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Abstract. An introduction to the fIeld of Parallel and Distributed Simulation (PADS) is given. The capabilities 
and Iimitalions of currently used PADS techniques are discussed. A review of the recently developed hybrid 
and adaptive PADS techniques is also given. Sample perfonnance results of some PADS techniques are 
presented using a network. of workstations. 

1. Introduction 

Parallel and distributed simulation is an area that has attracted considerable amount of 
interest in recent years. This interest arises from the fact that large simulations in many 
applications. such as extensive bank and organization simulations and model-validation 
simulations for decision support systems, consume enormous amounts of time on 
sequentiai computers [53]. In addition, the sequencing constraints on the execution of 
events are, in general, very complex and highly data-dependent. 

In the process-based approach of PADS, the system is modelled as a set of 
interacting logical processes (LP's). Each logical process is a model of some component 
of the physical system, called a physical process. Interactions between logical processes 
in the model simulate interactions between physical processes in the real system. Each 
logical process contains a portion of the state corresponding to the physical process it 
models, as well as a local simulation clock. All interactions between physical processes 
are modelled by timestamped event messages sent between the corresponding logical 
processes. In order to avoid chronological errors. a logical process must process events 
in nondecreasing timestamp order [19]. 
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Process-based parallel and distributed simulation algorithms fall broadly into two 
categories based on their synchronization scheme: conservative and optimistic. 
Conservative algorithms strictly avoid the possibility of incorrect sequencing of events 
by including strategies for determining which events are safe to process at each point in 
simulated time. As a result, this creates the potential for deadlock. Optimistic algorithms, 
on the other hand, use a detection and recovery approach which is based on detecting 
incorrect event execution sequences, and a rollback mechanism to recover. 

The two main synchronization approaches to PADS, conservative and optimistic, 
have some limitations when the size and complexity of the simulation system increases. 
The conservative approach is limited by blocking overhead and sensitivity to lookahead. 
The optimistic approach is prone to cascading rollbacks and is limited by state saving 
overheads. Hybrid and adaptive approaches have been developed to resolve these 
limitations, while preserving potential advantages of each approach. 

2. Conservative PADS Techniques 

Conservative techniques are based on the idea of determining when it is safe to 
process an event. If a process contains an unprocessed event with timestamp T, and that 
process can determine that it is impossible for it to later receive another event with 
timestamp smaller than T, then the process can safely process that event. Processes 
containing no safe events must block which can lead to a deadlock situation, in general. 

2.1 Deadlock-avoidance techniques 
The first deadlock avoidance conservative PADS technique is the CMB algorithm 

developed by Chandy and Misra [9]. In this technique, it is required that an LP send 
messages over any outgoing link in nondecreasing timestamp order so that the last 
message received on an incoming link is a lower bound on the timestamp of any 
subsequent message that will be later received. A link clock is defined as the timestamp 
of the last received message, if the link buffer is empty, or as the timestamp of the 
message at the front of the link buffer, if the buffer is not empty. The link buffer is a 
FIFO queue in which arriving messages are stored in timestamp order. The process 
repeatedly selects the link with the smallest link clock as the next link from which to 
process messages. If the selected link has an empty buffer, the process is blocked. 
Deadlock situations arise when a cycle of empty queues with sufficiently small clock 
values exists because, in this case, each LP in the cycle must block. An example of a 
deadlock is shown in Fig. I. In CMB, deadlock is avoided by using overhead null 
messages. A null message with timestamp t is sent from LPi to LPj to inform LPj that no 

further messages would be sent on the link between them up to time t. 
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Fig. 1. A deadlock situatioD where every LP waits for Input from an empty link buffer. 
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Several variations of the basic deadlock avoidance technique exist. A demand­
driven null message approach was used by Nicol and Reynolds [40]. This approach helps 
reduce the amount of null message traffic. Wood and Turner [57] present another 
conservative algorithm in which null messages are responsible for both advancing 
simulation times and acquiring global knowledge about the system. The lookahead ability 
of the simulation is improved by analyzing the global knowledge carried by the protocol 
messages (referred to as the carrier-null messages). The algorithm is general enough to 
apply to simulations with arbitrary graphs. 

2.2 Deadlock detection and recovery techniques 
An alternative approach is to let the simulation scheme deadlock, detect the 

