
J. King Saud Univ .. Vol. 10. Compo & Info. Sci .• pp. 27-51 (A.H. 141811998)

Parallel and Distributed Simulation : Methodologies
and Techniques

Hussam M. Soliman
Information Systems Departnunt. College of Computer and Information Scienas

King Saud University. P.o. Box 51178. Riyadh 11543. Saudi Arabia

(Received 25 February 1996. accepted for publication 01 October 1996)

Abstract. An introduction to the fIeld of Parallel and Distributed Simulation (PADS) is given. The capabilities
and Iimitalions of currently used PADS techniques are discussed. A review of the recently developed hybrid
and adaptive PADS techniques is also given. Sample perfonnance results of some PADS techniques are
presented using a network. of workstations.

1. Introduction

Parallel and distributed simulation is an area that has attracted considerable amount of
interest in recent years. This interest arises from the fact that large simulations in many
applications. such as extensive bank and organization simulations and model-validation
simulations for decision support systems, consume enormous amounts of time on
sequentiai computers [53]. In addition, the sequencing constraints on the execution of
events are, in general, very complex and highly data-dependent.

In the process-based approach of PADS, the system is modelled as a set of
interacting logical processes (LP's). Each logical process is a model of some component
of the physical system, called a physical process. Interactions between logical processes
in the model simulate interactions between physical processes in the real system. Each
logical process contains a portion of the state corresponding to the physical process it
models, as well as a local simulation clock. All interactions between physical processes
are modelled by timestamped event messages sent between the corresponding logical
processes. In order to avoid chronological errors. a logical process must process events
in nondecreasing timestamp order [19].

27

28 Hussam M. Soliman

Process-based parallel and distributed simulation algorithms fall broadly into two
categories based on their synchronization scheme: conservative and optimistic.
Conservative algorithms strictly avoid the possibility of incorrect sequencing of events
by including strategies for determining which events are safe to process at each point in
simulated time. As a result, this creates the potential for deadlock. Optimistic algorithms,
on the other hand, use a detection and recovery approach which is based on detecting
incorrect event execution sequences, and a rollback mechanism to recover.

The two main synchronization approaches to PADS, conservative and optimistic,
have some limitations when the size and complexity of the simulation system increases.
The conservative approach is limited by blocking overhead and sensitivity to lookahead.
The optimistic approach is prone to cascading rollbacks and is limited by state saving
overheads. Hybrid and adaptive approaches have been developed to resolve these
limitations, while preserving potential advantages of each approach.

2. Conservative PADS Techniques

Conservative techniques are based on the idea of determining when it is safe to
process an event. If a process contains an unprocessed event with timestamp T, and that
process can determine that it is impossible for it to later receive another event with
timestamp smaller than T, then the process can safely process that event. Processes
containing no safe events must block which can lead to a deadlock situation, in general.

2.1 Deadlock-avoidance techniques
The first deadlock avoidance conservative PADS technique is the CMB algorithm

developed by Chandy and Misra [9]. In this technique, it is required that an LP send
messages over any outgoing link in nondecreasing timestamp order so that the last
message received on an incoming link is a lower bound on the timestamp of any
subsequent message that will be later received. A link clock is defined as the timestamp
of the last received message, if the link buffer is empty, or as the timestamp of the
message at the front of the link buffer, if the buffer is not empty. The link buffer is a
FIFO queue in which arriving messages are stored in timestamp order. The process
repeatedly selects the link with the smallest link clock as the next link from which to
process messages. If the selected link has an empty buffer, the process is blocked.
Deadlock situations arise when a cycle of empty queues with sufficiently small clock
values exists because, in this case, each LP in the cycle must block. An example of a
deadlock is shown in Fig. I. In CMB, deadlock is avoided by using overhead null
messages. A null message with timestamp t is sent from LPi to LPj to inform LPj that no

further messages would be sent on the link between them up to time t.

Parallel and Distributed Simulation _ _to
thoqnt
biWtho
CUB
aliJrilm _rm
iq>lE

~ty

-------qu
_--Ic---- biW

Fig. 1. A deadlock situatioD where every LP waits for Input from an empty link buffer.

29

Several variations of the basic deadlock avoidance technique exist. A demand­
driven null message approach was used by Nicol and Reynolds [40]. This approach helps
reduce the amount of null message traffic. Wood and Turner [57] present another
conservative algorithm in which null messages are responsible for both advancing
simulation times and acquiring global knowledge about the system. The lookahead ability
of the simulation is improved by analyzing the global knowledge carried by the protocol
messages (referred to as the carrier-null messages). The algorithm is general enough to
apply to simulations with arbitrary graphs.

2.2 Deadlock detection and recovery techniques
An alternative approach is to let the simulation scheme deadlock, detect the

deadlock, and recover from it. A deadlock can be broken by observing that the message

30 Hussam M. Soliman

contammg the smallest timestamp is always safe to process. A deadlock detection and
recovery scheme was presented by Chandy and Misra [10]. It is based on running the
simulation until deadlock, and initiating a distributed computation whereby the various
LP's can advance their local clocks. Another deadlock detection and recovery method,
called the circulating marker, is described by Misra [37]. A marker is a special type of
message that circulates among processes and declares a deadlock if it finds that the last n
LP's that it visited were all white when it arrived at the LP it started from, where n is the
number of links in the system. An LP is white if it has neither received nor sent a
message since the last departure of the marker from that LP. The marker also carries the
minimum of the next-event times for the white LP's it visits. When the marker detects
deadlock, it knows the minimum next-event time and the LP at which this minimum
occurs and, therefore, can restart this LP. Another technique, suggested by Liu and
Tropper [29], detects specific types of cycles of blocked processes soon after their
formation, and selects an LP which is suitable to break each kind of cycle. The algorithm
distinguishes between three types of deadlock cycles: a deadlock cycle in which some
LP's are waiting for messages while others are waiting for free memory buffers, a direct
cycle of LP's each of which is trying to send a message to the full input buffer of its
neighbor LP, and a direct cycle of LP's each of which is waiting for a message to appear
in its empty input links. The algorithm first selects a leader which detects the deadlock
and determines its category. It then finds the most appropriate LP to use in order to break
the deadlock. Any blocked LP may initiate deadlock detection.

2.3 Other conservative techniques
Several other techniques to conservative PADS exist. One technique is to improve

the Iookahead ability of the logical processes. Lookahead is the time interval in the
simulated future up to which an LP can predict with complete certainty all events it will
generate. Lookahead is used in the deadlock avoidance approach to determine the
timestamps assigned to null messages. A minimum timestamp increment of T translates
into a lookahead of T because a process can guarantee that no new events will be
generated with timestamp smaller than the present clock value plus T. Nicol [41]
suggests to enhance the lookahead ability of a process by precomputing service times for
jobs that have not yet arrived at that process in queuing network simulations. This
precomputations cannot be applied, however, if the service time depends on parameters
in the message.

