
J.King Saud Univ., Vol.9, Computer & Information Sci., pp. 1-20 (A.H 1417/1997)

A Simulation Approach to Evaluate the Time Cost of
Parallel Computations

Bin Qin *, Reda A. Ammar and Howard Sholl **
• IBM Canada Limited, 3TI640III5O/TOR, 1150 Eglinton Avenue East, North York, Ontario

M3C lH7, Canada

**U-155, Computer Science & Engineering Dept., The University of Connecticut Storrs,

CT 06269-3155, USA

(Received, 05 June 1993; accepted for publication, 03 July 1995)

Abstract. In this paper, the execution time cost of a parallel computation in a shared
memory environment is defined as a function of the input, the algorithm, the data structure,
the processor speed, the number of processors, the processing power allocation and the
communication between processors. The computation structure model is modified to describe
the impact of these seven factors on the computation's execution time cost. A simulation
technique is developed to analyze and evaluate the computation's execution time. A software
tool, TCSS (Time Cost Simulation System) that implements the simulation technique is also

described.

Key words: Performance modeling; simulation; Parallel computations; Time cost analysis.

1. Introduction

Execution time cost is one of the important metrics to measure the quality of software
designs. Research work in the area of time cost analysis has resulted in many models

and tools [2-9, 11-14, 16,17]. Most of the work done in this area has been concentrated

on time cost analysis of sequential computations. However, as parallel computing is

I

2 Bin Qin, et al.

widely used in applications where time critical requirements exists, there is a necessity
to develop models, techniques and tools to investigate the execution time cost of parallel

computations [10,12].

The execution time cost of parallel computations depends on many factors [12]
such as:

I. The size of the input to the computation, If the computation is used to sort a
table of n elell!ents, the execution time cost of the computation increases as

the size of the table increases.

2. The algorithm used in the computation. To sort a table, we may use a
bubble sort algorithm or a quick sort algorithm. Using different algorithms

will yield different execution time costs.

3. The data structure used in the computation. A string can be represented as an
array or a link list. Different representations need different processing and

therefore, they impact the execution time of the computation.

4. The processor speed. In general, as the speed of the processor increases, the
execution time cost of the computation decreases.

5. The number of processors available. In general, as the number of processors

increases, we may achieve lower execution time cost.

6. The processing power allocation policy [12]. Each processor has a processing
power equal I. If the number of processors is 5, we say that the processing

power is 5. The processi'ng power allocation policy determines how much
processing power is allocated to each computation. If a computation is

allocated more processing power, it may have lower execution time cost. If a
computation is allocated a processing power smaller than I, it means that

another computation will be executed by the same processor.

7. The communications between computations. If two computations need to

communicate with each other in order to fulfill a task, the way the
communication is carried out and the execution time spent on the

communication will influence the execution time costs of both
computations.

A Simulation Approach ...

Often, the execution time cost of a computation is only defined as a function
of the first four factors. To better analyze the execution time of parallel

computations, we need to model the impact of other factors on the execution
time cost. In this paper, we develop a modeling technique and a simulation

tool TCSS (Time Cost Simulation System) to study the execution time cost
of parallel computations as a function of the above seven factors. We assume

that the underlying execution environment is CREW MIMD [10] with a
limited number of processors such as the Sequent machine or the Sparc
2000. All the processors in the environment have unity processing power

and they communicate with each other through a shared memory that allows
concurrent read but does not allow concurrent write (CREW MIMD model

[1OJ).

This paper is organized as follows. The execution time cost modeling in the
TCSS system is first discussed in Section 2. The general structure of the

TCSS system and how it works are presented in Section 3. The simulation
approach is given in Section 4. An example is used in Section 5 to

illustrate the use of the TCSS system. Concluding remarks are finally given

in Section 6.

2, Modeling of the Time Cost

Our work is based on the computation structure model [12, 13] that describes the
detailed execution time of computations. This model has been successfully used as the

underlying models in several time cost analysis systems [2-7, 17]. In this section. we
briefly describe this model. More details about the model can be found in [12. 13].