deadlock, and recover from it. A deadlock can be broken by observing that the message 
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contammg the smallest timestamp is always safe to process. A deadlock detection and 
recovery scheme was presented by Chandy and Misra [10]. It is based on running the 
simulation until deadlock, and initiating a distributed computation whereby the various 
LP's can advance their local clocks. Another deadlock detection and recovery method, 
called the circulating marker, is described by Misra [37]. A marker is a special type of 
message that circulates among processes and declares a deadlock if it finds that the last n 
LP's that it visited were all white when it arrived at the LP it started from, where n is the 
number of links in the system. An LP is white if it has neither received nor sent a 
message since the last departure of the marker from that LP. The marker also carries the 
minimum of the next-event times for the white LP's it visits. When the marker detects 
deadlock, it knows the minimum next-event time and the LP at which this minimum 
occurs and, therefore, can restart this LP. Another technique, suggested by Liu and 
Tropper [29], detects specific types of cycles of blocked processes soon after their 
formation, and selects an LP which is suitable to break each kind of cycle. The algorithm 
distinguishes between three types of deadlock cycles: a deadlock cycle in which some 
LP's are waiting for messages while others are waiting for free memory buffers, a direct 
cycle of LP's each of which is trying to send a message to the full input buffer of its 
neighbor LP, and a direct cycle of LP's each of which is waiting for a message to appear 
in its empty input links. The algorithm first selects a leader which detects the deadlock 
and determines its category. It then finds the most appropriate LP to use in order to break 
the deadlock. Any blocked LP may initiate deadlock detection. 

2.3 Other conservative techniques 
Several other techniques to conservative PADS exist. One technique is to improve 

the Iookahead ability of the logical processes. Lookahead is the time interval in the 
simulated future up to which an LP can predict with complete certainty all events it will 
generate. Lookahead is used in the deadlock avoidance approach to determine the 
timestamps assigned to null messages. A minimum timestamp increment of T translates 
into a lookahead of T because a process can guarantee that no new events will be 
generated with timestamp smaller than the present clock value plus T. Nicol [41] 
suggests to enhance the lookahead ability of a process by precomputing service times for 
jobs that have not yet arrived at that process in queuing network simulations. This 
precomputations cannot be applied, however, if the service time depends on parameters 
in the message. 

The deadlock detection and recovery algorithm has been recognized, up to this 
point, as the only general conservative approach for simulating systems with no 
lookahead prediction. An alternative for systems with feedback loops and no lookahead 
prediction is presented by Lin and Lazowska [27]. It is suggested to reconfigure the 
system such that there is no feedback loop, and use the CMB algorithm without deadlock 
resolution to perform the simulation. Several other researchers have suggested exploiting 
properties of the network topology. De Vries [12] devises strategies to reduce the number 
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of null messages transmitted in the deadlock avoidance mechanism for specific 
applications that can be decomposed into feedforward and feedback networks. 

Lubachevsky [31] uses a moving simulated time window to reduce the overhead 
associated with determining when it is safe to process an event. Qnly unprocessed events 
with timestamps larger than the lower edge of the window can be processed. Ayani and 
Rajaei [2] propose a conservative time window approach where they partition the 
physical system to be simulated into n disjoint subsystems, each of which is represented 
by an object for which a time window is identified. Events occurring in each window are 
independent of events in other windows and thus can be processed concurrently. The size 
of each window is calculated in each iteration of the algorithm using features of the 
system being simulated. Having windows with different sizes is shown to exploit more 
parallelism compared to the case where a global ceiling must be kept by all nodes. 

Fujimoto [16] demonstrates that conservative algorithms can provide significant 
speedups over sequential event list implementations for some workloads containing 
moderate to high degrees of parallelism, even if there are many feedback loops in the 
logical process topology. He concludes that the lookahead ability of logical processes 
plays a critical role in determining the efficiency of the deadlock avoidance and deadlock 
detection and recovery algorilhms. Loucks and Preiss [30] also examine the impact of 
exploiting lookahead' on computation and communication overhead, and verify its 
important impact on performance. They conclude that between one half and two thirds of 
the computation load for a multiprocessor running a stochastic queuing network 
simulation are eliminated when user knowledge is added to the simulation. 

2.4 Partioning algorithms 
Performance studies have identified many issues which may affect the 

performance of conservative PADS. Among these are lookahead, network topologies, 
load balancing and process scheduling strategies [20]. The problem of static load 
balancing involves the partitioning of the simulation and mapping it onto a 
multicomputer network. The partitioning problem involves grouping nodes into blocks 
subject to two constraints: each block is approximately the same size, and the links 
between blocks are minimized. Objective functions are usually defined such that 
interprocessor communication conflicts are minimized, processor load is balanced, and 
the probability of sending a null message between processors is minimized. The 
partitioning problem has been identified to be computationally expensive. There are three 
major approaches to graph partitioning: graph theoretic , numerical, and min-cut 
heuristics. The heuristic approach allows the maximum flexibility in goal specification 
but yields suboptimal solutions. 

Nandy and Loucks [38] presented a static partitioning algorithm for conservative 
parallel logic simulation. The algorithm attempts to minimize the communication 
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overhead and to uniformally distribute the execution load among the processors. It starts 
with an initial random partition and then iteratively moves processes between clusters 
until no improvements can be found. As a benchmark, they use the simulation of circuits 
modelled at the gate level on a message passing multicomputer composed of eight T -800 
INMOS transputers. They report a 10-25% reduction in simulation time from the 
simulation time of a random partition. 