The deadlock detection and recovery algorithm has been recognized, up to this
point, as the only general conservative approach for simulating systems with no
lookahead prediction. An alternative for systems with feedback loops and no lookahead
prediction is presented by Lin and Lazowska [27]. It is suggested to reconfigure the
system such that there is no feedback loop, and use the CMB algorithm without deadlock
resolution to perform the simulation. Several other researchers have suggested exploiting
properties of the network topology. De Vries [12] devises strategies to reduce the number

Parallel and Distributed Simulation ... 31

of null messages transmitted in the deadlock avoidance mechanism for specific
applications that can be decomposed into feedforward and feedback networks.

Lubachevsky [31] uses a moving simulated time window to reduce the overhead
associated with determining when it is safe to process an event. Qnly unprocessed events
with timestamps larger than the lower edge of the window can be processed. Ayani and
Rajaei [2] propose a conservative time window approach where they partition the
physical system to be simulated into n disjoint subsystems, each of which is represented
by an object for which a time window is identified. Events occurring in each window are
independent of events in other windows and thus can be processed concurrently. The size
of each window is calculated in each iteration of the algorithm using features of the
system being simulated. Having windows with different sizes is shown to exploit more
parallelism compared to the case where a global ceiling must be kept by all nodes.

Fujimoto [16] demonstrates that conservative algorithms can provide significant
speedups over sequential event list implementations for some workloads containing
moderate to high degrees of parallelism, even if there are many feedback loops in the
logical process topology. He concludes that the lookahead ability of logical processes
plays a critical role in determining the efficiency of the deadlock avoidance and deadlock
detection and recovery algorilhms. Loucks and Preiss [30] also examine the impact of
exploiting lookahead' on computation and communication overhead, and verify its
important impact on performance. They conclude that between one half and two thirds of
the computation load for a multiprocessor running a stochastic queuing network
simulation are eliminated when user knowledge is added to the simulation.

2.4 Partioning algorithms
Performance studies have identified many issues which may affect the

performance of conservative PADS. Among these are lookahead, network topologies,
load balancing and process scheduling strategies [20]. The problem of static load
balancing involves the partitioning of the simulation and mapping it onto a
multicomputer network. The partitioning problem involves grouping nodes into blocks
subject to two constraints: each block is approximately the same size, and the links
between blocks are minimized. Objective functions are usually defined such that
interprocessor communication conflicts are minimized, processor load is balanced, and
the probability of sending a null message between processors is minimized. The
partitioning problem has been identified to be computationally expensive. There are three
major approaches to graph partitioning: graph theoretic , numerical, and min-cut
heuristics. The heuristic approach allows the maximum flexibility in goal specification
but yields suboptimal solutions.

Nandy and Loucks [38] presented a static partitioning algorithm for conservative
parallel logic simulation. The algorithm attempts to minimize the communication

32 Hussam M. Soliman

overhead and to uniformally distribute the execution load among the processors. It starts
with an initial random partition and then iteratively moves processes between clusters
until no improvements can be found. As a benchmark, they use the simulation of circuits
modelled at the gate level on a message passing multicomputer composed of eight T -800
INMOS transputers. They report a 10-25% reduction in simulation time from the
simulation time of a random partition.

Nandy and Loucks [39] later presented a parallel partitioning technique based on
a min-cut iterative improvement algorithm which , ms on the same multicomputer
network running the simulation. Experiments were cOl,ducted to evaluate the algorithm
performance for circuit simulation problems on transputers. The algorithm was modified
to produce similar quality of final partition as the original sequential algorithm, and to
increase the parallelism of the algorithm at the expense of quality. The algorithm relies
on estimating the work load by pre-simulation runs.

The simulated annealing approach is a probabilistically directed iterative
improvement scheme which is based on ideas from statistical mechanics and motivated
by an analogy to the behavior of physical systems in the presence of a heat bath. This
approach has the advantages that it is problem-dependent in the sense that substituting a
few problem specific data structures and functions can make the algorithm be applied to
many combinatorial optimization problems. It is also capable of handling multiple,
potentially conflicting goals. Boukerche and Tropper [6] proposed the use of a simulated
annealing algorithm with an adaptive search schedule to find good suboptimal partitions.
They studied the performance of the algorithm for FCFS queuing network models on an
IPSC/860 hypercube. Their results show a reduction of 25-35% of running time of the
simulation compared to the results of a random partition.

3. Optimistic PADS Techniques

In optimistic approaches, we need not determine when it is safe to process an
event; instead we determine when an error has occurred, and invoke a procedure to
recover. This allows the simulator to exploit parallelism in cases where it is possible for
causality errors to occur but they do not.

3.1 Time warp
An optimistic approach to PADS called Time Warp was proposed by Jefferson

[23]. In Time Warp, a causality error is detected whenever an event message is received
that contains a timestamp smaller than the local clock. The local virtual time (L VT) of a
process is defined as the minimum receive time of all unprocessed messages. Processes
can execute events and proceed in local time as long as they have inputs. Consequently,
the local clock of a process can get ahead of its predecessors' local times. If the process

ParaDel and Distributed Simulation ... 33

receives a message from a predecessor that has a timestamp smaller than the local clock,
the process rolls back in simulated time and redoes its simulation to take into account the
new message. This new message is called, in this case, a straggler. The process also
sends antimessages to its successors to cancel the effects of previous erroneous
messages. An antimessage annihilates the original message when they meet.

Assuming infinite memory, the Time Warp does not deadlock because individual
processes do not deadlock as long as they have any inputs. The Time Warp approach has
potentially greater speedup than conservative approaches at the expense of greater
memory requirements. Moreover, in Time Warp, the topology of possible interactions
between logical processes need not be fixed.

The performance of rollback mechanisms for the Time Warp algorithm has been
studied analytically by Lin and Lazowska [26]. Time Warp with aggressive or lazy
cancellation mechanisms, which will be explained later in this section, are shown to
perform well for a process with a small simulated load intensity. Their results also
indicate that message preemption has a significant effect on performance when the
processor is highly utilized, the execution times of messages have high variance, and
rollbacks occur frequently.

Substantial speedups have also been reported using the Time Warp protocol for
simulating closed queuing networks [17] and for synthetic loads [20]. Using the direct
cancellation strategy, he reports speedups as high as 57, using a 64 processor BBN
Butterfly. The reported results indicate that Time Warp is capable of exploiting whatever
parallelism is available in the simulation model without requiring extensive application­
specific knowledge from the user. However, Loucks and Preiss [30] demonstrate that
significant performance improvements can be obtained if one employs application
specific knowledge to optimize execution. State-saving overhead can significantly
degrade performance of Time Warp when the state size is increased [17].

