state 
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binary. Although all words are compared simultaneously, results are reached with no 
interaction between stored words. 

On the other hand, a "neural inspired CAM" operation requires merely all the 
information in the memory to interact and collectively evolve to a decision (e.g. best 
match). In particular, Neural CAMs possess outstanding capabilities in retrieving 
patterns from noisy input data. For instance, a winner-take-all CAM dynamically finds 
the best match (in Hamming distance sense) pattern to an input in one cycle, while an 
exact match CAM requires several memory cycles to achieve the best match result [I]. 
From an architecture point of view, the "exact match CAM" involves employing a 
comparator for each data entity (e.g. bit, word, block) which merely involves calculating 
the exclusive - OR function, while a neural network CAM implements a biological 
neural inspired model. Due to the large amount of contributions in each area, the scope 
of this paper will be limited to the discussion of exact match associative memories. In 
the rest of this paper, the term "exact match" will be implicit whenever CAM or 
associative memories are mentioned unless otherwise stated. 

The key feature of content addressing in associative memories makes such 
devices very efficient search engines. When an associative memory is accessed, all data 
elements (or selected bit fields of selected words) are compared in parallel against the 
input data. Thus associative memories are naturally parallel single-instruction multiple
data (SIMD) machines, whereby one instruction (match) is broadcast to multiple data 
elements to perform data-parallel search. The ability of an associative memory to 
retrieve and process data eliminates the classical Von Neumann bottleneck. Memory 
access and manipulation of pointers/indexes that constrain the performance of 
conventional computing architectures are avoided. Since stored data in associative 
memories are accessed by content, the need for data-location address is eliminated. This 
provides system level flexibility; namely scalability and fault tolerance. Scalability of 
memory size (from a system point of view) is facilitated since the number of data 
elements is not limited by an address space. Also with content-based data storage and 
deletion, faulty data elements can be easily bypassed (switched off) without the overhead 
of ensuring a full address space as is the case in RAM-based systems. 

The excellent search capability of associative memories makes them cost
effective for applications that consume a significant amount of processing time in 
searching data structures. Many data structures can be supported by an associative 
memory such as arrays, tables, trees, and graphs. Tables and arrays are the most natural 
fit because of the two-dimensional physical organization of associative memories. Trees 
and graphs can be mapped to an associative memory by numbering the different levels of 
trees/graphs and appending these numbers (included as tag fields) to each stored node. 
One-dimensional data structures such as strings of characters can also be mapped into an 
associative memory where each string contains a linear array of characters. 
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For assocIatIve systems to be cost effective, their architecture and functionality 
has to be tailored for the targeted application. Several recent implementations of 
associative systems as application-specific accelerators have been reported and will be 
discussed in the paper. These associative architectures have been developed for a wide 
range of high-performance applications with various degrees of complexity ranging from 
virtual memory management subsystems to real time speech translation and image 
processing systems. Such systems typically comprise of a relatively small size 
associative memory and functional blocks that are optimized to execute application
specific operations. 

This paper presents a unified framework for the diverse architectures of 
associative memories and processors. It also presents their applications where emphasis 
is placed on recent developments in the field. The following section gives a brief 
genealogy of associative systems. In this section, no attempt was made to change the 
wide range of terminology used in the literature (which is often confusing) to describe 
associative architectures. The third section presents a classification of associative 
computing architectures. This classification clearly identifies the salient differences 
among exact match associative systems at two levels of distinction. At the first level, the 
basic memory architecture can be either hardware implemented in a fully parallel fashion 
or emulated by RAM in a bit/word serial structure. The second level of distinction 
further classifies associative architecture according to their degree of functionality and 
data processing capability. Eventhough the classification at this level is heavily 
dependent on the application domain, the distinction is solely made on the basis of the 
fundamental processing capability of the architecture. The last section discusses the 
various associative computing applications using the terminology established in this 
paper. 