A computation in the computation structure model is represented as two directed

graphs, a control graph and a data graph. The control graph shows the order in which
operations are performed, while the data graph shows the relations between operations

and data.

The control graph contains a start node, an end node. operation nodes, decision

nodes, or nodes, fork nodes and join nodes. The start and end nodes indicate the
beginning and end of the computation; an operation node specifies an operation to be

performed; a decision node checks conditions at a branch point; an or node serves as a
junction point; a fork node creates parallel execution paths; and a join node merges

parallel execution paths into a single path. The execution of a computation is triggered

4 Bin Qin, et al.

when an activation signal enters the control graph of the computation. When a signal
enters an operation node, the operation specified by the node is performed and the signal

then leaves the node. When a signal arrives at a decision node, the decision node checks
some conditions and the signal leaves the node from one of its outgoing edges depending

on the result of checking. When a signal arrives at an or node from one of its incoming
edges, it immediately leaves the node from its outgoing edge. When a signal reaches a

fork node, the fork node creates parallel execution paths and an activation signal is put
on each parallel path. When a join node receives one signal from each of its incoming
edges, an activation signal is created and it leaves the join node from its outgoing edge.

When an activation signal finally arrives at the end node, the execution terminates.

The data graph contains operation nodes and data nodes. The former is represented
as a circle and the latter as a box. A data item is the input to an operation if there is an

edge from the data node to the operation node. Similarly, a data item is the output of an
operation if there is an edge from the operation node to the data node.

Figure I illustrates the computation structure of a sequential computation. The

control graph is given in Fig. I.a and the data graph is given in Fig. I.b. The weight
of each edge in the control graph indicates the number of times the edge is traversed by

activation signals. This computation copies a string t with a length of n to string s.
Operations in the computation are defined as follows:

op] : if-I

oP2 : s [i] f-- t [i]

oP3 : i f-- i + 1

D:i5,n

The execution time of a computation is defined as follows. Each node in the

control graph is associated with execution time which is equal to the time needed to
perform the operations specified by the node. When a node with execution time cost C

receives all the required activation signals, the execution of the specified operations are
started and after C amount of time, activation signals leave the node. The execution

time cost of a computation is then defined as the time for an activation signal to travel
from the start node to the end node.

The computation structure model, described above, only defines the execution

time cost as a function of the input, the algorithm, the data structure and the processor
speed. To model the impact of the processing power, allocation policy and the

A Simulation Approach .. 5

Fig. 1.a

s t

n

Fig. l.b

Fig. 1. Example of a sequential computation.

6 Bin Qin. et al.

communication on the execution time. we modify the computation structure model. In
the modified model. it is assumed that the underlying execution environment has a

limited number of processors. all the processors in the environment have unity
processing power and they communicate with each other through a shared memory

(CREW MIMD model [10]).

From the above description. it is clear that all factors except the processing
power and the allocation policy are implicitly represented by the computation structure
model. To model the impact of processors and processing power allocation on the

execution time. we assume activation signals have the abilities to carry processing
power and allocation policy as they travel in the control graph of a computation. Given

a computation C • we define its execution time cost as Coste (P. A) if P processing

power is provided to C and P is allocated using the processing power allocation policy
A . The only restriction put on P is P > o. P ~ I means the computation C uses more

than unity processing power. P < I means the processor shares one processor with other
computations and C only gets P * 100% of the processing time. It is assumed that

the processing power allocation and release are carried out at the beginning and at the end
of a computation's execution respectively. That is. a computation will hold the same

amount of processing power during the execution. The amount of processing power
carried to the start of a computation by the activation signal is what is allocated to the

computation. On the other hand. the allocation policy carried to the start node is the one
passed to the computation. When an activation signal reaches a node V. node V receives

the processing power and the allocation policy carried by the signal, and it uses them to
perform the specified operations. If the amount of processing power and the allocation

policy received are P and A. respectively. the execution time cost of node V is then
equal to Costv (P. A). As in the original model. the execution time cost of the

computation is defined as the time for an activation signal to travel from the start node
to the end node of the computation. However. the amount of time an activation signal

stays in a node depends on how much processing power the node receives which on turn.
depends on the allocation policy.