Carothers, Fujimoto, and England [7] present empirical results on the
performance of Time Warp in distributed computing environments. They conduct a
series of Time Warp simulation experiments of a large granularity system and a low
granularity system. They conclude that asynchronous message passing, where the sending
process does not block until it receives acknowledgement that a message has been
delivered, are much more suitable for distributed implementations. Moreover, the
effectiveness of the Time Warp technique is significantly reduced for small granularity
problems due to increasing communication delays. Large computation times for
communication primitive execution are likely to affect Time Warp speedup than
transmission latency. Effects of communication delay, in general, on efficiency (amount
of rolled-back computation) is less significant than on speedup.

34 Hussam M. Soliman

3.2 Variations of time warp
Numerous variations to the Time Warp mechanism have been proposed. Moving

Time Windows [49] is another optimistic approach in which a time window in simulated
time is defined so that its lower edge encompasses the unprocessed events containing the
smallest timestamps. Events beyond the window must wait until the window has been
advanced. The idea is to prevent incorrect computations from propagating too far ahead
into the simulated future. A problem with this technique. however. is that time windows
may block the progress of correct computations. Moreover. it is not clear how the size of
the window should be determined.

Madisetti. Walrand and Messerschmitt [34] propose another optimistic
mechanism called Wolf. In Wolf. a straggler message causes a process to send special
control messages to other processes to stop the spread of the erroneous computation. One
problem with this approach is that some correct computations may be unnecessarily
frozen because the set of processors that might be affected by the erroneous computation
may be much larger than the set that is actually affected.

A mechanism. called direcI cancellalion is proposed by Fujimoto [17] for shared
memory multiprocessors. The technique depends on using pointers between events to
locate those that need to be cancelled due to rollback. This eliminates the need for
antimessages and provides an efficient mechanism for cancelling erroneous messages.
Direct cancellation results in a distributed data structure that utilizes pointers to indicate
which events can affect others. Cancellation of an incorrect computation due to

processing some event amounts to a tree traversal.

3.3 Global virtual time
Global Virtual Time (GVT) is defined at real time 1 as the minimum of all local

clocks at 1 and of the timestamps of all event messages that are in transit at I. Obtaining
an accurate estimation of GVT is important for memory management and output
commitment in optimistic simulation schemes. The process of reclaiming memory and
committing irrevocable operations is referred to asfossil collection. GVT approximation
is an example of a distributed monotonic computation. one which tries to find a good
lower bound on the current value of some global infimum function f. For a cut C of the
space-time diagram of the simulation. a global infimum function f(C) evaluated at C is
defined as the infimum of all local values of virtual time taken at the moment of the cut at
each LP and all timestamps of messages which cross the cut line (are in transit). A result
proved by Mattern [35] states that f(C) is a lower bound on the value of the function fat
the moment f(C) is determined. even if C is an inconsistent cut. This result represents the
basis of GVT approximation algorithms which will be described in the next two
subsections.

Parallel and Distributed Simulation ... 35

In general, any snapshot algorithm· can be used to estimate GVT (for example,
Chandy-Lamport snapshot algorithm [8]). However, specialized algorithms are preferred
because they can be more efficient. Several algorithms have been proposed for
computing GVT. In the following, GVT algorithms are divided into non-token-based
algorithms and token-based algorithms.

3.3.1 Non-token-based GVT algorithms
One of the earliest GVT algorithms was proposed by Samadi [48]. The algorithms

makes the assumption that all event messages are acknowledged. The idea behind the
algorithm is to designate a real time moment rt at which to take a snapshot of the
simulator (iocal virtual time and messages in transit). Since in reality it is not possible to
determine an exact value for rt, we can set upper and lower bounds on rt at each process
by creating intervals that overlap in time. Each LP forwards its information to a central
GVT initiator process as it exits the interval. Let [starti' stoPi] denote an interval at the

ith LP. The set of all such intervals must share a common real time rt. The algorithm runs
in five phases:

1. The initiator broadcasts a GVT START message to all nodes. The receipt of
the message at node i is starti.

2. Each node responds to this message by sending an acknowledgement message
to the initiator. The receipt time of the last acknowledgement message is real
time rt.

3. The initiator broadcasts a GVT STOP message to all nodes. The receipt time of
that message at node i is stoPi.

4. Node i responds by sending the initiator its local virtual time. After the initiator
collects this message from all nodes, it computes GVT by minimizing all the
LVT's.

5. The initiator broadcasts a new GVT update to all nodes.

Bellenot [5] proposed another GVT algorithm based on message routing graphs
and a binary-tree-like forwarding technique to replace the costly broadcasts and
collections of Samadi's algorithm. Collections can be done in the reverse order. This
algorithm has run time 0(1) on each node and O(logN) run time overall. However, there
is an O(iogN) one time message routing graph configuration cost on each node.

Lin and Lazowska [25] proposed an algorithm which is similar to Samadi's
algorithm but which does not use an acknowledgment message for every single message.
Rather, every message carries a sequence number and when a process gets a certain
control message it sends to every neighboring process the smallest sequence number
which is missing from that process. The neighboring process assumes that this message
and all messages with larger sequence numbers are still in transit. Since a process keeps

36 HU88am M. Soliman

the local minima of timestamps for unacknowledged messages as a function of sequence
numbers, it is able to compute a lower bound on the timestamps.

Tomlinson and Garg [54] present a GVT algorithm which minimizes the latency
time of the GVT calculations (time between its occurrence and detection). Unlike the
previously described algorithms, this algorithm is designed for a reliable non-FIFO
communication subsystem and does not require messages to be acknowledged which
significantly reduces the message overhead of the simulation. The algorithm works by
specifying a target virtual time TVT and an initiator to detect when GVT TVT.

D'Souza, Fan, and Wisely [14] present a GVT algorithm, called pGVT, which is
capable of operating in environments which do not support FIFO message delivery and
where message delivery failure may occur, and thus message acknowledgment is used.
PGVT is a passive response GVT algorithm which operates with a.central GVT manager
calculating new GVT values from information reported by LP's. Each LP monitors the
advancement of GVT and reports new information only when failure to do so would
inhibit GVT advancement. The main advantage of the algorithm is the elimination of one
communication cycle to request GVT information from the LP's. This is done by
monitoring the last reported GVT value and comparing it to the new value broadcast by
the GVT manager. The GVT manager calculates new GVT values by minimizing overall
local GVT values sent by the LP's. An LP is triggered to report a new local GVT value
by the progression of GVT to the last reported local GVT value. This has the effect of
reducing the load on the communication subsystem.