2. Milestone Achievements 

The speed and flexibility of accessing data by content for information retrieval 
was envisaged five decades ago. Inspired by the power of association in the human 
mind, Vannevar Bush [2] described a storage device (the "memex") that performs fast 
information retrieval based on association rather than indexing. In 1956, motivated by 
the developments in superconductive circuits technology (cryotron), Slade and 
McMahon [3] implemented the first associative memory (referred to as catalog 
memory). For a basic CAM architecture, the reader is referred to Fig. 2 of this paper. 
The constructed cryogenic memory consisted of 4-word by 5-bit fully parallel 
associative memory capable of executing match and write operations. As the versatility 
of the semiconductor technology was becoming evident in the early 1960s, proposals for 
fully parallel associative memory circuits have been reported [4]. The fabrication of the 
first integrated circuit associative memory which consisted of a I-bit cell was presented 
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m 1966 [5]. In the decade following the introduction of the cryogenic aSSOCIatIve 
memory, a large number of small scale fully parallel associative memories 
implementations involving a wide spectrum of technologies were reported and reviewed 
in [6]. 

Following the implementation of the catalog memory, the late 1950s and 1960s 
have witnessed the development and consolidation of concepts in the architecture, 
algorithms, applications, and implementation of associative systems. As an extension to 
the concept of the fully parallel catalog memory, an associative computing architecture 
based on the so called distributed logic memory was introduced in 1962 [7]. Its targeted 
application was information retrieval in which variable length character strings can be 
stored and retrieved. The architecture consists mainly of a linear array of 
intercomm un icating cells. Each cell stores a character (or a set of characters) and posses 
the necessary logic to match in parallel incoming data and to send control signals to its 
neighboring cell. Many implementations based on the distributed logic memory concept 
have been proposed, however an early practical implementation was exemplified in the 
PEPE system developed for radar related problems [8]. Because of the large number of 
proce~sing logic required in fully parallel architectures, bit-serial associative systems 
have emerged [9, I 0]. Instead of having logic associated with each bit, a processing 
element is allocated for each word (or a set of bits). Thus, the memory is processed in a 
bit-serial word-parallel fashion. Since the number of processing elements is 
considerably reduced especially for large size words, such architecture allows the 
practical realization of complex parallel operations besides the search function. A 
prominent implementation of an associative bit-serial architecture is the Goodyear'S 
Staran system [II, 12]. For mass storage devices, an associative architecture based on 
the so called block-oriented associative memory was introduced in 1970 [13]. This 
architecture targeted database applications in which a processing element is associated 
with each block of data (logic-per-track) of a fixed-head storage disk. 

Arithmetic and relational search algorithms for associative memories that exploit 
the content search primitive have been developed. Falkoff [14] presented algorithms 
that can perform relational search functions such as maximum, minimum, greater than, 
less than, between limits, nearest to (in magnitude), and sorting. These operations were 
described for both fully parallel and bit-serial associative memory architectures. Estrin 
and Fuller [15] introduced the sequential-state-transformation technique for performing 
bit-serial word-parallel arithmetic operations. This technique requires only two primitive 
operations, the exact match and multiwrite operation. The multiwrite operation involves 
parallel write to selected bits of several selected words. An associative processor 
employing the sequential-state-transformation technique developed for image processing 
applications was reported in [16]. The processor content addressing was implemented 
using fully parallel associative memory organization. A similar processor architecture 
was proposed [17] with provision of using ternary associative memory cells [18] as 
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opposed to two-state binary cells. The ternary associative memory, called a functional 
memory, has been identified to be effective in image processing and tree/graph search 
applications [17]. The first integrated circuit implementation of a dynamic ternary 
associative memory cell was reported in 1972 [19]. 

The large number of contributions, as of early 1970s, discussing many aspects of 
associative processing was manifested in two survey papers [20, 21]. A later survey [22] 
also included such developments. The architecture and features of associative processors 
developed in the 1960s and early 1970s are presented in [23,24,25]. In [25] associative 
algorithms have been discussed and extended to cover many variants of arithmetic and 
logical functions. The availability of VLSI in the 1980s has led to the improvement of 
existing associative systems and the evolvement of new ones. A VLSI version of the 
Staran for airborne radar tracking was developed [26,27]. Two bit-serial associative 
architectures have also been reported [28, 29]. Many implementations of associative 
architectures have been developed for various applications. These contemporary 
implementations will be discussed in the following sections. 