Nandy and Loucks [39] later presented a parallel partitioning technique based on 
a min-cut iterative improvement algorithm which , ms on the same multicomputer 
network running the simulation. Experiments were cOl,ducted to evaluate the algorithm 
performance for circuit simulation problems on transputers. The algorithm was modified 
to produce similar quality of final partition as the original sequential algorithm, and to 
increase the parallelism of the algorithm at the expense of quality. The algorithm relies 
on estimating the work load by pre-simulation runs. 

The simulated annealing approach is a probabilistically directed iterative 
improvement scheme which is based on ideas from statistical mechanics and motivated 
by an analogy to the behavior of physical systems in the presence of a heat bath. This 
approach has the advantages that it is problem-dependent in the sense that substituting a 
few problem specific data structures and functions can make the algorithm be applied to 
many combinatorial optimization problems. It is also capable of handling multiple, 
potentially conflicting goals. Boukerche and Tropper [6] proposed the use of a simulated 
annealing algorithm with an adaptive search schedule to find good suboptimal partitions. 
They studied the performance of the algorithm for FCFS queuing network models on an 
IPSC/860 hypercube. Their results show a reduction of 25-35% of running time of the 
simulation compared to the results of a random partition. 

3. Optimistic PADS Techniques 

In optimistic approaches, we need not determine when it is safe to process an 
event; instead we determine when an error has occurred, and invoke a procedure to 
recover. This allows the simulator to exploit parallelism in cases where it is possible for 
causality errors to occur but they do not. 

3.1 Time warp 
An optimistic approach to PADS called Time Warp was proposed by Jefferson 

[23]. In Time Warp, a causality error is detected whenever an event message is received 
that contains a timestamp smaller than the local clock. The local virtual time (L VT) of a 
process is defined as the minimum receive time of all unprocessed messages. Processes 
can execute events and proceed in local time as long as they have inputs. Consequently, 
the local clock of a process can get ahead of its predecessors' local times. If the process 
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receives a message from a predecessor that has a timestamp smaller than the local clock, 
the process rolls back in simulated time and redoes its simulation to take into account the 
new message. This new message is called, in this case, a straggler. The process also 
sends antimessages to its successors to cancel the effects of previous erroneous 
messages. An antimessage annihilates the original message when they meet. 

Assuming infinite memory, the Time Warp does not deadlock because individual 
processes do not deadlock as long as they have any inputs. The Time Warp approach has 
potentially greater speedup than conservative approaches at the expense of greater 
memory requirements. Moreover, in Time Warp, the topology of possible interactions 
between logical processes need not be fixed. 

The performance of rollback mechanisms for the Time Warp algorithm has been 
studied analytically by Lin and Lazowska [26]. Time Warp with aggressive or lazy 
cancellation mechanisms, which will be explained later in this section, are shown to 
perform well for a process with a small simulated load intensity. Their results also 
indicate that message preemption has a significant effect on performance when the 
processor is highly utilized, the execution times of messages have high variance, and 
rollbacks occur frequently. 

Substantial speedups have also been reported using the Time Warp protocol for 
simulating closed queuing networks [17] and for synthetic loads [20]. Using the direct 
cancellation strategy, he reports speedups as high as 57, using a 64 processor BBN 
Butterfly. The reported results indicate that Time Warp is capable of exploiting whatever 
parallelism is available in the simulation model without requiring extensive application­
specific knowledge from the user. However, Loucks and Preiss [30] demonstrate that 
significant performance improvements can be obtained if one employs application 
specific knowledge to optimize execution. State-saving overhead can significantly 
degrade performance of Time Warp when the state size is increased [17]. 

Carothers, Fujimoto, and England [7] present empirical results on the 
performance of Time Warp in distributed computing environments. They conduct a 
series of Time Warp simulation experiments of a large granularity system and a low 
granularity system. They conclude that asynchronous message passing, where the sending 
process does not block until it receives acknowledgement that a message has been 
delivered, are much more suitable for distributed implementations. Moreover, the 
effectiveness of the Time Warp technique is significantly reduced for small granularity 
problems due to increasing communication delays. Large computation times for 
communication primitive execution are likely to affect Time Warp speedup than 
transmission latency. Effects of communication delay, in general, on efficiency (amount 
of rolled-back computation) is less significant than on speedup. 
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3.2 Variations of time warp 
Numerous variations to the Time Warp mechanism have been proposed. Moving 

Time Windows [49] is another optimistic approach in which a time window in simulated 
time is defined so that its lower edge encompasses the unprocessed events containing the 
smallest timestamps. Events beyond the window must wait until the window has been 
advanced. The idea is to prevent incorrect computations from propagating too far ahead 
into the simulated future. A problem with this technique. however. is that time windows 
may block the progress of correct computations. Moreover. it is not clear how the size of 
the window should be determined. 

Madisetti. Walrand and Messerschmitt [34] propose another optimistic 
mechanism called Wolf. In Wolf. a straggler message causes a process to send special 
control messages to other processes to stop the spread of the erroneous computation. One 
problem with this approach is that some correct computations may be unnecessarily 
frozen because the set of processors that might be affected by the erroneous computation 
may be much larger than the set that is actually affected. 