Bauer and Sporrer [4] propose an asynchronous GVT algorithm which also relies
on passive observation of the LVTs and the contents of the communication channels. The
LP's independently send information messages at arbitrary interval to a dedicated central
process, which continuously determines GVT based on received information and in turn
distributes the result periodically back to the LP's. The algorithm assumes reliable FIFO
channels and uses an event numbering scheme similar to that used by Lin and Lazowska.
The main advantage of the algorithm is that it requires, on the average, less than N
messages (with N denoting the number of LP's) to calculate an updated GVT value.

3.3.2 Token-based GVT algorithms
Token-passing GVT algorithms have also been used. A token-based algorithm

was proposed by Preiss [43] which imposes a ring topology for passing the token. The
algorithm runs all phases of Samadi's algorithm together. The circulating token is
forwarded from node i to (i+ 1) rrwd N carrying the new GVT update from the first round,
the local virtual time values for the second round, and the GVT start message for the
third round. Varghese, Chamberlain, and Weihl [56] presented a marker-based GVT
algorithm which is derived from Misra's circulating marker scheme for deadlock
recovery [3]. This algorithm can be made to work over non-FIFO links, and its overhead

Parallel and Distributed Simulation . .. 37

can be dynamically tuned based on computational load. The main idea is to pass a
marker to circulate the network in a tour in such a way that it traverses each
unidirectional link at least once. The marker starts the tour from a designated initiator
and returns to it at the end of the tour. The marker has two fields: CurrenCMin and GVT.
In addition, each logical process LPi maintains a variable called Local_Mini to store the

lowest local clock value at LPi since the last time the marker visited LPi. Local_Mini is

updated only when the marker visits LP or at rollback. CurrencMin stores the smallest
Local_Mini for every LP in the current tour. When the marker returns to the initiator, it

uses CurrenCMin as the new GVT -estimate. The new GVT value is broadcast to other
Logical processes by storing it in the GVT field.

General snapshot algorithms can also be used to approximate GVT. Chandy and
Lamport [8] proposed a snapshot algorithm to capture a consistent global state for any
distributed system. The algorithm assumes communication channels are reliable and
FIFO, and uses markers as delimiters for the messages in transit in the channels. In this
algorithm, a process which has not record its state and which receives a marker on
channel c records its state, records the state of channel c as the empty sequence, and
sends the marker along all outgoing channels on which a marker has not already been
sent. Fig. 2 shows how a logical process broadcasts the marker to its neighbors with this
channel flushing mechanism. If the receiving process has already recorded its state, it
records the state of channel c as the sequence of messages received along c after the
process recorded its state and before it received the marker along c. The algorithm can be
initiated by a single process or several processes (in which case marker sequence
numbers must be used). A simple way to collect all the recorded information is for each
process to send the state information it recorded to the initiator. Non-FIFO-channel
versions of this algorithm were proposed by Mattern [35].

"'1

Fig. 2. Channel flushing in the chandy-lamport snapsbot algorithm.

38 Hussam M. Soliman

A slightly modified version of the Chandy-Lamport algorithm for FIFO links is
proposed by Soliman and Elmaghraby [50]. As shown in Fig. 3, GVT-cycle initiation, in
this version, is done in parallel by a GVT-manager process directly to each LP and not to
one initiator LP. This saves the time the markers propagate in the network until all LPs
are informed of the new cycle. The only overhead incurred by the modified algorithm
would be the time needed to flush each outgoing channel with a marker, and the time
needed to report the calculated local virtual time to the GVT manager. Reducing the
duration of the GVT cycle results in more frequent fossil collection and, consequently,
shorter message queues. This modification is shown to have a significant effect on the
performance of the distributed simulator in terms of the overall speedup. Experimental
performance comparisons with Samadi's GVT algorithm and Chandy-Lamport algorithm
are also reported. A non-FIFO-channel algorithm is also presented by Soliman and
Elmaghraby [50]. Steinman et at. [52] emphasize the importance of updating GVT
efficiently in interactive distributed simulations and real-time applications. They also
develop a GVT algorithm called SPEEDS GVT which also uses the idea of message
flushing to account for messages in transit.

LP2 can tum red due 10 a
MARKER or a START

messa e

Fig. 3. The modified chandy-lamport snapshot algorithm.

3.4 Cancellation Strategies

LP.

In optimistic simulation systems, the simulation is divided into several objects
which interact by sending event messages. Incorrect computations can arise because
messages can be processed out of order and erroneous messages may be sent to other
objects in a cascading fashion, as a result. Two methods are used for cancelling incorrect
messages in Time Warp systems: aggressive cancellation and lazy cancellation. In
aggressive cancellation, a process immediately sends antimessages when it rolls back. In

Parallel and Distributed Simulation . .. 39

lazy cancellation, on the other hand, antimessages are not sent immediately after roll
back. Instead, the process resumes execution forward in simulated time from its new
clock value, and when it produces a message it compares it with the messages in its
output queue. Only messages that are different from previously sent messages are
transmitted, and only antimessages that are not reproduced in the forward computation
are transmitted. The idea is to exploit the fact that not all of the work performed by an
erroneous computation is incorrect. However, if the erroneous computation generated
incorrect messages, lazy cancellation delays sending the corrective antimessages which
allows incorrect computations to spread further than in the case of aggressive
cancellation. In addition, lazy cancellation requires some additional overhead that is not
incurred by aggressive cancellation. For example, it must determine if a matching
antimessage already exists whenever a new message is generated. Also, it must check if
any antimessages must be sent whenever the process's simulation clock is advanced.

Reiher et al. [45] present analytic results and performance measurements for both
lazy and aggressive cancellation strategies and use applications that demonstrate the
strengths of both techniques. They conclude that, depending on the application,
aggressive or lazy cancellation can produce better performance although, for typical
Time Warp applications, lazy cancellation shows slightly better performance. They
recommend that the user be given the option of using lazy or aggressive cancellation.

A third cancellation strategy is lazy re-evaluation. If the state of the process is the
same after processing a straggler event message as it was before and no new messages
arrive, then the re-execution of rolled back events will be identical to the original
execution. Therefore, there is no need to re-execute those events, and instead one can
jump forward over these events. Lazy re-evaluation was implemented in the JPL Time
Warp kernel, but later removed because it significantly complicated the Time Warp code
[18].

3.5 Memory management and state saving
The Time Warp mechanism requires more memory to efficiently complete a

parallel simulation than the equivalent sequential simulation. This is because Time Warp
relies on rollbacks to synchronize the parallel computations which requires that the
kernel store, in addition to pending events, some incorrect input messages that will later
be cancelled, prior snapshots of each process's state, and an anti message for each
message that has been sent by the process.