3. Classification of Associative Architectures 

Renewed interest in associative processing have been steadily gaining ground 
since the mid 1980s [30-34]. This can be attributed to (i) the technological advances in 
microelectronics which paved the way for efficient and cost-effective implementation of 
associative architectures, (ii) as conventional processor speeds are reaching their 
physical limitations, associative solutions are becoming increasingly important in search 
intensive applications, (iii) and the evolvement of new high speed applications (e.g. 
LAN routers) in which the employment of associative memories is imperative for 
maintaining high system performance. Many associative architectures with different 
degrees of functionality have been developed for various applications. This section 
presents an articulation of a classification for associative computing architectures. It 
provides a distinctive view of the various memory organization, fundamental 
architectural principles, and processing capability of associative systems. 

Figure I shows a classification of associative computing architectures. At the 
highest level, the basic distinction made is based on the type of associative paradigm 
embodied in the architecture. The two fundamental associative models are the "exact 
match" and "neural network" models. As mentioned earlier, this paper is concerned 
with the "exact match" associative architectures. The first level of distinction in exact 
match architectures is the associative memory organization. The choice of memory 
organization is based on whether the match operation is hardware implemented in a fully 
parallel fashion or serialized in one of the two memory dimensions. Associative 
architectures are further classified according to their degree of functionality and data 
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Emulation by RAM 
bit/word serial 
block-parallel 

Associative computing architectures 

Fully parallel 
associative memory 

Fig. 1. Classification of associative computing architectures. 

processing capability. This level of distinction is heavily dependent on the application 
domain. Four categories are identified; table lookup associative memories, associative 
processors, associative array processors, and associative string array processors. Each 
category features specific characteristics and unique architecture oriented towards 
improving the performance of certain data processing functions. In the following sub
sections, first the different associative memory organizations will be discussed which 
consist of either fully parallel or RAM emulated bit/word serial structures. Then as the 
functionality of the basic associative memory is extended, the four associative 
computing architectures are identified and presented. 

3.1 Associative memory organization 
The basic architecture of a CAM can be either hardware implemented in a fully 

parallel fashion or emulated by RAM. Fully parallel associative memory is capable of 
performing the match operation in one cycle at the expense of extra logic per storage 
element. Associative memories emulated by RAM require less logic per storage element 
while more than one cycle is needed to execute the match operation. In all CAM 
configurations, a SIMD control style is assumed where a control unit broadcasts an 
instruction to all memory elements. 
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3.l.a Fully parallel associative memory 
All rows and columns in a fully parallel assocIatIve memory are compared 

simultaneously. Fig. 2 shows a typical n-word by b-bit fully parallel associative 
memory. Each bit location consists ofa storage cell and a two-input Exclusive-OR. The 
Exclusive-OR inputs are the stored bit and the corresponding bit of the input word. Each 
row consists of a b-bit word and one match line. The match line is connected to ground 
(logic zero) through a switch at each bit location in the row. I f any switch in the row is 
turned on, then the match line for that row is at logic zero. The switch at each bit 
location is controlled by the output of the Exclusive-OR. Thus whenever any bit in a 
word mismatches the corresponding input bit, the Exclusive-OR output would be high 
(logic one). Consequently the switch at that bit location turns on and the match line for 
that word is at logic zero. Thus all the words that do not match the input word will have 
their match line at logic zero. 

The mask register shown in Fig. 2 provides the capability of having only selected 
bits to participate in the match operation. This is an important feature in associative 
memories since it allows the search of specific memory fields. The execution of the 
exact match operation is performed by first precharging the match lines to logic high by 
enabling the match line precharge signal shown in Fig. 2. The input data is then 
presented at the bit lines as determined by the information stored in the 110 buffers and 
the mask register. Only the words that exactly match the input will have their match line 
stay at logic high, otherwise the match line discharge to zero. This information is sensed 
by the sense amplifiers and stored in the word response registers. 