A mechanism. called direcI cancellalion is proposed by Fujimoto [17] for shared 
memory multiprocessors. The technique depends on using pointers between events to 
locate those that need to be cancelled due to rollback. This eliminates the need for 
antimessages and provides an efficient mechanism for cancelling erroneous messages. 
Direct cancellation results in a distributed data structure that utilizes pointers to indicate 
which events can affect others. Cancellation of an incorrect computation due to 

processing some event amounts to a tree traversal. 

3.3 Global virtual time 
Global Virtual Time (GVT) is defined at real time 1 as the minimum of all local 

clocks at 1 and of the timestamps of all event messages that are in transit at I. Obtaining 
an accurate estimation of GVT is important for memory management and output 
commitment in optimistic simulation schemes. The process of reclaiming memory and 
committing irrevocable operations is referred to asfossil collection. GVT approximation 
is an example of a distributed monotonic computation. one which tries to find a good 
lower bound on the current value of some global infimum function f. For a cut C of the 
space-time diagram of the simulation. a global infimum function f(C) evaluated at C is 
defined as the infimum of all local values of virtual time taken at the moment of the cut at 
each LP and all timestamps of messages which cross the cut line (are in transit). A result 
proved by Mattern [35] states that f(C) is a lower bound on the value of the function fat 
the moment f(C) is determined. even if C is an inconsistent cut. This result represents the 
basis of GVT approximation algorithms which will be described in the next two 
subsections. 
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In general, any snapshot algorithm· can be used to estimate GVT (for example, 
Chandy-Lamport snapshot algorithm [8]). However, specialized algorithms are preferred 
because they can be more efficient. Several algorithms have been proposed for 
computing GVT. In the following, GVT algorithms are divided into non-token-based 
algorithms and token-based algorithms. 

3.3.1 Non-token-based GVT algorithms 
One of the earliest GVT algorithms was proposed by Samadi [48]. The algorithms 

makes the assumption that all event messages are acknowledged. The idea behind the 
algorithm is to designate a real time moment rt at which to take a snapshot of the 
simulator (iocal virtual time and messages in transit). Since in reality it is not possible to 
determine an exact value for rt, we can set upper and lower bounds on rt at each process 
by creating intervals that overlap in time. Each LP forwards its information to a central 
GVT initiator process as it exits the interval. Let [starti' stoPi] denote an interval at the 

ith LP. The set of all such intervals must share a common real time rt. The algorithm runs 
in five phases: 

1. The initiator broadcasts a GVT START message to all nodes. The receipt of 
the message at node i is starti. 

2. Each node responds to this message by sending an acknowledgement message 
to the initiator. The receipt time of the last acknowledgement message is real 
time rt. 

3. The initiator broadcasts a GVT STOP message to all nodes. The receipt time of 
that message at node i is stoPi. 

4. Node i responds by sending the initiator its local virtual time. After the initiator 
collects this message from all nodes, it computes GVT by minimizing all the 
LVT's. 

5. The initiator broadcasts a new GVT update to all nodes. 

Bellenot [5] proposed another GVT algorithm based on message routing graphs 
and a binary-tree-like forwarding technique to replace the costly broadcasts and 
collections of Samadi's algorithm. Collections can be done in the reverse order. This 
algorithm has run time 0(1) on each node and O(logN) run time overall. However, there 
is an O(iogN) one time message routing graph configuration cost on each node. 

Lin and Lazowska [25] proposed an algorithm which is similar to Samadi's 
algorithm but which does not use an acknowledgment message for every single message. 
Rather, every message carries a sequence number and when a process gets a certain 
control message it sends to every neighboring process the smallest sequence number 
which is missing from that process. The neighboring process assumes that this message 
and all messages with larger sequence numbers are still in transit. Since a process keeps 
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the local minima of timestamps for unacknowledged messages as a function of sequence 
numbers, it is able to compute a lower bound on the timestamps. 

Tomlinson and Garg [54] present a GVT algorithm which minimizes the latency 
time of the GVT calculations (time between its occurrence and detection). Unlike the 
previously described algorithms, this algorithm is designed for a reliable non-FIFO 
communication subsystem and does not require messages to be acknowledged which 
significantly reduces the message overhead of the simulation. The algorithm works by 
specifying a target virtual time TVT and an initiator to detect when GVT TVT. 

D'Souza, Fan, and Wisely [14] present a GVT algorithm, called pGVT, which is 
capable of operating in environments which do not support FIFO message delivery and 
where message delivery failure may occur, and thus message acknowledgment is used. 
PGVT is a passive response GVT algorithm which operates with a.central GVT manager 
calculating new GVT values from information reported by LP's. Each LP monitors the 
advancement of GVT and reports new information only when failure to do so would 
inhibit GVT advancement. The main advantage of the algorithm is the elimination of one 
communication cycle to request GVT information from the LP's. This is done by 
monitoring the last reported GVT value and comparing it to the new value broadcast by 
the GVT manager. The GVT manager calculates new GVT values by minimizing overall 
local GVT values sent by the LP's. An LP is triggered to report a new local GVT value 
by the progression of GVT to the last reported local GVT value. This has the effect of 
reducing the load on the communication subsystem. 