A number of memory management schemes have been proposed to reduce the
space usage of Time Warp. Some of these schemes reduce average space utilization, but
cannot recover storage when the simulation runs out of memory. Other schemes are more
adaptive and can run the simulation within the available memory and are able to recover
memory on demand. Das and Fujimoto [11] efficiently implemented the cancelback

40 Hussam M. Soliman

protocol on a shared memory multiprocessor implementation of Time Warp. They
studied the performance of the simulator for three different workloads with different
degrees of symmetry and concluded that severe asymmetry places severe demands on
memory usage. They observed that, depending on the available memory and asymmetry
in the workload, canceling back several events at one time may improve performance
significantly. They also observed that a performance nearly equivalent to that with
unlimited memory can be achieved with only a modest amount of memory depending on
the degree of asymmetry in the workload.

In a Time Warp simulation, the state of each process must be saved regularly
regardless of whether or not rollbacks occur. There are two approaches to reducing the
overhead associated with state saving. Fujimoto et. al. [21] developed special-purpose
hardware to support fast state saving. Another approach is to reduce the frequency of
state savings. If a process with L VT equal to T3 receives a straggler with timestamp T2

< T3 the process normally rolls back to T2 and resumes execution from that point.

However, if TI < T2 is the timestamp of the last checkpointed event, the events with

timestamps between T I and T 2 are reexecuted to produce the state of the process at T 2'

This reexecution phase is called coasting forward. In this phase, any scheduling of future
events is ignored because the purpose of this phase is to restore a process state that was
not preserved. The selection of the checkpoint interval is a tradeoff between the total cost
of checkpointing and the amount of re-execution in coast forward.

Lin et al. [28] proposed an optimization algorithm that quickly selects the optimal
checkpoint interval during the execution of Time Warp simulation and takes into
consideration the effect of the checkpoint interval on the rollback behavior. Performance
of the algorithm is tested for stochastic closed queuing networks. The algorithm is found
to find the true optimal checkpoint interval within a small number of iterations.
Palaniswamy and Wilsey [42] analytically compare periodic state saving with a
technique called incremental state saving. In incremental state saving, only the
incremental changes in state are saved in the state queue as events are processed. They
conclude that incremental state saving has the potential to outperform periodic state
saving if the number of increments saved after each execution is small. Ronngren and
Ayani [47] also analyze the effects of sparse checkpointing on the performance of Time
Warp. They also present a method that allows each logical process to continuously adapt
its state-saving interval based on its rollback behavior. They show that this method has
low overhead and consumes less memory which improves performance. Fleischmann and
Wilsey [IS] analyze three techniques which dynamically or statically adjust the
checkpointing interval including that of Ronngren and Ayani. They also propose a
heuristic algorithm for this purpose. Their results show a significant difference in the
performance of the implemented algorithms with the dynamic outperforming static
algorithms.

Parallel and Distributed Simulation ... 41

4. Hybrid and Adaptive PADS Techniques

Conservative and optimistic approaches to PADS usually encounter limitations
when the size and complexity of the simulated system increases. The blocking problem
and the sensitivity to lookahead in the conservative protocols, and cascading rollbacks
and state saving problems in the optimistic protocols are the key limitations for the
respective approaches. Hybrid and/or adaptive approaches, with features of both Time
Warp and conservative approaches, seem to provide the solution.

4.1 Adding optimism to conservative protocols
Reynolds [46] defines the aggressiveness of a PADS protocol as relaxing the

requirement that messages be processed in a strict monotonic timestamp order. Risk is
defmed as passing messages that have been processed based on aggressive or inaccurate
processing assumptions. Time Warp is an example of a maximal aggressiveness protocol
with maximal risk.

To add optimism to a conservative protocol, the protocol may optimistically
simulate the first event from its event list whenever a logical process is to be blocked.
This is basically the approach followed by Dickens'and Reynolds [13] and Rajaei, Ayani,
and Thorelli [44]. This method, however, may not exploit potential parallelism since the
results are kept local by each logical process until becoming secured.

4.2 Limiting optimism in optimistic protocols
Another method for integrating conservative and optimistic approaches is to limit

the optimism of optimistic approaches. An optimistic scheme can be made less optimistic
and approach a conservative one if the degree of risk is bounded to a certain limit. For
example, Bounded Time Warp [55] is a technique that divides the simulation duration
time into a number of equally sized intervals such that all events inside the current
interval are started before the next interval is started. In Wolf [34], whenever a rollback
occurs, special messages are broadcast in order to stop the spread of the erroneous
computation. In Moving Time Windows [49] a window boundary is used to limit the
optimistic computation using a window with a predefined size.

Madisetti, Hardaker and Fujimoto [33] propose the MIMDIX system which has
additional processes called Genie processes which are used at regular intervals to
probabilistically determine whether to resynchronize the logical processes in order to
slow down their progress. McAffer [36] uses a sliding window mechanism for both
sending and receiving messages which could lead to deadlock situations.

4.3 Switching between optimism and conservatism
A third method for integrating conservative and optimistic approaches is to switch

between optimism and conservatism. It would be desirable, in this case, to determine the

42 Hussam M. Soliman

degree of aggressiveness and risk dynamically. This requires extra information to be
stored and processed which can degrade performance. In Composite ELSA [I], a node
can switch between conservative and optimistic modes by providing extra information
which is used to determine if an event is certain or guessed. In Adaptive Time Warp [3],
a tuneable blocking window is defined such that a processor is blocked for a window
duration whenever it experiences an abnormally high number of rollbacks.

Jha and Bagrodia [24] propose a methodology to unify conservative and
optimistic techniques in an attempt to create an adaptable protocol which allows
conservative and optimistic processes to coexist. This has the advantage of allowing
different subsystems with contradictory characteristics to choose to be conservative or
optimistic depending on their runtime behavior. Furthermore, logical processes whose
behavior changes dynamically would be allowed to switch at runtime to the opposite
mode of operation. It is not clear, however, which criteria should be used to decide when
to switch modes.

Harnnes and Tripathi [22] also address the adaptivity issue by proposing a method
which selects the optimum operating point for each logical process in the continuum of
protocols from pure conservative to pure optimistic. This is done by defining a blocking
window for individual channels for each process whose size is regularly optimized based
on statistics gathered by the process at runtime.

4.4 The aggressive adaptive-risk approach
Protocols that add optimism to the conservative approach usually cannot support

dynamic configurations which is desirable in large and complex simulations. The main
drawback, of protocols which limit optimism is to determine an appropriate limiting
boundary to significantly improve performance for large scale simulations. Switching
between conservative and optimistic modes of operation is attractive for systems where
the behavior of the various components change dynamically. However, the determination
of the needed extra information and how it is to be used to arrive at a decision as to
which mode of operation is more appropriate, is not clear.