Suppose the amount of processing power and the allocation policy carried by an

activation signal are P and A. respectively. If an activation signal enters a node which is
not a fork nor a join node. an activation signal will leave the node with the same

amount of processing power and the same allocation policy after the specified operation
is performed.

Consider the parallel structure illustrated in Fig. 2 (the weights of an edge in

A Simulation Approach ... 7

Fig. 2 represent the amount of the processing power and the allocation policy carried by
the activation signal which traverse the edge), the fork node uses the received allocation

policy to allocate the received processing power among its n successor nodes. N
activation signals are created by the fork node. All the activation signals generated by

the fork node carry the same allocation policy A . Node 0Pi carries Pi processing

power. How the allocation is carried out is totally detemined by the allocation policy A .

The only restrictions put on the allocation are as follows:

(P,A)

FIg. 2. An example of parallel structure.

For the join node in Fig. 2, when it receives an activation signal from each of its

incoming edges, it creates an activation signal. The signal created by the join node
carries allocation policy A, and if the activation signal coming from node 0Pi carries

Pi processing power, the activation signal generated by the join node then carries P =

L 7 = 1 Pi processing power.

8 Bin Qin, et af.

The execution time cost of a computation is still defined as the time for an

activation signal to travel from the start node to the end node. It depends on the seven
factors described above. The first five factors are represented by the structure of the

model, whereas the last two (the processing power and the allocation policy) are
represented as parameters, the amount of processing power P is not necessary to be an

integer number. The only restriction put on P is P > o. P;:: I means computation C
uses more than unity processing power. P < I means computation C shares one

processor with other computations and C can only get P * 100% of the processor time.

For the parallel structure as illustrated in Fig. 2, if the amount of processing
power and the allocation policy received by the fork node are P and A, respectively, we

define its execution time cost as:

Cost/ork (P, A) + max {CostopI (P I' A), ... , Costopn (P" A)} + Cost join (P, A)

A sequential computation (or a node N which contains no parallel paths) needs a
special treatment. It is assumed that the execution of a sequential computation can be

continued without waiting if no les than unity processing power is provided during its
execution. For sequential computations, we define its base time cost as its execution

time cost given that unity processing power is provided. Since such a node doesn't
contain any parallel paths, its execution time cost is independent of the processing
power allocation. Therefore, the base time cost of a sequential computation C is equal to

Coste (I, A') where A ' is any allocation policy. Given a sequential computation C,

suppose P processing time is provided. We define the execution time cost of C as

follows:

C (P A) - Costc(l, A') _ C 's base time cost
ost C' - m in (l, P) - -=-=-m=;=in'-"(";:r"""; P""):-=-=-=

where A and A' are any allocation policies.

The above indicates that the base time cost of a sequential computation is the

best execution time cost one can get. Providing more than unity processing power to a
sequential computation will not reduce its execution time cost, and providing less than

unity processing power to such a node will force the computation to wait during its
execution, therefore, resulting in an increase of its execution time cost.

To model the communication, we use a locking technique [15] to manipulate the

accesses to shared data. It is assumed that each shared data item is associated with two

A Simulation Approach ... 9

locks, a read lock and a write lock. To read a shared data item, one needs to obtain a read

lock on that shared data time. Similarly, a write lock on a shared data item is required if
one wants to perform a write operation. Several operations performed in parallel can read
a shared data item at the same time. However, no other read or write lock on a shared

data item is granted if a write lock on that shared data item has already been held.

To include the data access control into the computation structure model, two new
types of nodes, a lock node and an unlock node, are added to the computation structure

model. The lock node is used to obtain locks on shared data and the unlock node is used
to release locks. Each lock or unlock node has an incoming edge and an outboing edge

associated with it in the control graph. A lock node needs to obtain a read lock on data
item X if X appears as an input to the lock node in the data graph. Similarly, a lock

node needs to obtain a write lock on X if X appears as an output from the lock node in
the data graph. If X is connected with an unlokc node in the data graph, the unlock node

releases a read or write lock on X depending on whether X appears as an input or output
of the unlock node. Figure 3 illustrates an example of lock and unlock nodes. In Figure

3, the lock node needs to obtain read locks on X and Z, and a write lock on Y; the
unlock node releases write locks on A and C, and a read lock on B.