Bauer and Sporrer [4] propose an asynchronous GVT algorithm which also relies 
on passive observation of the LVTs and the contents of the communication channels. The 
LP's independently send information messages at arbitrary interval to a dedicated central 
process, which continuously determines GVT based on received information and in turn 
distributes the result periodically back to the LP's. The algorithm assumes reliable FIFO 
channels and uses an event numbering scheme similar to that used by Lin and Lazowska. 
The main advantage of the algorithm is that it requires, on the average, less than N 
messages (with N denoting the number of LP's) to calculate an updated GVT value. 

3.3.2 Token-based GVT algorithms 
Token-passing GVT algorithms have also been used. A token-based algorithm 

was proposed by Preiss [43] which imposes a ring topology for passing the token. The 
algorithm runs all phases of Samadi's algorithm together. The circulating token is 
forwarded from node i to (i+ 1 ) rrwd N carrying the new GVT update from the first round, 
the local virtual time values for the second round, and the GVT start message for the 
third round. Varghese, Chamberlain, and Weihl [56] presented a marker-based GVT 
algorithm which is derived from Misra's circulating marker scheme for deadlock 
recovery [3]. This algorithm can be made to work over non-FIFO links, and its overhead 
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can be dynamically tuned based on computational load. The main idea is to pass a 
marker to circulate the network in a tour in such a way that it traverses each 
unidirectional link at least once. The marker starts the tour from a designated initiator 
and returns to it at the end of the tour. The marker has two fields: CurrenCMin and GVT. 
In addition, each logical process LPi maintains a variable called Local_Mini to store the 

lowest local clock value at LPi since the last time the marker visited LPi. Local_Mini is 

updated only when the marker visits LP or at rollback. CurrencMin stores the smallest 
Local_Mini for every LP in the current tour. When the marker returns to the initiator, it 

uses CurrenCMin as the new GVT -estimate. The new GVT value is broadcast to other 
Logical processes by storing it in the GVT field. 

General snapshot algorithms can also be used to approximate GVT. Chandy and 
Lamport [8] proposed a snapshot algorithm to capture a consistent global state for any 
distributed system. The algorithm assumes communication channels are reliable and 
FIFO, and uses markers as delimiters for the messages in transit in the channels. In this 
algorithm, a process which has not record its state and which receives a marker on 
channel c records its state, records the state of channel c as the empty sequence, and 
sends the marker along all outgoing channels on which a marker has not already been 
sent. Fig. 2 shows how a logical process broadcasts the marker to its neighbors with this 
channel flushing mechanism. If the receiving process has already recorded its state, it 
records the state of channel c as the sequence of messages received along c after the 
process recorded its state and before it received the marker along c. The algorithm can be 
initiated by a single process or several processes (in which case marker sequence 
numbers must be used). A simple way to collect all the recorded information is for each 
process to send the state information it recorded to the initiator. Non-FIFO-channel 
versions of this algorithm were proposed by Mattern [35]. 

"'1 

Fig. 2. Channel flushing in the chandy-lamport snapsbot algorithm. 
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A slightly modified version of the Chandy-Lamport algorithm for FIFO links is 
proposed by Soliman and Elmaghraby [50]. As shown in Fig. 3, GVT-cycle initiation, in 
this version, is done in parallel by a GVT-manager process directly to each LP and not to 
one initiator LP. This saves the time the markers propagate in the network until all LPs 
are informed of the new cycle. The only overhead incurred by the modified algorithm 
would be the time needed to flush each outgoing channel with a marker, and the time 
needed to report the calculated local virtual time to the GVT manager. Reducing the 
duration of the GVT cycle results in more frequent fossil collection and, consequently, 
shorter message queues. This modification is shown to have a significant effect on the 
performance of the distributed simulator in terms of the overall speedup. Experimental 
performance comparisons with Samadi's GVT algorithm and Chandy-Lamport algorithm 
are also reported. A non-FIFO-channel algorithm is also presented by Soliman and 
Elmaghraby [50]. Steinman et at. [52] emphasize the importance of updating GVT 
efficiently in interactive distributed simulations and real-time applications. They also 
develop a GVT algorithm called SPEEDS GVT which also uses the idea of message 
flushing to account for messages in transit. 

LP2 can tum red due 10 a 
MARKER or a START 

messa e 

Fig. 3. The modified chandy-lamport snapshot algorithm. 

3.4 Cancellation Strategies 

LP. 

