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Abstract. In this paper, the execution time cost of a parallel computation in a shared 
memory environment is defined as a function of the input, the algorithm, the data structure, 
the processor speed, the number of processors, the processing power allocation and the 
communication between processors. The computation structure model is modified to describe 
the impact of these seven factors on the computation's execution time cost. A simulation 
technique is developed to analyze and evaluate the computation's execution time. A software 
tool, TCSS (Time Cost Simulation System) that implements the simulation technique is also 

described. 
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1. Introduction 

Execution time cost is one of the important metrics to measure the quality of software 
designs. Research work in the area of time cost analysis has resulted in many models 

and tools [2-9, 11-14, 16,17]. Most of the work done in this area has been concentrated 

on time cost analysis of sequential computations. However, as parallel computing is 
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widely used in applications where time critical requirements exists, there is a necessity 
to develop models, techniques and tools to investigate the execution time cost of parallel 

computations [10,12]. 

The execution time cost of parallel computations depends on many factors [12] 
such as: 

I. The size of the input to the computation, If the computation is used to sort a 
table of n elell!ents, the execution time cost of the computation increases as 

the size of the table increases. 

2. The algorithm used in the computation. To sort a table, we may use a 
bubble sort algorithm or a quick sort algorithm. Using different algorithms 

will yield different execution time costs. 

3. The data structure used in the computation. A string can be represented as an 
array or a link list. Different representations need different processing and 

therefore, they impact the execution time of the computation. 

4. The processor speed. In general, as the speed of the processor increases, the 
execution time cost of the computation decreases. 

5. The number of processors available. In general, as the number of processors 

increases, we may achieve lower execution time cost. 

6. The processing power allocation policy [12]. Each processor has a processing 
power equal I. If the number of processors is 5, we say that the processing 

power is 5. The processi'ng power allocation policy determines how much 
processing power is allocated to each computation. If a computation is 

allocated more processing power, it may have lower execution time cost. If a 
computation is allocated a processing power smaller than I, it means that 

another computation will be executed by the same processor. 

7. The communications between computations. If two computations need to 

communicate with each other in order to fulfill a task, the way the 
communication is carried out and the execution time spent on the 

communication will influence the execution time costs of both 
computations. 
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Often, the execution time cost of a computation is only defined as a function 
of the first four factors. To better analyze the execution time of parallel 

computations, we need to model the impact of other factors on the execution 
time cost. In this paper, we develop a modeling technique and a simulation 

tool TCSS (Time Cost Simulation System) to study the execution time cost 
of parallel computations as a function of the above seven factors. We assume 

that the underlying execution environment is CREW MIMD [10] with a 
limited number of processors such as the Sequent machine or the Sparc 
2000. All the processors in the environment have unity processing power 

and they communicate with each other through a shared memory that allows 
concurrent read but does not allow concurrent write (CREW MIMD model 

[1OJ). 

This paper is organized as follows. The execution time cost modeling in the 
TCSS system is first discussed in Section 2. The general structure of the 

TCSS system and how it works are presented in Section 3. The simulation 
approach is given in Section 4. An example is used in Section 5 to 

illustrate the use of the TCSS system. Concluding remarks are finally given 

in Section 6. 

2, Modeling of the Time Cost 

Our work is based on the computation structure model [12, 13] that describes the 
detailed execution time of computations. This model has been successfully used as the 

underlying models in several time cost analysis systems [2-7, 17]. In this section. we 
briefly describe this model. More details about the model can be found in [12. 13]. 

A computation in the computation structure model is represented as two directed 

graphs, a control graph and a data graph. The control graph shows the order in which 
operations are performed, while the data graph shows the relations between operations 

and data. 

The control graph contains a start node, an end node. operation nodes, decision 

nodes, or nodes, fork nodes and join nodes. The start and end nodes indicate the 
beginning and end of the computation; an operation node specifies an operation to be 

performed; a decision node checks conditions at a branch point; an or node serves as a 
junction point; a fork node creates parallel execution paths; and a join node merges 

parallel execution paths into a single path. The execution of a computation is triggered 
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when an activation signal enters the control graph of the computation. When a signal 
enters an operation node, the operation specified by the node is performed and the signal 

then leaves the node. When a signal arrives at a decision node, the decision node checks 
some conditions and the signal leaves the node from one of its outgoing edges depending 

on the result of checking. When a signal arrives at an or node from one of its incoming 
edges, it immediately leaves the node from its outgoing edge. When a signal reaches a 

fork node, the fork node creates parallel execution paths and an activation signal is put 
on each parallel path. When a join node receives one signal from each of its incoming 
edges, an activation signal is created and it leaves the join node from its outgoing edge. 

When an activation signal finally arrives at the end node, the execution terminates. 