A novel scheme was developed by Soliman and Elmaghraby [51] for the
unification of the conservative and optimistic paradigms in a clustered and adaptive
manner. The idea is based on grouping processes with similar characteristics into
ensembles or clusters. Each cluster internally runs a modified version of the Time Warp
protocol, while interacting with other clusters. The internal protocol allows the member
processes the maximum degree of aggressiveness as in the original Time Warp protocol.
However, the internal protocol requires the use of special buffers for cluster output
messages in order to control the degree of risk. Fig. 4 shows the architecture of a
distributed simulator using AAR. By holding cluster output messages in buffers, the
protocol can effectively control cascading rollbacks, a problem associated with Time

Parallel and Distributed Simulation ... 43

Warp, since a large proportion of straggler messages could be generated before the
release of the buffered messages to other clusters. Therefore, by controlling the duration
of the real-time period in which the messages are stored in the cluster buffers, and the
range of message timestamp values that will be released each time, one can adaptively
control the degree of risk in order to be able to set a bound on ¢e probability of an inter­
cluster rollback, and maximize the rate of change of simulated time with respect to real
time for each link.

Fig. 4. The architecture for the aggressive adaptive-risk scheme.

5. Experimental Performance Results

Experiments are conducted to compare the performance of the CMB and the AAR
techniques with that of Time Warp using a network of workstations. Description of these
experiments and their results are presented in this section.

5.1 Description of the experiments
Implementations of the CMB and Time Warp protocols are developed on a

network of four HP9000n35 workstations interconnected by a IOMbit/sec Ethernet.
Each machine runs 4 LP's. and the 16 LP's are connected as a 4x4 torus topology as

44 Hussam M. Soliman

shown in Fig. 5. A synthetic simulation workload is used for the experiments. The
distribution of the computation time per event and the routing probability are parameters
of the workload. The torus topology is divided into 4 cells of 4 LP's each and each cell is
mapped to one processor.

r--T -1 r---=l
L/LPI ,~

i

H
i '~' I ., L.P10 , L.P11 L.P12

\ ' , \ / : \
: '.

I L~ -I
I T
I , \ \

L.P13 1-.(, L.P1. L.P15 ~. ~, L.P15 I
\ I ;

Fig. S. The 4x4 torus topology.

S.2 Results
The performance of the CMB and Time Warp protocols was studied on the above

testbed. It is observed in Fig. 6.a that speedup increases for CMB as the event
computational time delay is increased from 10 ms to 50 ms. This verifies that a large
computation granularity is required for a parallel simulator to yield acceptable
performance. Since the message population determines the amount of parallel activity
that can occur in the simulation, increasing the message popUlation from 8ILP to 321LP is
seen to increase speedup. Fig. 6.b illustrates the effect of lookahead on speedup in CMB,
The lookahead ratio (LAR) is defined as the mean service time an LP provides for each
event to the minimum service time [16], A low value ofLAR means better lookahead
properties. It is seen that a high value of LAR=5 results in speedups below one, whereas
a low value of 1.5 results in a reasonable 1.5 for a message popUlation of 81LP. This
clearly shows the sensitivity of CMB performance to the simulation lookahead

Parallel and Distributed Simulation ... 45

properties. In fact, it is required in CMB that each feedback loop in the simulated system
topology contain at least one LP with nonzero lookahead value.

I·'r--------------------------------------,

us

II

.---'- .-...

1--aaIU'

" CcInIpmdonaJ Delay(-)
..

Fig. 6 a. CMB speedup vs. computational delay for LAR = 1. S.

I.' • • -
I.'

-
.,
..

.-----" . -,-' ,- .. ,-------.--.-, ------- ..
••• II ..

Fig. 6 b. CMB speedup .s. computational delay for message population 8JLP.

The performance of the Time Warp protocol is also studied on the above testbed. The
modified version of the Chandy-Lamport snapshot algorithm was used for GVT
computation. From Fig.7 it is clear that Time Warp outperforms CMB for this
simulation. This is due to the optimistic nature of Time Warp which, unlike CMB, allows

46 Hussam M. Soliman

it to utilize whatever parallelism is present in the system. Moreover. it is seen that
increasing event computational granularity also increases the obtainable Time Warp
speedup. This result is accounted for by the low network bandwidth requirements for
large event granularity simulations. Increasing the message population to as high as
50ILP is seen to cause perfonnance degradation. This is due to the increase in the time
required for event list insertions and deletions. a problem not present in conservative
algorithms since they use FIFO queues.

'A r---------------------------, ..
--

2A

2.4

2.2
50

Fig. 7. Time warp speedup vs. computational delay for message populations 2!ILP and 5OILP.

Figure 8 shows the speedup plot for the Clustered Parallel Simulator (CPS). a
nonadaptive implementation of the aggressive adaptive-risk technique (AAR) discussed
above. and that of Time Warp versus the simulated-time window size associated with the
AAR technique. The CPS implementation is also developed on a network of eight HP
9000n35 workstations interconnected by a JOMbitlsec Ethernet. Each of the eight
machines runs 16 logical processes connected as a 4x4 torus forming an overall 8x16
torus topology. A fixed initial message population of 100 messages per logical process is
used. It is also assumed that the state-vector size is zero and the load is uniform. Fixed
simulated-time window sizes of .1 •. 3 • .5 and 1 simulated-time units are selected after a
few initial runs. Three cases for the CPS real-time release intervals are considered:
release every execution of the main program loop. release every 5th execution of the
main program loop. and release every 10th execution of the main program lOOp.

Parallel and Distributed Simulation ...

'"' ,------------------,

~~:--:
······r······························

6

... .L-+-----+----t----t--'
G.I o.J 0.'

Window Size ... Sllml1lihd Time (w)

CPS - CY->' I Dth loop -
CPS - nay 5th loop

CPS - every loop

Time Warp

FIg. 8. Speedup performance of CPS compared to Ibat of time warp.

47

The performance results of Fig. 8 show that a speedup of about 5.7 was achieved
by the Time Warp simulalor using the 8-machine testbed. A noticeable speedup
improvement of about 1.5 is observed for the three cases of CPS indicating that the
output buffering mechanism used in the AAR scheme was successful in limiting the
overheads associated with processing external stragglers. This decrease in overhead is
attributed to a decrease in the number of rollbacks in the destination cluster and local
message cancellation in the cluster buffer of the source cluster. It is also observed that
the effect of varying the real-time message release interval' was almost negligible.
Moreover, varying the (fixed) simulated-time window size also seems to have a small
impact on speedup, although a general trend of increase with increasing window size is
observed.

6. Conclusion

An extensive review of the state of the art in parallel and distributed simulation
methodologies has been presented. Emphasis has been on recent research directions
towards developing hybrid and adaptive techniques. Hopefully, these techniques will
overcome the shortcomings of existing PADS techniques. Sample performance data,
using a network of workstations, are reported to demonstrate some of the capabilities and
limitations of both conservative and optimistic techniques.