VO Buffers 

Mask Register 

Fig. 2. n-word by b-bit fully parallel associative memory. 
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Data storage and access in the fully parallel CAM are word-oriented. Recently, a 
flag-oriented CAM has been proposed [35, 36]. It is realized by introducing a simple 
masking scheme to the standard RAM address decoder. Depending on the input word, 
the maskable address decoder can access several memory cells at a time. The memory 
array is formed by a one bit column of a standard RAM. Each word is stored as a I-bit 
flag by having the word value considered as the address to the I-bit flag cell. If the 
content of a flag cell is "I ", this implies that a word with content equal to the 
corresponding address of that bit cell is stored. The advantages of this architecture are 
the easy extensibility of the memory size and the ordered nature of the stored words. 
Cascading of the bit cells is simple since it is similar to that of a standard RAM. Since 
the words are stored in an ascending order, relational search operations are facilitated. A 
disadvantage of the flag-oriented CAM is that the size ofthe I-bit flag vector is 2il where 
n is the number of bits per word. Thus, the practicality of such architecture is limited to 
applications with small word length. 

3.1.b Emulation by RAM 
Two practical associative memory configurations can be emulated using a RAM 

which are bit-serial word-parallel (bit serial) and word-serial bit-parallel (word serial) 
the bit cell area. Instead of having a comparison logic for each bit as in the fully parallel 
case, a group of bits share a common comparison logic. Bit serial associative memory 
includes comparison logic for each bit column (bit slice) and thus each memory column 
is processed at a time. In the word serial case, each memory row or word has 
comparison logic which allows each word to be processed at a time. A variation of these 
two associative memory configurations is the block-parallel configuration. This entails 
dividing the memory into blocks of words while bit/word serial processing is performed 
within each block. for instance in a word-serial block-parallel configuration, all blocks 
are processed concurrently while each block is processed in a word-serial bit-parallel 
fashion. 

The basic structure of a typical bit serial associative memory is shown in Fig. 3. 
The memory array comprises of conventional storage cells with bit column access 
capability. Data are stored horizontally and processed in a vertical fashion. The 110 
buffer provides the external memory access for data read/write operations. Each memory 
row has a I-bit comparison logic for bit serial processing. The comparison logic block 
comprises of one bit comparator and a register for storing intermediate match results. 
The final match results are stored in the word response registers. Bit-slice data 
movement to the comparison logic can be achieved by either having the memory array 
implemented as a block of circular shift registers or providing access capability to 
individual bit-slices. The bit-slice memory access scheme is widely used and adopted in 
the CAM shown in Fig. 3. One way to vertically access the memory is by having each 
word in the memory array connected to the comparison logic through a one bit line. 
Such connection provides the comparison logic with the content of the selected bit The 



Associative Memories and Processors. 53 

bit-slice selector selects a memory bit column by connecting each memory cell in the 
selected bit-slice to its corresponding word line. The bit-slice selector is also responsible 
for providing the comparison logic with the input bit which corresponds to the selected 
bit column. 

VO Buffers ~ 
b itl bit b b 

Bit-S!iCeJ 

~ ~ l 1 selector 

) ... 
Mem 1 1_ - - - - ~o,<! ~ - - - -I 

1 

Memcell Comparison r- Word response 

Cell access Logic Register 1 ... 
c-

, 

, , 
, , 
, .. 

c-

Memcell .. Comparison r- Word respons 
Word n access Logic Register n 

Fig. 3. A bit serial associative memory. 

The operation of a bit serial CAM entails serial processing of memory bit 
colurnns. The bit-slice selector unit selects one bit column at a time for comparison with 
the corresponding input bits in the comparison logic block. After all bit columns have 
been processed, the final match results are stored in the corresponding word response 
registers. In such memory architecture masking of bit locations is achieved through the 
bit-slice selector unit in which only the desired bit columns are accessed and allowed to 
participate in the match operation. Bit serial associative memories are best suited for 
applications where the average number of bits to be accessed in match operations is 
relatively small compared to the word length. The most popular and early bit serial 
associative memory implementation is that of the Staran associative system in which the 
memory module consisted of 256-bit by 256-word. An extension to the bit serial 
architecture is the byte-serial associative memory in which a number of bit-slices (byte 
wide) are processed at a time instead of just one bit-column. Such associative memory is 
usually employed in database applications where character (byte) matching is desired. 
The degree of area-speed tradeoff is a design parameter which depends on the 
application and specific s}stem requirements. 