The data graph contains operation nodes and data nodes. The former is represented 
as a circle and the latter as a box. A data item is the input to an operation if there is an 

edge from the data node to the operation node. Similarly, a data item is the output of an 
operation if there is an edge from the operation node to the data node. 

Figure I illustrates the computation structure of a sequential computation. The 

control graph is given in Fig. I.a and the data graph is given in Fig. I.b. The weight 
of each edge in the control graph indicates the number of times the edge is traversed by 

activation signals. This computation copies a string t with a length of n to string s. 
Operations in the computation are defined as follows: 

op] : if-I 

oP2 : s [i ] f-- t [i ] 

oP3 : i f-- i + 1 

D:i5,n 

The execution time of a computation is defined as follows. Each node in the 

control graph is associated with execution time which is equal to the time needed to 
perform the operations specified by the node. When a node with execution time cost C 

receives all the required activation signals, the execution of the specified operations are 
started and after C amount of time, activation signals leave the node. The execution 

time cost of a computation is then defined as the time for an activation signal to travel 
from the start node to the end node. 

The computation structure model, described above, only defines the execution 

time cost as a function of the input, the algorithm, the data structure and the processor 
speed. To model the impact of the processing power, allocation policy and the 
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Fig. l.b 

Fig. 1. Example of a sequential computation. 
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communication on the execution time. we modify the computation structure model. In 
the modified model. it is assumed that the underlying execution environment has a 

limited number of processors. all the processors in the environment have unity 
processing power and they communicate with each other through a shared memory 

(CREW MIMD model [10]). 

From the above description. it is clear that all factors except the processing 
power and the allocation policy are implicitly represented by the computation structure 
model. To model the impact of processors and processing power allocation on the 

execution time. we assume activation signals have the abilities to carry processing 
power and allocation policy as they travel in the control graph of a computation. Given 

a computation C • we define its execution time cost as Coste (P. A ) if P processing 

power is provided to C and P is allocated using the processing power allocation policy 
A . The only restriction put on P is P > o. P ~ I means the computation C uses more 

than unity processing power. P < I means the processor shares one processor with other 
computations and C only gets P * 100% of the processing time. It is assumed that 

the processing power allocation and release are carried out at the beginning and at the end 
of a computation's execution respectively. That is. a computation will hold the same 

amount of processing power during the execution. The amount of processing power 
carried to the start of a computation by the activation signal is what is allocated to the 

computation. On the other hand. the allocation policy carried to the start node is the one 
passed to the computation. When an activation signal reaches a node V. node V receives 

the processing power and the allocation policy carried by the signal, and it uses them to 
perform the specified operations. If the amount of processing power and the allocation 

policy received are P and A. respectively. the execution time cost of node V is then 
equal to Costv (P. A ). As in the original model. the execution time cost of the 

computation is defined as the time for an activation signal to travel from the start node 
to the end node of the computation. However. the amount of time an activation signal 

stays in a node depends on how much processing power the node receives which on turn. 
depends on the allocation policy. 

Suppose the amount of processing power and the allocation policy carried by an 

activation signal are P and A. respectively. If an activation signal enters a node which is 
not a fork nor a join node. an activation signal will leave the node with the same 

amount of processing power and the same allocation policy after the specified operation 
is performed. 

Consider the parallel structure illustrated in Fig. 2 (the weights of an edge in 
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Fig. 2 represent the amount of the processing power and the allocation policy carried by 
the activation signal which traverse the edge), the fork node uses the received allocation 

policy to allocate the received processing power among its n successor nodes. N 
activation signals are created by the fork node. All the activation signals generated by 

the fork node carry the same allocation policy A . Node 0Pi carries Pi processing 

power. How the allocation is carried out is totally detemined by the allocation policy A . 

The only restrictions put on the allocation are as follows: 

(P,A) 

FIg. 2. An example of parallel structure. 

For the join node in Fig. 2, when it receives an activation signal from each of its 

incoming edges, it creates an activation signal. The signal created by the join node 
carries allocation policy A, and if the activation signal coming from node 0Pi carries 

Pi processing power, the activation signal generated by the join node then carries P = 

L 7 = 1 Pi processing power. 
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The execution time cost of a computation is still defined as the time for an 

activation signal to travel from the start node to the end node. It depends on the seven 
factors described above. The first five factors are represented by the structure of the 

model, whereas the last two (the processing power and the allocation policy) are 
represented as parameters, the amount of processing power P is not necessary to be an 

integer number. The only restriction put on P is P > o. P;:: I means computation C 
uses more than unity processing power. P < I means computation C shares one 

processor with other computations and C can only get P * 100% of the processor time. 