It is assumed that a lock node obtains all its required locks at the same time. If

the lock node can not get all the required locks, it is put into a lock waiting queue. In
this way, a lock node will never hold some locks and wait for some other locks. When

some locks are released by an unlock node, lock nodes in the lock waiting queue are
checked to see if their reqests can be satisfied. The checking is done in an FIFO order.

Once all the requests of a lock node are satisfied, the lock node is removed from the
queue.

The execution time cost of a computation here is again defined as the time for an
activation signal to travel from the start node to the end node. When an activation signal

enters an unlock node, the unlock node starts to release locks. After required locks are
released, the activation signal leaves the unlock node. The execution time cost of an

unlock node is then equal to the time to release the required locks. When an activation
signal enters a lock node, the lock node starts to wait for the required locks. When all

the locks on required data are available, the lock node manipulates these locks. After all
the required locks are obtained, the activation signal leaves the lock node. The execution

time cost of a lock node is then equal to the sum of the time to wait for the req~ired
locks and the time to manipulate these locks.

10 Bin Qin. et al.

z

A

c

B

control flow dataflow

Fig. 3. An example of lock and unlock nodes.

Given the model defined in this section. some uncertainties may occur. This

happens when more than one lock node in parallel requires conflict locks on a shared
data item (read and write locks, or write and write locks). Consider the parallel structure

in Fig. 4. A conflict occurs in the parallel structure since lockl and lock2 both require
write locks on X at the same time.When this occurs, it is assumed that the computer

system will arbitrarily choose one lock node to obtain its required locks first (all lock
nodes are equally likely). The probability of selecting a lock node to get its required

locks first is assumed to be uniformly distributed. The problem of ordering different lock
nodes is studied in depth in other works[15]. If any uncertainty occurs, the average

execution time cost is used as the execution time cost.

3. The Time Cost Simulation System (TCSS)

To automate the exection time cost analysis of parallel computations, a software
tool (TCSS) was designed and implemented . TCSS is an interactive system. It is

A Simulation Approach ... 11

dataflow

control flow

FiJ:. 4. An example of conflict.

implemented in C and runs under the Unix system. A set of commands are provided in

TCSS for users to carry out the execution time cost analysis and evaluation. Generally
speaking, what the TCSS system does is to take the user's computation as input and

determine its execution time by using the simulation approach. The modified
computation structure model discussed in section 2 is used as the underlying model in

TCSS. Three parameterss, the number of processors, the processor speed and the

allocation policy, are used in TCSS to characterize the property of the environment that
supports the execution of the computation to be analyzed. The user can use some TCSS

commands to change the characteristics of the execution envionment. By changing the
characteristics of the environment, the execution time of the user's computation
changes.

12 Bin Qin. el ai.

Figure 5 illustrates the general structure of the TCSS system. The user interface
provides interaction between the TCSS system and users. It interprets user commands
and calls corresponding system modules to fulfill the user's task. The user's computation

to be analyzed is written in a language supported by TCSS. One of these language is a
graphical language that allows a user to build the computation structure model directly

[3]. However, a model deriver can be built for each language supported by TCSS.
Currently, TCSS supports C and a Pascal-like language. The derived computation

structure model contains all the information necessary to carry out the execution time
cost analysis. Typically, each node in the model has a base time cost; each edge has a

flow count that indicates the number of times the edge is traversed; and if a node is a
lock or an unlock node, what and how many locks are to be obtained or released in that

node are also specified.

Once the computation structure is derived, a flow analysis technique [2] is used in
the flow balance analyzer to determine the number of times each operation in the

computation is performed. The computation with flows analyzed is then sent to the
execution time cost simulator which uses the simulation technique to determine the

execution time cost of the computation. The execution time cost obtained from
simulation is then used by the execution time cost evaluator for further time cost

analysis.