The operation of a word serial CAM is similar to that of a bit serial CAM except 
that words (memory rows) rather than bit columns are processed serially. In a word 
serial associative memory, all bits in a word are compared simultaneously while the 
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memory words are time multiplexed through the comparison logic. The memory access 
is needed only in the horizontal dimension for both read/write and comparison 
operations. The number of I-bit comparison logic units needed for the word serial CAM 
is equal to the number of bits per word. For efficient use of the comparison logic, the 
word serial CAM is usually employed in applications where masked (through the input 
mask register) match operations are infrequently needed. Moreover, for a reasonable 
speed compromise the number of words should be kept relatively small. 

3.2 Table lookup associative memories 
This is the most basic category in which associative memories are employed as 

simple table lookup memories. Applications in this category include virtual memory 
management (translation-look-aside buffers) and address filtering in communication 
networks. The effectiveness of the associative memory solution in such applications has 
resulted in the introduction of the first commercial CAM [37]. This CAM is designed 
for real-time address filtering in LAN bridges. 

Associative memory architectures, discussed in the previous section, produce a 
.word response vector as the outcome of a match operation. In table lookup associative 
memories, the content of the word response vector is processed to arrive at a desired 
outcome tailored to the targeted application. Typical table lookup associative memory 
outputs are count of matched words, some/none match flag, and serial output of the 
content/address of matched words. The some/none match flag indicates whether a match 
is found. In case of a multiple match, the count signal provides a tally of the number of 
matched words. Moreover, for serial retrieval of matched words, a multiple response 
resolver is required. The mUltiple response resolver selects only one matched word at a 
time. The selection order is immaterial to the CAM operation. However, the most 
efficient implementation of a prioritizer is one that is based on physical word location in 
which the first memory location is assigned the highest priority. The prioritizer output 
can be either encoded to provide the address of the matched word or utilized to output 
the data stored at the match location. 

Depending on the application, the output of an associative memory in response to 
a match instruction can be either the physical address or data content of the match 
location. The write instruction of a CAM can also be based on either physical location 
address or stored information content. The write instruction based on location address is 
identical to that of a RAM. A more popular write scheme is one that is based on the 
content of internal status registers. For instance, an empty/occupied flag bit could be 
allocated for each word to identify whether a word contains useful data. Such addressless 
write scheme allows the data to be stored anywhere in the memory regardless of location 
address. The CAM content can also be modified by using the results of a match 
instruction as the criterion to write certain memory locations. For example, a CAM may 
be instructed to modify the content of all the words that were responders to a previous 
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match instruction. This requires a multiwrite instruction where several words are written 
in parallel. In table lookup associative memories such multiwrite operation is usually 
used for memory testing purposes where all memory words are initialized to zero or one. 
Many techniques for increasing the word length and number of words in associative 
memories have been developed and summarized in [38]. 

3.3 Associative processors 
Table lookup associative memories that encompass arithmetic or logical 

processing capabilities are referred to as associative processors. the key function of an 
associative processor is the parallel processing of match operation results. The basic 
architecture of such an associative processor is illustrated in Fig. 4. It consists of a set of 
processing elements (PEs) which are controlled by a control unit. Each PE comprises a 
CAM row (word) along with processing logic and storage registers. The processing 
logic typically implements Boolean functions for manipulating the match results. The 
registers are needed for storage of intermediary results in bit serial arithmetic and multi
instruction operations. This also allows the conditional execution of CAM instructions 
on selected rows based on previous instruction results. 

M"tch 

PEl CAM row 1 
Processing 

. Select unit 1 

I I 

I I 

I I 

I I 

I I 

Match 

CAM row n Sele£t 
Processing 

unit n 
PEn 

Fig. 4. Assiciative processor architecture. 

The main difference between an associative processor and a traditional parallel 
processor is that the former uses the match results for data manipulation as opposed to 
direct data manipUlation in the case of a RAM-based parallel processor. The processing 
unit in an associative processor uses the match result as the basis for selecting the 
corresponding CAM row for further processing (e.g. write, read). For instance, the 
realization of bit serial word parallel arithmetic operations using the sequential state 
transformation method [15] requires a series of match and write operations on selected 
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bit fields. The implementation of such a processor is exemplified in the associative 
processor presented in [39]. 