48 Hussam M. Soliman

References

[I] Arvind, D. K. and Smart, C. R. "Hierarchical Parallel Discrete Event Simulation in Composite ELSA."
Proceedings of the 6th Workshop on Parallel and Distributed Simulation, (1992),147-156.

[2J Ayani. R. and Rajaei, H. "Parallel Simulation Using Conservative Time Windows." Proceedings a/the
Winter Simulation Coriference, (1992), 709-717.

[3] Ball, D. and Hoyt, S. "The Adaptive Time Warp Concurrency Control Algorithm." Proceeding of the
SCS Multiconjerence on Distributed Simulation, (1990), 174-177.

[4] Bauer H. and Sporrer, H. "Distributed Logic Simulation and an Approach to Asynchronous GVT
Calculation,"Proceedings of the 6th Workshop on Parallel and Distributed Simuialjon.(l992),
205-208.

[5] Bellenot, S. "Global Virtual Time Algorithms," Proceeding a/the SCS Multiconference on Distributed
Simulation, (1990),122-127.

[6] Boukerche, A. and Tropper, C. "A Static Partitioning and Mapping Algorithm for Conservative Parallel
Simulations."Proceedings of the 8th Workshop on Parallel and Distributed Simulation,(l994),I64-
172.

[7] Carothers, C. D., Fujimoto, R. M. and Eogland, P. "Effect of Communication Overheads on Time
Warp Performance: An Experimental Study." Proceedings of the 8th Workshop on Parallel and
Distributed Simulation, (1994),118-125.

[8] Chandy K. M. and Lamport, L. "Distributed Snapshots: Determining Global States of Distributed
Systems." ACM Transactions on Computer Systems, 3 (1985), 63-75.

[9] Chandy, K. M. and Misra, J. "Distributed Simulation: A Case Study in Design and Verification of
Distributed Programs." IEEE Transactions on Software Engineering, 5, No.5 (1979), 440-452.

[10] Chandy, K. M. and Misra, J. "Asynchronous Distributed Simulation via a Sequence of Parallel
Computations." Communications of the ACM, 24, No. II (1981), 198-206.

[11] Das, S. R. and Fujimoto, R. M. "A Performance Study of the Cancelback Protocol for Time Warp."
Proceedings of the 7th Workshop on Parallel and Distributed Simulation, (1993), 135-142.

[12] De Vries, R. C. "Reducing Null Messages in Misra's Distributed Discrete Event Simulation Method."
IEEE Transactions on Software Engineering, 16, No. I (1990),82-91.

[13] Dickens, P. M. and Reynolds, P. F. "SRADS with Local Rollback." Proceeding of the SCS
Multiconference on Distributed Simulation (1990),161-164.

[14] D'Souza, L., Fan, X. and Wilsey, P. "pGVT: An Algorithm for Accurate GVT Estimation."
Proceedings of the 8th Workshop on Parallel and Distributed Simulation, (1994),102-109.

[15] Fleischmann, J. and Wilsey, P. A."Comparative Analysis of Periodic State Saving Techniques in Time
Warp Simulators."Proceedings of the 9th Workshop on Parallel and Distributed Simulation,(1995),
50-58.

[16] Fujimoto, R. M. "Performance Measurements of Distributed Simulation Strategies." Tran .• actions of
the SCS, 6, No.2 (1989), 89-132.

[17J Fujimoto, R. M. "Time Warp on a Shared Memory Multiprocessor." Transactions of the SCS, 6, No.3
(1989),211-239.

(18] Fujimoto. R. M. "Optimistic Approaches to Parallel Discrete Event Simulation," Transactions o/the
SCS, 7, No.2 (1990),153-191.

[19] Fujimoto, R. M. "Parallel Discrete-Event Simulation." Communimtions of the ACM, 33, No. IO
(1990),31-53.

[20] Fujimoto, R. M. "Performance of Time Warp Under Synthetic Workloads." Proceeding Of the SCS
Multiconference on Distributed Simulation. (1990), 23-28.

[21] Fujimoto, R. M., Tsai, J. and Gopalakrishnan, G. "Design and Evaluation of the Rollback Chip: Special
Puspose Hardware for Time Warp. "IEEE Transactions on Computers, 41, No. I (1992),68-82.

[22] Hamnes, D. 0, and Tripathi, A. "Investigations in Adaptive Distributed Simulation." Proceedings of
the 8th Workshop on Parallel and Distributed Simulation, (1994), 20-23.

Parallel and Distributed Simulation ... 49

[23] Jefferson, D. R. "Virtual Time," ACM Transactions on Programming Languages and Systems. 7, No.3
(1985),404-425.

[24J Jha, V. and Bagrodia, R. L. "A Unified Framework for Conservative and Optimistic Distributed
Simulation." Proceedings a/the 8th Workshop on Parallel and Distributed Simulation, (1994), 12-19.

[25] lin, Y. B. and Lazowska, E. D. "Determining the Global Virtual Time in a Distributed Simulation."
Proceedings of the International Conference on Parallel Processing. (1990), 201~209.

[26J lin, Y. B. and Lazowska, D. L. "A Study of Time Warp ROllback Mechanisms." ACM Transactions on
Modeling and Computer Simulation, I, No. I (1991),51-72.

[27] lin, Y. B. and Lazowska, E. D. "Reducing the Overheads of Conservative Parallel Simulation Without
Lookahead." [nternational Journal in Computer Simulation, 3 (1993), 231-259.

[28J lin, Y. B .. Preiss, B. R., Loucks, W. M. and Lazowska, E. D. "Selecting the Checkpoint Interval in
Time Warp Simulation."Proc. a/the 7th Workshop on Parallel and Distributed Simulation, (1993), 3-
10.

[29J liu, L. Z. and Tropper, C. "Local Deadlock Detection in Distributed Simulations." Pro<:uding a/the
SCS Multicon/erence on Distributed Simulation, (1990), 64-69.

[301 Loucks, W. M. and Preiss, B. R. ''The Role of Knowledge in Distributed Simulation," Proceedings of
the SCS Multiconference on Distributed Simulalion, (1990), 9-16.

[31J Lobachevsky. B. D. "Efficient Distributed Event-Driven Simulations of Multiple-loop Networks."
Communications 0/ the ACM, 32 (January 1989), 111-123.

[32J Lobachevsky, B. D., Shwartz, A. and Weiss, A. "An Analysis of Rollback-Based Simulation." ACM
Transactions on Modeling and Computer Simulations, I. No.2 (1991), 154-193.