The execution time cost evaluator contains a number of packages to calculate
different execution time statistics of the user's computation. It can determine the

minimum time cost, the maximum time cost, the average time cost and the time cost
variance. It can also graphically represent the time cost against different performance

paremeters and the time cost distribution.

4. Time Cost Analysis Through Simulation

The execution time cost simulator uses the simulation technique to determine the
execution time cost of the computation to be investigated. What the execution time cost

simulator does is to simulate the traveling of the activation signal in the computation to
be investigated using the modified computation structure model described in Section 2.
During the simulation, an activation signal carries three attributes, execution time cost

attribute, processing power attribute and allocation policy attribute. Locks of all the
variables in the computation are initialized before simulation. The simulation process

starts when an activation signal enters the start node of the computation. The execution

A Simulation Approach ... 13

User interface

~
Result Request Ir

Time cost evaluator

~

Time cost simulator

~

Row balance analyzer

~

Computation structure deriver

,~

Computation

Fig. 5. General structure of TeAS system.

time cost attribute of this activation signal is initialized to zero. The processing power

and allocation policy attributes of the signal are initialized according to the property of
the execution environment in which the user's computation resides.

When an activation S carrying processing power P and allocation policy A

arrives at a node N that has a base time cost T , T is added to the execution
min(\,P)

time cost attribute of signal S.

If node N is a decision node, a random number generator is used to determine
which outgoing edge signal S should take.

If node N is a fork node, the execution time cost simulator creates one activation

14 Bin Qin. et a/.

signal for each parallel path. The execution time cost and allocation policy attributes of
signal S. The processing power attribute of each signal is assigned a proper value

according to allocation policy A.

If node N is a join node. signal S is buffered in the join node. When the join
node receives all the required signals. an activation signal is created and then it leaves the

join node. For this activation signal. its execution time cost attribute is set to the
maximum value of the execution time cost attributes of the signals buffered in the join

node; its processing power attribute is set to the sum of the processing power attributes
of these signals; and its allocation policy attribute is set to the allocation policy

attributes of these signals.

If node N is a lock node. the execution time cost simulator checks if all the
required locks can be obtained. If so. all the required locks are set. Otherwise. signal S is

put into the lock waiting queue.

If node N is an unlock node. certain number of variables are unlocked according
to the description of the unlock node. Once some locks are released. signals in the lock
waiting queue are checked. if all the locks for a signal can be obtained. such a signal is
then removed from the queue. The amount of time the signal stays in the queue is added

to the execution time cost attribute of the signal.

Due to parallelism in the computation. there may be more than one signal that is
active at a time. If two or more signals require conflict locks at the same time. a random

number generator determines which signal can get locks fir:st. All the other signals are
then put into the lock waiting queue.

When an activation signal finally arrives at end node of the computation. the

simulation process terminates. The execution time cost attribute of the signal is then
the execution time cost of the computation.

5. Example

To illustrate the use of the TeSS system. consider the classical producer -

consumer problem. Assume there are one producer and one consumer. The producer
produces n products and puts the products into a buffer. while the consumer gets these

products from the buffer and consumes them. However. the producer and the consumer
can not access the buffer at the same time. the buffer can only hold ten products. the

producer can not put a product into the buffer when the buffer is full and the consumer
can not get a product from the buffer when the buffer is empty. The following is the

corresponding computation which is written in a Pascal-link language.