3.4 Associative array processors 
The key characteristic of aSSOCiatIve array processors is that the PEs are 

interconnected through an interprocessor communication network. Figure 5 shows a 
generalized associative array processor architecture which is similar to that of the 
associative processor except for the added feature of interprocessor communication 
network. The PEs are relatively simple and achieve parallel operation by spatial 
replication of instruction execution. However, the presence of the interprocessor 
communication network provides the opportunity of having the array partitioned into 
subsets of one or more PEs where distinct control signals could be applied to each 
subset. This provides the realization of a dynamically reconfigurable multiple-instruction 
multiple-data (MIMD) architecture. 

PEl 
f-+ Processing 

CAM row 1 
~ 

unit 1 f---

f-+ 
14-

I-- Inter-
processor 

I I I commun-
I I I ication 
I I I network 
I I I 
I I I 
I I I , I 

I 

f-o Processing CAM row n 
14- unitn I--PEn 

Fig. 5. Associative array processor. 

The selection of interprocessor communication network topology depends on the 
requirements of the targeted application domain. For instance, the most popular 
intercommunication network for image processing applications is the two-dimensional 
mesh. Such topology entails arrangement of the PEs into a two-dimensional array in 
which each PE is interconnected to its neighboring PEs. Depending on the desired 
intercommunication complexity, each PE can be connected to its four or more 
neighboring PEs. Fig. 6 shows a two-dimensional PE arrangement where each PE is 
connected to its four nearest neighbors. The figure also shows the array partitioned into 
subsets of PEs in which the execution of multi associative operations can be achieved. A 
notable implementation of an associative array processor is the lowest level (pixel) 
processor in a hierarchical image understanding architecture. An overview of 
associative array processors can be found in [40-42]. 



Associative Memories and Processors ... 57 

Fig. 6. Two-dimensional grid arrangement of PEs. 

3.5 Associative string array processors 
The key distinctive feature of associative string array processors is the local 

intercommunication control between PEs. Figure 7 shows a basic associative string 
array processor. The PEs are arranged in a linear array where neighboring PEs are 
interconnected by a local physical link. The main utility of such local link is to propagate 
the match result from one PE to its adjacent PE. This allows PE activation based on the 
match result of its neighboring PE. Communication between distant PEs can be 
accomplished through the intercommunication network. This provides the capability of 
forming a contiguous set of PEs that are physically apat1. The application domain which 
motivated the development of such processors is pattern or character string matching. 
These processors have been referred to as distributed logic memory or cellular 
associative processors. 

Inter-communication network 

, I 

I i ---B ,--' -, ,------"----; 

L~ PE ....... . ·~l 
,----" 

Fig. 7. Associative string processOI·. 
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The concept of associative string array processors was proposed by Lee [7]. The 
proposed architecture is based on local intercommunication between adjacent PEs. 
Recent architectures such as the one in [42] provided intercommunication of control 
signals among distant PEs through a global communication network as illustrated in 
Fig.7. Data in associative string array processors are initially distributed along the PEs 
for subsequent parallel processing. Functions are implemented as a sequence of 
instructions. Execution of instructions results in activation of substrings based on their 
content. Data within the activated substrings are then processed. 

4. Applications 

In high-performance applications where the speed of data search or pattern 
matching is the major impediment to the aggregate system performance. associative 
computing would be a cost-effective solution. Recently associative computing has been 
employed in a wide range of applications. In this section we discuss these applications 
which are fast routing in communication networks, memory management, database 
management, image processing, and AI applications. 

4.1 Fast routing in communication networks 
As switching speed and bandwidth of communication networks increase, packet 

routing in mUltiple interconnected networks has to be executed at high speed. The basic 
function of packet routing is address table lookup at the interface between interconnected 
networks. Thus, the use of an associative memory in such applications is indispensable. 
In LAN bridges and routers, CAMS are very crucial for achieving fast address filtering 
especially in high speed networks such as FOOl [43-46]. The clear advantage of CAMs 
in the acceleration of address filtering in LAN bridges has prompted their commercial 
availability. Since the introduction of the first commercial CAM in late 1988 by 
Advanced Micro Devices, several manufacaturers have introduced similar CAMs which 
are aimed at address filtering applications in LAN bridges [47]. These CAMs belong to 
the table lookup associative memories category described in Section 3.2. 