In optimistic simulation systems, the simulation is divided into several objects 
which interact by sending event messages. Incorrect computations can arise because 
messages can be processed out of order and erroneous messages may be sent to other 
objects in a cascading fashion, as a result. Two methods are used for cancelling incorrect 
messages in Time Warp systems: aggressive cancellation and lazy cancellation. In 
aggressive cancellation, a process immediately sends antimessages when it rolls back. In 
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lazy cancellation, on the other hand, antimessages are not sent immediately after roll 
back. Instead, the process resumes execution forward in simulated time from its new 
clock value, and when it produces a message it compares it with the messages in its 
output queue. Only messages that are different from previously sent messages are 
transmitted, and only antimessages that are not reproduced in the forward computation 
are transmitted. The idea is to exploit the fact that not all of the work performed by an 
erroneous computation is incorrect. However, if the erroneous computation generated 
incorrect messages, lazy cancellation delays sending the corrective antimessages which 
allows incorrect computations to spread further than in the case of aggressive 
cancellation. In addition, lazy cancellation requires some additional overhead that is not 
incurred by aggressive cancellation. For example, it must determine if a matching 
antimessage already exists whenever a new message is generated. Also, it must check if 
any antimessages must be sent whenever the process's simulation clock is advanced. 

Reiher et al. [45] present analytic results and performance measurements for both 
lazy and aggressive cancellation strategies and use applications that demonstrate the 
strengths of both techniques. They conclude that, depending on the application, 
aggressive or lazy cancellation can produce better performance although, for typical 
Time Warp applications, lazy cancellation shows slightly better performance. They 
recommend that the user be given the option of using lazy or aggressive cancellation. 

A third cancellation strategy is lazy re-evaluation. If the state of the process is the 
same after processing a straggler event message as it was before and no new messages 
arrive, then the re-execution of rolled back events will be identical to the original 
execution. Therefore, there is no need to re-execute those events, and instead one can 
jump forward over these events. Lazy re-evaluation was implemented in the JPL Time 
Warp kernel, but later removed because it significantly complicated the Time Warp code 
[ 18]. 

3.5 Memory management and state saving 
The Time Warp mechanism requires more memory to efficiently complete a 

parallel simulation than the equivalent sequential simulation. This is because Time Warp 
relies on rollbacks to synchronize the parallel computations which requires that the 
kernel store, in addition to pending events, some incorrect input messages that will later 
be cancelled, prior snapshots of each process's state, and an anti message for each 
message that has been sent by the process. 

A number of memory management schemes have been proposed to reduce the 
space usage of Time Warp. Some of these schemes reduce average space utilization, but 
cannot recover storage when the simulation runs out of memory. Other schemes are more 
adaptive and can run the simulation within the available memory and are able to recover 
memory on demand. Das and Fujimoto [11] efficiently implemented the cancelback 
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protocol on a shared memory multiprocessor implementation of Time Warp. They 
studied the performance of the simulator for three different workloads with different 
degrees of symmetry and concluded that severe asymmetry places severe demands on 
memory usage. They observed that, depending on the available memory and asymmetry 
in the workload, canceling back several events at one time may improve performance 
significantly. They also observed that a performance nearly equivalent to that with 
unlimited memory can be achieved with only a modest amount of memory depending on 
the degree of asymmetry in the workload. 

In a Time Warp simulation, the state of each process must be saved regularly 
regardless of whether or not rollbacks occur. There are two approaches to reducing the 
overhead associated with state saving. Fujimoto et. al. [21] developed special-purpose 
hardware to support fast state saving. Another approach is to reduce the frequency of 
state savings. If a process with L VT equal to T3 receives a straggler with timestamp T2 

< T3 the process normally rolls back to T2 and resumes execution from that point. 

However, if TI < T2 is the timestamp of the last checkpointed event, the events with 

timestamps between T I and T 2 are reexecuted to produce the state of the process at T 2' 

This reexecution phase is called coasting forward. In this phase, any scheduling of future 
events is ignored because the purpose of this phase is to restore a process state that was 
not preserved. The selection of the checkpoint interval is a tradeoff between the total cost 
of checkpointing and the amount of re-execution in coast forward. 

Lin et al. [28] proposed an optimization algorithm that quickly selects the optimal 
checkpoint interval during the execution of Time Warp simulation and takes into 
consideration the effect of the checkpoint interval on the rollback behavior. Performance 
of the algorithm is tested for stochastic closed queuing networks. The algorithm is found 
to find the true optimal checkpoint interval within a small number of iterations. 
Palaniswamy and Wilsey [42] analytically compare periodic state saving with a 
technique called incremental state saving. In incremental state saving, only the 
incremental changes in state are saved in the state queue as events are processed. They 
conclude that incremental state saving has the potential to outperform periodic state 
saving if the number of increments saved after each execution is small. Ronngren and 
Ayani [47] also analyze the effects of sparse checkpointing on the performance of Time 
Warp. They also present a method that allows each logical process to continuously adapt 
its state-saving interval based on its rollback behavior. They show that this method has 
low overhead and consumes less memory which improves performance. Fleischmann and 
Wilsey [IS] analyze three techniques which dynamically or statically adjust the 
checkpointing interval including that of Ronngren and Ayani. They also propose a 
heuristic algorithm for this purpose. Their results show a significant difference in the 
performance of the implemented algorithms with the dynamic outperforming static 
algorithms. 
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4. Hybrid and Adaptive PADS Techniques 

Conservative and optimistic approaches to PADS usually encounter limitations 
when the size and complexity of the simulated system increases. The blocking problem 
and the sensitivity to lookahead in the conservative protocols, and cascading rollbacks 
and state saving problems in the optimistic protocols are the key limitations for the 
respective approaches. Hybrid and/or adaptive approaches, with features of both Time 
Warp and conservative approaches, seem to provide the solution. 