A Simulation Approach ...

computation (n: integer)
(@ perf(n, full, empty) }

var count, i, next, j, first, produce, consume: integer;

buffer: array [1..10] of integer;

begin
count := 0;

fork
begin { producer}

end
end;

next := I;

for { @ n } i := 1 to n do begin

produce := i; {.................... produces product}
lock (buffer, count: write);

while { full } count = 10 do
begin

unlock (buffer, count: write);

lock (buffer, count: write)
end;

count := count + 1;
buffer [next] := produce; puts product into buffer
unlock (buffer, count: write);

next := next - (next 110) • 10 + I

begin consumer
first := I;

for { n } j := 1 to n do
begin

end
join

end

lock (buffer: read, count: write);

while I @ empty} count = 0 do
begin

unlock (buffer: read, count: write);

lock (buffer: read, count: write);
end;

count := count - 1;
consume := buffer [first]; {.......... gets product from buffer}
unlock (buffer: read, count: write);

consume := consume + j; {.......... consumes product}

first := first - (first I 10) • 10 + I

15

16 Bin Qin, et al.

In the above computation, the fork - join statement is used to create two parallel
paths that correspond to the producer and the consumer. The lock and unlock statements

are used to obtain and release locks, respectiyely. Special count segments that start with
"signs are used to provide information needed for time cost analysis. The first special

comment segment indicates the computation has three performance parameters, n, full
and empty, with n indicating the number of products to be produced or consumed,

full indicating the number of times the producer finds the buffer full when it needs to
put products into the buffer, and empty indicating the number of times the consumer
finds the buffer empty when it needs to consume products. For each " for " loop

statement or while loop statement, a special comment segment is used to indicate the
number of time the body of the loop is executed. Statement produce = i in the producer

is used to simulate the product producing process, while statement consume = consume
+ j in the consumer simulates the product consuming process.

Assume the underlying computer system has one Vax processor and processing

power is equally allocated. Assume the number of products to be produced is 8 and the
buffer is never full or empty. Thus, n = 8, full = 0 and empty = O. In the following, the

chg command is used to set the execution environment and the cost command
determines the execution time cost (units are microseconds):

=>chgpl

= > chg rna Vax
= > chg a equal

= > cost produce_consume (8, 0, 0)

produce30nsume: execution time cost: 1059.00 ~ sec

Assume the underlying computer system has two PDP - II processors and

processing power is equally allocated. Assume the number of products to be produced is
50 and the consumer is always slower than the producer. Thus, n = 50 and empty = O.

Further assume the number of times the producer finds the buffer full varies from 0 to
100 and it is binomially distributed with p = 0.6. The following TeAS commands set

the assumptions and determine the average execution time cost (command mean
determines the average execution time cost):

=>chgp2
= > chg rna PDPII

= > mean binomial produce_consume (50, 0: 100,0)
produce_consume: computation structure derived

A Simulation Approach .. , 17

value for parameter p: 0.6
average execution time cost of produce_consume: 16950.69 ~ sec

Assume the underlying computer system is the same as before. Assume the
number of products to be produced is 20, the consumer is always faster than the

producer, and the number of times the consumer finds the buffer empty is 45. Thus, n =

20, full = ° and empty = 45. The corresponding execution time cost is:

= > cost produce_consume (20, 0, 45)
produce_consume: execution time cost: 9137.13 ~ sec

Assume the underlying computer system has the same properties as before.
Assume the number of products to be produced is 30, the number of times the producer

finds the buffer full is 40, and the number of times the consumer finds the buffer empty
is 50. The corresponding execution time cost is:

= > cost produce_consume (30, 40, 50)

produce_consume: execution time cost: 13037.31 ~ sec

We also used the tool to evaluate the execution time for the matrix

multiplication when it runs on the Sequent Symmetry machine [10]. Figure 6 shows
the results produced by the tool and the results produced by real measurement of the

execution time. The dashed line represents results produced by the simulation tool
whereas the solid line represents measurement. It is clear that performance evaluation

derived by the tool matches real measurement.

6. Conclusions

This paper describes a software tool that has been designed and implemented to
aid users in simulating the execution time of parallel computations. The tool is useful

in that it provides considerable insight into the factors that are important in determining
the execution time of parallel computations. This insight can be used to decide what

Changes are necessary to improve the execution time. With this tool, it becomes easy
for users to compare different designs of a parallel computation and choose the one with

the minimum execution time as the best design [14]. The evaluation tool is being used

III Bin Qin. et al.

u - sec.

1.4 10

1.2 10

Processors

0.8 10

0.6 10

0.4 10

Fig. 6. Execution time of matrix multiplication.

to develop high perfonnance computations and to study the effect of parallelism on real­
life applications [I].