The central function of a LAN bridge is to pass packets between different 
networks. A popular routing strategy is the non-source routing which is based on the 
destination address of the addressed node. In such systems the only routing information 
that is sent in the packet is the destination address. Thus the bridge must match each 
packet address against an address list of all the active nodes that reside on an attached 
network. This address matching has to be performed quickly so that network speed is 
not degraded. Table lookup CAMs have been very effective in handling such address 
filtering in high speed networks. CAMs have also been proposed for fast routing in 
telephone networks where hierarchical addresses are employed [48-50]. 
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4.2 Memory management 
A widely known application of CAMs is the implementation of memory mapping 

hardware used in virtual memory systems. In virtual memory computer architectures the 
CPU issues a virtual address which must be converted to physical address before the 
local RAM can be accessed. A fully associative cache known as translation lookaside 
buffer (TLB) is often used to perform the virtual-to-physical address translation. This 
associative hardware solution is crucial since the TLB is located in the critical timing 
path between the CPU and memory. Each word in the TLB corresponds to a block or 
page of words stored in the RAM. The TLB stores the most frequently used, or at least 
the most recently used, virtual page addresses. When the CPU issues a virtual address, 
the TLB searches for a match. If a match occurs, the TLB produces the physical address 
of the corresponding page stored in the RAM. Discussions on TLB design issues can be 
found in [51-53]. 

CAMs have also been utilized for memory reliability enhancement. As the size 
of memory ICs increases, yield and reliability issues become important. CAMs have 
been employed in improving memory yield by isolating hard errors (defects) through 
redundancy. For memory system reliability improvement, CAM-based redundancy 
approach has been reported to be more efficient than error-correction coding and page
swapping techniques [54]. CAM-based redundancy is accomplished by incorporating a 
CAM into the memory system (multiple standard memory ICs) to provide replacement 
for defective memory locations. Thus CAM locations are used to map into the address 
space in place of faulty locations. When a faulty memory location is detected during 
testing, its address along with the corresponding data are stored in the CAM. Once a 
faulty location is accessed, the CAM matches the address and the corresponding stored 
data in the CAM is accessed. The CAM access is in parallel with the memory access 
which avoids increase in memory access time. A CAM-based redundancy approach has 
also been used a improving the reliability of Flash IC memories by integrating a small 
CAM on chip [55]. 

Another application of CAMs is in the implementation of the matching memory 
for data driven processors. These parallel computing processors coordinate instruction 
execution based on the availability of data operands. Instructions wait for the 
availability of their operands before being executed. Thus, high speed data matching is 
very crucial for such computing architectures. Several table lookup associative memory 
implementations for data-flow processors have been reported [56-59]. 

4.3 Database management 
The parallel search capability of associative memories makes such devices well 

suited for database applications. Many associative memory systems have been reported 
for relational database management [60-66] and text processing [67-72]. Relational 
database machines are dedicated computing engines which accelerate relational 
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operations such as Selection, Projection, Join, and Set operations. Text processing 
systems are dedicated processors which accelerate text information retrieval operations 
such as character string search. 

The relative high cost per bit of associative memories prohibits their use for 
database mass memory storage. Thus, different approaches have been adopted to 
overcome such limitation. One approach is to build associative processing capabilities 
into the read/write mechanism of the mass storage device. This approach represents 
early attempts for implementation of database accelerators which is known as logic-per
track concept [13]. It involves adding an associative processor to each read/write head of 
a fixed-head disk. Stored data in each track are searched and only relevant data is 
transferred from the disk. Placing a head for every track is not an economical approach 
in modern disks [73]. In any case, attempting to modify the secondary storage device for 
database acceleration is quite costly since specific design is needed for each storage 
device type. Another approach to associative database acceleration is to implement an 
associative memory as the database cache. However, such approach is costly since the 
size of the associative memory needed to implement the database main memory is quite 
large. Many early designs have adopted this approach [60-62] where the database 
machine is built around an associative main memory. 

Instead of attempting to modify the secondary storage device or main memory of 
the database computer, recent approaches [63-72] involve implementation of associative 
data filtering at the interface between main memory and secondary storage. Such 
approach can be implemented using relatively small size associative memory and it can 
be easily incorporated into existing secondary storage device controllers. The rationale 
behind database filtering is to reduce the amount of data transfer from the mass memory 
media to main memory (processor staging memory). All data read from secondary 
storage are compared against some search conditions in order to determine the qualified 
data that need to be transferred to the host computer. Besides data selection, data filters 
often implement more complex database operations. For instance, relational database 
filtering usually involves operations such as Projection, Join and Set operations which 
are frequently used and require large data movement. Efficient associative memory 
hardware implementation which is suited for relational operations is presented in [74]. 