4.1 Adding optimism to conservative protocols 
Reynolds [46] defines the aggressiveness of a PADS protocol as relaxing the 

requirement that messages be processed in a strict monotonic timestamp order. Risk is 
defmed as passing messages that have been processed based on aggressive or inaccurate 
processing assumptions. Time Warp is an example of a maximal aggressiveness protocol 
with maximal risk. 

To add optimism to a conservative protocol, the protocol may optimistically 
simulate the first event from its event list whenever a logical process is to be blocked. 
This is basically the approach followed by Dickens'and Reynolds [13] and Rajaei, Ayani, 
and Thorelli [44]. This method, however, may not exploit potential parallelism since the 
results are kept local by each logical process until becoming secured. 

4.2 Limiting optimism in optimistic protocols 
Another method for integrating conservative and optimistic approaches is to limit 

the optimism of optimistic approaches. An optimistic scheme can be made less optimistic 
and approach a conservative one if the degree of risk is bounded to a certain limit. For 
example, Bounded Time Warp [55] is a technique that divides the simulation duration 
time into a number of equally sized intervals such that all events inside the current 
interval are started before the next interval is started. In Wolf [34], whenever a rollback 
occurs, special messages are broadcast in order to stop the spread of the erroneous 
computation. In Moving Time Windows [49] a window boundary is used to limit the 
optimistic computation using a window with a predefined size. 

Madisetti, Hardaker and Fujimoto [33] propose the MIMDIX system which has 
additional processes called Genie processes which are used at regular intervals to 
probabilistically determine whether to resynchronize the logical processes in order to 
slow down their progress. McAffer [36] uses a sliding window mechanism for both 
sending and receiving messages which could lead to deadlock situations. 

4.3 Switching between optimism and conservatism 
A third method for integrating conservative and optimistic approaches is to switch 

between optimism and conservatism. It would be desirable, in this case, to determine the 
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degree of aggressiveness and risk dynamically. This requires extra information to be 
stored and processed which can degrade performance. In Composite ELSA [I], a node 
can switch between conservative and optimistic modes by providing extra information 
which is used to determine if an event is certain or guessed. In Adaptive Time Warp [3], 
a tuneable blocking window is defined such that a processor is blocked for a window 
duration whenever it experiences an abnormally high number of rollbacks. 

Jha and Bagrodia [24] propose a methodology to unify conservative and 
optimistic techniques in an attempt to create an adaptable protocol which allows 
conservative and optimistic processes to coexist. This has the advantage of allowing 
different subsystems with contradictory characteristics to choose to be conservative or 
optimistic depending on their runtime behavior. Furthermore, logical processes whose 
behavior changes dynamically would be allowed to switch at runtime to the opposite 
mode of operation. It is not clear, however, which criteria should be used to decide when 
to switch modes. 

Harnnes and Tripathi [22] also address the adaptivity issue by proposing a method 
which selects the optimum operating point for each logical process in the continuum of 
protocols from pure conservative to pure optimistic. This is done by defining a blocking 
window for individual channels for each process whose size is regularly optimized based 
on statistics gathered by the process at runtime. 

4.4 The aggressive adaptive-risk approach 
Protocols that add optimism to the conservative approach usually cannot support 

dynamic configurations which is desirable in large and complex simulations. The main 
drawback, of protocols which limit optimism is to determine an appropriate limiting 
boundary to significantly improve performance for large scale simulations. Switching 
between conservative and optimistic modes of operation is attractive for systems where 
the behavior of the various components change dynamically. However, the determination 
of the needed extra information and how it is to be used to arrive at a decision as to 
which mode of operation is more appropriate, is not clear. 

A novel scheme was developed by Soliman and Elmaghraby [51] for the 
unification of the conservative and optimistic paradigms in a clustered and adaptive 
manner. The idea is based on grouping processes with similar characteristics into 
ensembles or clusters. Each cluster internally runs a modified version of the Time Warp 
protocol, while interacting with other clusters. The internal protocol allows the member 
processes the maximum degree of aggressiveness as in the original Time Warp protocol. 
However, the internal protocol requires the use of special buffers for cluster output 
messages in order to control the degree of risk. Fig. 4 shows the architecture of a 
distributed simulator using AAR. By holding cluster output messages in buffers, the 
protocol can effectively control cascading rollbacks, a problem associated with Time 
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Warp, since a large proportion of straggler messages could be generated before the 
release of the buffered messages to other clusters. Therefore, by controlling the duration 
of the real-time period in which the messages are stored in the cluster buffers, and the 
range of message timestamp values that will be released each time, one can adaptively 
control the degree of risk in order to be able to set a bound on ¢e probability of an inter­
cluster rollback, and maximize the rate of change of simulated time with respect to real 
time for each link. 