References

[I] Alherbish. 1. High Performance Arabic Character Recognition. Ph.D. dissertation.
University of Connecticut. in preparation (1996).

A Simulation Approach ... 19

[2] Reda, A. A. and Qin, B. "A Flow Analysis Technique for Parallel Computations."

Proceeding of the IEEE PCCC, Litchfield Park, AZ (March 1988).
[3] Reda, A. A.; Wang, J., and Sholl, H. "Software Performance Analysis Using a Graphic

Modeling Technique." The Journal of Infonnation and Software Technology, 33, No.2

(1991), 151-156.
[4] Reda, A. A. "A Computer Aided Design System to Develop High Performance

Software." Journal of Systems and Software, Published by Elsevier Science Publishers

B. V. (North-Holland), 5, No.2 (May 1991), 139-147.
[5] Reda, A. A. "An Experimental-Analytic Approach to Derive Software Performance."

The Journal of Information and Software Technology, 43, No.4 (April 1992), 229-

239.
[6] Booth, T.; Reda, A., and Lenk, R. "An Instrumentation System to Measure User

Performance in Interactive." Journal of Systems and Software, I, No.2 (Dec.1981).

l7] Booth, T.; Zhu, D.; Kim, M.; Qin, B., and Albertoli. C. "PASS: A Performance
Analysis Software System to Aid the Design of High Performance Software." The First

Beijing International Conference on Computers and Applications, Beijing: (June
1984).

[8] Estrin, G. et. al. "SARA (System Architect's Apprentice): Modeling, Analysis, and

Simulation Support for Design of Concurrent System." IEEE Trans. Software
Engineering, SE-12, No.2 (1986), 293-311.

[9] Gabrielian, A.; McNamee, L., and Trawick, D ... The Qualified Function Approach to

Analysis of Program Behavior and Performance." IEEE Transactions on Software
Engineering, SE-ll, No.8 (Aug. 1985).

[10] Hwang, Kai. Advanced Computer Architecture. New York: Me Graw-Hill, 1993.

[II] MollOY, M. K. Fundamentals of Performance Modeling. New York: McGraw-Hill,
1990.

[12] Qin, B.; Sholl, H., and Ammar, R. A. "Micro Time Cost Analysis of Parallel
Computations." IEEE Transactions on Computers, 40, No.5 (May 1991), 613-628.

[13] Sholl, H. and Booth, T. "Software Performance Modeling Using Computation

Structures." IEEE Transactions on Software Engineeimg, SE-l, No.4 (Dec. 1975).
[14] Smith, C. and Williams, L. "Software Performance Engineering: A Case Study

Including Performance Comparison with Design Alternatives." IEEE Trans. on

Software Engineering, 19, No.7 (July 1993).
l15] Tanenbaum, A. Operating Systems: Design and Implementation. Englewood Cliffs,

New Jersey: Prentice-Hall, Inc., 1987.

[J6] Wegbreit, B. "Verifying Program Performance." Journal of ACM, 23, No.4 (Oct.
1976).

[17] Wetmore IV, T. The Performance Compiler - a Tool for Software Designs. MSc
Thesis, Computer Science & Engineering Dept., University of Connecticut, 1980.

20 Bin Qin, et at .

.l:&::l' .,..J ~ rl...11 .,~~, .IS\­

~J' ,,:11 ~"...l.L' .:", ~ .,J.l

,.;,')\,:.J.i.1 -i <JI.IS '<.;1.,....:. -=.,...L>- • .1>-) l,.dl ;..as::".;; ,,;.,..u U))1 '~-i ' ~, ~
U'J ,<J,-L.J.I uu. ~ ,<J,-WI.;,I.1>-J'~ ,<J,-WI '.L>-J ~r" ,.;,~l,,-,ll ~I; ''''''''''j)yLl

,~I J-1".J1,~;t r::!'~ .,...yl-I N C;~ J<-"" r" J.iJ ,.;.,Ll,-WI ~ J~':I1