4.4 Image processing 
In real time image processing applications large amount of data arrays has to be 

processed, using identical processing steps, at high speed. The inherent SIMD 
processing and array oriented data structure in associative computing architectures make 
them attractive for such real time applications. A wide range of image processing 
applications have been implemented using associative architectures with varying degree 
of functionality; computer vision [75-78], image processing tasks [79-88], pattern 
matching [89], particle track finding [90], data compression [91-93], and filtering [94]. 



Associative Memories and Processors 61 

In [85-94] table lookup associative memories are employed where the main operation in 
these implementations is matching of an input vector against stored data. In image 
processing applications, associative array processors are employed where image pixels 
are spatially mapped into corresponding processing elements (PEs) in the array. PEs are 
basically simple bit-serial associative processors which are connected through a 
communication network. Recent implementations [75, 95] have employed dynamically 
reconfigurable networks to support effective implementation of a wide range of 
applications. 

Typically, computer vIsIon involves three levels of abstraction. At the lowest 
level, binary image pixels are mapped into an array of PEs where processing such as 
filtering and local feature (e.g. region, edge, texture, etc.) extraction are applied. The 
intermediate level involves relating the extracted features to image objects. Functions 
implemented at this level include operations such as grouping of regions and statistical 
measures of extracted information. At the highest leveL knowledge-based interpretation 
of the intermediate level results is performed. A representative implementation of such 
an architecture is the image understanding architecture (IUA) [75]. It consists of three 
tightly coupled heterogeneous parallel processors with a pyramid structure. Associative 
processing is extensively utilized at the lowest level where a 512 x 512 associative array 
processor is employed [96]. Each PE is a bit-serial associative processor with 320 bits of 
local memory. The PEs are connected in a two-dimensional mesh, however. the network 
can be dynamically partitioned into several independent segments. This allows 
multiassociative processing where each segment is able to operate on locally broadcast 
values to locally compute its own responder summary in parallel with all other segments. 

4.5 Al Applications 
Production systems and logic programming are widely used in many artificial 

intelligence applications. Such declarative programming approaches use some form of 
If-Then rule-based programming. Pattern or symbolic strings matching is extensively 
utilized in such programming environments. This makes associative computing very 
attractive for accelerating the execution of these programming paradigms. 

Many associative string array processor implementations have been reported for 
artificial intelligence applications [97-110]. In [97-108] various approaches for 
symbolic processing and especially for Prolog execution accelerations have been 
presented. These implementations have focused mainly on the acceleration of functions 
such as clause filtering, unification, and backtracking and dereferencing stack 
management. Recently implementation of associative processing in AI real time speech 
translation [109] and genetic algorithm-based machine learning [110] have been 
reported. 
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5. Conclusions 

This paper has presented a unified classification of associative architectures. It 
clearly identifies the salient architectural differences at both levels of distinction; the 
memory organization and the functional levels. At the memory organization level, 
associative architectures can be either fully parallel or emulated by RAM. At the 
functional level, four associative architectures have been identified which are table 
lookup associative memories, associative processors, associative array processors, and 
aSSOCIatIve string array processors. The paper also discusses the recent associative 
applications which span a wide spectrum of areas which include fast routing in 
communication networks, memory management, database management, image 
processing, and Al applications. 

The data search feature of associative memories will always make their level of 
integration and cost per bit inferior to those of RAMs. However in high-performance 
applications that require frequent data search or pattern matching, associative memories 
have been shown to be cost-effective and in some cases the only solution for maintaining 
the required high system performance. As the relative cost of high performance chip 
fabrication is decreasing, the implementation of associative solutions in new applications 
is becoming increasingly attractive. It is our hope that a unified view of associative 
architectures would aid in expediting the developments in the field. As the first 
commercial associative memory was introduced only few years ago, the full potential of 
associative computing in all its aspects is yet to be seen. 
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