Fig. 4. The architecture for the aggressive adaptive-risk scheme. 

5. Experimental Performance Results 

Experiments are conducted to compare the performance of the CMB and the AAR 
techniques with that of Time Warp using a network of workstations. Description of these 
experiments and their results are presented in this section. 

5.1 Description of the experiments 
Implementations of the CMB and Time Warp protocols are developed on a 

network of four HP9000n35 workstations interconnected by a IOMbit/sec Ethernet. 
Each machine runs 4 LP's. and the 16 LP's are connected as a 4x4 torus topology as 
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shown in Fig. 5. A synthetic simulation workload is used for the experiments. The 
distribution of the computation time per event and the routing probability are parameters 
of the workload. The torus topology is divided into 4 cells of 4 LP's each and each cell is 
mapped to one processor. 
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Fig. S. The 4x4 torus topology. 

S.2 Results 
The performance of the CMB and Time Warp protocols was studied on the above 

testbed. It is observed in Fig. 6.a that speedup increases for CMB as the event 
computational time delay is increased from 10 ms to 50 ms. This verifies that a large 
computation granularity is required for a parallel simulator to yield acceptable 
performance. Since the message population determines the amount of parallel activity 
that can occur in the simulation, increasing the message popUlation from 8ILP to 321LP is 
seen to increase speedup. Fig. 6.b illustrates the effect of lookahead on speedup in CMB, 
The lookahead ratio (LAR) is defined as the mean service time an LP provides for each 
event to the minimum service time [16], A low value ofLAR means better lookahead 
properties. It is seen that a high value of LAR=5 results in speedups below one, whereas 
a low value of 1.5 results in a reasonable 1.5 for a message popUlation of 81LP. This 
clearly shows the sensitivity of CMB performance to the simulation lookahead 
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properties. In fact, it is required in CMB that each feedback loop in the simulated system 
topology contain at least one LP with nonzero lookahead value. 
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Fig. 6 a. CMB speedup vs. computational delay for LAR = 1. S. 
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Fig. 6 b. CMB speedup .s. computational delay for message population 8JLP. 

The performance of the Time Warp protocol is also studied on the above testbed. The 
modified version of the Chandy-Lamport snapshot algorithm was used for GVT 
computation. From Fig.7 it is clear that Time Warp outperforms CMB for this 
simulation. This is due to the optimistic nature of Time Warp which, unlike CMB, allows 
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it to utilize whatever parallelism is present in the system. Moreover. it is seen that 
increasing event computational granularity also increases the obtainable Time Warp 
speedup. This result is accounted for by the low network bandwidth requirements for 
large event granularity simulations. Increasing the message population to as high as 
50ILP is seen to cause perfonnance degradation. This is due to the increase in the time 
required for event list insertions and deletions. a problem not present in conservative 
algorithms since they use FIFO queues. 
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Fig. 7. Time warp speedup vs. computational delay for message populations 2!ILP and 5OILP. 

Figure 8 shows the speedup plot for the Clustered Parallel Simulator (CPS). a 
nonadaptive implementation of the aggressive adaptive-risk technique (AAR) discussed 
above. and that of Time Warp versus the simulated-time window size associated with the 
AAR technique. The CPS implementation is also developed on a network of eight HP 
9000n35 workstations interconnected by a JOMbitlsec Ethernet. Each of the eight 
machines runs 16 logical processes connected as a 4x4 torus forming an overall 8x16 
torus topology. A fixed initial message population of 100 messages per logical process is 
used. It is also assumed that the state-vector size is zero and the load is uniform. Fixed 
simulated-time window sizes of .1 •. 3 • .5 and 1 simulated-time units are selected after a 
few initial runs. Three cases for the CPS real-time release intervals are considered: 
release every execution of the main program loop. release every 5th execution of the 
main program loop. and release every 10th execution of the main program lOOp. 
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The performance results of Fig. 8 show that a speedup of about 5.7 was achieved 
by the Time Warp simulalor using the 8-machine testbed. A noticeable speedup 
improvement of about 1.5 is observed for the three cases of CPS indicating that the 
output buffering mechanism used in the AAR scheme was successful in limiting the 
overheads associated with processing external stragglers. This decrease in overhead is 
attributed to a decrease in the number of rollbacks in the destination cluster and local 
message cancellation in the cluster buffer of the source cluster. It is also observed that 
the effect of varying the real-time message release interval' was almost negligible. 
Moreover, varying the (fixed) simulated-time window size also seems to have a small 
impact on speedup, although a general trend of increase with increasing window size is 
observed. 

6. Conclusion 

An extensive review of the state of the art in parallel and distributed simulation 
methodologies has been presented. Emphasis has been on recent research directions 
towards developing hybrid and adaptive techniques. Hopefully, these techniques will 
overcome the shortcomings of existing PADS techniques. Sample performance data, 
using a network of workstations, are reported to demonstrate some of the capabilities and 
limitations of both conservative and optimistic techniques. 
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