[33J Madisetti, V., Hardaker, D. and Fujimoto, R. ''The MIMDIX Operating System for Parallel
Simulation." Proceedings a/the 6th Workshop on Parallel and Distributed Simulation, (1992), 65-74.

[34J Madiselli, V .. Walrand, J. and Messerschmitt, D. "WOLF: A Rollback Algorithm for Optimistic
Distributed Simulation Systems." Proceedings 0/ the Winter Simulation Conference, (1988), 296-305.

[35J Mattern, F. "Efficient Algorithms for Distributed Snapshots and Global Virtual Time Approximation."
Journal 0/ Parallel and Distributed Computing, 18 (1993), 423-434.

[36J McAffer, J. "A Unified Distributed Simulation System." Proceedings 0/ the Winter Simulation
Conference, (1990), 415-422.

[37J Misra, J. ''Distributed Discrete-Event Simulation."ACM Computing Survey .• , 18, No.I(March 1986),
39-55.

[38J Nandy, B. and Loucks, W. M. "An Algorithm for Partitioning and Mapping Conservative Parallel
Simulation onto Multicomputers." Proceedings of the 6th Workshop on Parallel and Distributed
Simulation, (1992),139-146.

[39J Nandy, B. and Loucks, W. M. "On a Parallel Partitioning Technique for Use with Conservative Parallel
Simulation." Proceedings 0/ the 7th Workshop on Paralltl and Distributed Simulation, (1993), 43-51.

[40J Nacol, D. M. and Reynolds. P. F .. Jr. "Problem Oriented Protocol Design." Proceedings of the Winter
Simulation Conference, (1984),471-474.

(41) Nicol. D. M. "Parallel Discrete-Event Simulation ofFCFS Stochastic Queuing Networks." SIGPLAN
Not .. 23. No.9 (1988),124-137.

[42J Palaniswamy, A. C. and Wilsey, P. A. "An Analytical Comparison of Periodic Checkpointing and
Incremental State Saving." Proceedings of the 7th Workshop on Parallel and Distributed Simulation.
(1993),127-134.

[43) Preiss. B. "The Yaddes Distributed Discrete Event Simulation Specification Language and Execution
Environments." Proceedings a/the SCS Winter Multicon/erence, (1989),139-144.

[44J Rajaei, H., Ayani, R. and Thorelli, L. E. "The Local Time Warp Approach to Parallel Simulation."
Proceedings of the 7th Workshop on Parallel and Distributed Simulation, (1993),119-126.

[45J Reiher, P. L., Fujimoto, R. M .. Bellenot, S. and Jefferson, D. R. "Cancellation Strategies in Optimistic
Execution Systems." Proc. of the SCS Multiconference on Distributed Simulation, (1990), 112-121.

[46] Reynolds. P. "A Spectrum of Options for Parallel Simulation." Proceedings o/the Winter Simulation
Conference, (1988), 325-332.

50 Hussam M. Soliman

[47] Ronngren, R., Rajaei, H., Popescu, A., Liljenstam, M., Ismailov, Y. and Ayani, R. "Parallel Simulation
of a High Speed LAN." Proceedings of the 8th Workshop on Parallel and Distributed Simulation,
(1994),132-138.

(48] Samadi. B. Distributed Simulation Algorithms and Pet/ormance Analysis. Ph.D. Dissertation. Los
Angeles, CA, USA: University of California, 1985.

[49] Sokol, L. M. and Stucky, B. K. "MTW: Experimental Results for a Constrained Optimistic Scheduling
Paradigm." Proceeding of the SCS Multiconference on Distributed Simulation, (1990),169-173.

[50] Soliman, H. M. and Elmaghraby, A. S. "An Improved Chandy-Lamport Snapshot Algorithm forGVT
Approximation in Distributed Simulations." Proceedings of the 8th International Conference on
Parallel and Distributed Computing Systems, (1995), 473-477.

[51] Soliman, H. M. and Elmaghraby, A. S. "An Efficient Clustered Adaptive-Risk Technique for
Distributed Simulation," Procudings of the 5th IEEE International Symposium on High Performant.:e
Distributed Computing, (1996), 383-391.

[52] Steinman, J. S., Lee, C. A., Wilson, L. F. and Nicol, D. M. "Global Virtual Time and Dislributed
Synchronization." Proceedings of the 9th Workshop on Parallel and Distributed Simulation, (1995),
139-148.

[53] Strezova, Z. "A Procedure for Decision Support Systems Design: Modelling and Simulation
Environment." In A. Sydow, S. G. Tzafestas and R. Vichnevetsky (Eds.): Syslem Analysis and
Simuialion I: Theory and Foundalions. Berlin: Springer-Verlag, 1988.

[54] Tomlinson, A I. and Garg, V. K. "An Algorithm for Minimally Latent Global Virtual Time."
Proceedings of the 7th Workshop on Parallel and Distributed Simulation, (1993), 35-42.

[55] Turner, S. J. and Xu, M. Q. "Performance Evaluation of the Bounded Time Warp Algorithm."
Proceedings of the 6th Workshop on Parallel and Distributed Simulation, (1992), 117-126.

[56] Varghese, G., Chamberlain, R. and Weihl, W. "The Pessimism behind Optimistic Simulation."
Proceedings of the 8th Workshop on Parallel and Distributed Simulation, (1994), 126-131.

[57] Wood, K. R. and Turner, S. J. "A Generalized Carrier-Null Method for Conservative Parallel
Simulation." Proceedings of the 81h Workshop on Parallel and Distributed Simulation. (1994). 50-57.

Parallel and Distributed Simulation ...

J;' J ,., .. ,,1\, ... 1 : u.j) I J '-!j Ipl i\S"'.$: I

() l.o.,l... ~ I...J-

,> J"-' ..!illl 1.. 'vI.. ~'.J -,...../).1 r P <,is' ,vI.. ~I ~ r-i
<;>"""';1 ",.,.11 <5J..J1 , J J • i r ,-",VI,. J J Y;\ Y./

51

~},:ll .LSL.......lJ L,JL,.. ~I ..,...,J\....)'I JtJ; .:;Li..o <lWI • ..Lo J<>.rU ,.:-.,II ~

~I) ~I ..,...,Jl...}:il UWI • ..Lo J<>~ L.S' ,..,...,J\...~I • ..Lo ~~)J.>! ..!JJ.lS') ~j}l)

.... h:ll .LS~I J~I ~ .I~f ~L..:;.:r 4 UWI r..w; Ip>'-f) .L\!..l>- Lo.;.!# ;.:>.:sJI)

.:r ~ ~ j.......; .:sJI) ~j}1 .1S"L.......lJ • }:....tl ..,...,J\... ~I .:.,.IJ..li <lWI J-il.;;) . ~ j}l)

, J.-JI .:.,. u....<-