For the parallel structure as illustrated in Fig. 2, if the amount of processing 
power and the allocation policy received by the fork node are P and A, respectively, we 

define its execution time cost as: 

Cost/ork (P, A ) + max {CostopI (P I' A), ... , Costopn (P" A)} + Cost join (P, A) 

A sequential computation (or a node N which contains no parallel paths) needs a 
special treatment. It is assumed that the execution of a sequential computation can be 

continued without waiting if no les than unity processing power is provided during its 
execution. For sequential computations, we define its base time cost as its execution 

time cost given that unity processing power is provided. Since such a node doesn't 
contain any parallel paths, its execution time cost is independent of the processing 
power allocation. Therefore, the base time cost of a sequential computation C is equal to 

Coste (I, A') where A ' is any allocation policy. Given a sequential computation C, 

suppose P processing time is provided. We define the execution time cost of C as 

follows: 

C (P A) - Costc(l, A') _ C 's base time cost 
ost C' - m in (l, P) - -=-=-m=;=in'-"(";:r"""; P""):-=-=-= 

where A and A' are any allocation policies. 

The above indicates that the base time cost of a sequential computation is the 

best execution time cost one can get. Providing more than unity processing power to a 
sequential computation will not reduce its execution time cost, and providing less than 

unity processing power to such a node will force the computation to wait during its 
execution, therefore, resulting in an increase of its execution time cost. 

To model the communication, we use a locking technique [15] to manipulate the 

accesses to shared data. It is assumed that each shared data item is associated with two 
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locks, a read lock and a write lock. To read a shared data item, one needs to obtain a read 

lock on that shared data time. Similarly, a write lock on a shared data item is required if 
one wants to perform a write operation. Several operations performed in parallel can read 
a shared data item at the same time. However, no other read or write lock on a shared 

data item is granted if a write lock on that shared data item has already been held. 

To include the data access control into the computation structure model, two new 
types of nodes, a lock node and an unlock node, are added to the computation structure 

model. The lock node is used to obtain locks on shared data and the unlock node is used 
to release locks. Each lock or unlock node has an incoming edge and an outboing edge 

associated with it in the control graph. A lock node needs to obtain a read lock on data 
item X if X appears as an input to the lock node in the data graph. Similarly, a lock 

node needs to obtain a write lock on X if X appears as an output from the lock node in 
the data graph. If X is connected with an unlokc node in the data graph, the unlock node 

releases a read or write lock on X depending on whether X appears as an input or output 
of the unlock node. Figure 3 illustrates an example of lock and unlock nodes. In Figure 

3, the lock node needs to obtain read locks on X and Z, and a write lock on Y; the 
unlock node releases write locks on A and C, and a read lock on B. 

It is assumed that a lock node obtains all its required locks at the same time. If 

the lock node can not get all the required locks, it is put into a lock waiting queue. In 
this way, a lock node will never hold some locks and wait for some other locks. When 

some locks are released by an unlock node, lock nodes in the lock waiting queue are 
checked to see if their reqests can be satisfied. The checking is done in an FIFO order. 

Once all the requests of a lock node are satisfied, the lock node is removed from the 
queue. 

The execution time cost of a computation here is again defined as the time for an 
activation signal to travel from the start node to the end node. When an activation signal 

enters an unlock node, the unlock node starts to release locks. After required locks are 
released, the activation signal leaves the unlock node. The execution time cost of an 

unlock node is then equal to the time to release the required locks. When an activation 
signal enters a lock node, the lock node starts to wait for the required locks. When all 

the locks on required data are available, the lock node manipulates these locks. After all 
the required locks are obtained, the activation signal leaves the lock node. The execution 

time cost of a lock node is then equal to the sum of the time to wait for the req~ired 
locks and the time to manipulate these locks. 
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control flow dataflow 

Fig. 3. An example of lock and unlock nodes. 

Given the model defined in this section. some uncertainties may occur. This 

happens when more than one lock node in parallel requires conflict locks on a shared 
data item (read and write locks, or write and write locks). Consider the parallel structure 

in Fig. 4. A conflict occurs in the parallel structure since lockl and lock2 both require 
write locks on X at the same time.When this occurs, it is assumed that the computer 

system will arbitrarily choose one lock node to obtain its required locks first (all lock 
nodes are equally likely). The probability of selecting a lock node to get its required 

locks first is assumed to be uniformly distributed. The problem of ordering different lock 
nodes is studied in depth in other works[ 15]. If any uncertainty occurs, the average 

execution time cost is used as the execution time cost. 

3. The Time Cost Simulation System (TCSS) 

To automate the exection time cost analysis of parallel computations, a software 
tool (TCSS) was designed and implemented . TCSS is an interactive system. It is 
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dataflow 

control flow 

FiJ:. 4. An example of conflict. 

implemented in C and runs under the Unix system. A set of commands are provided in 

TCSS for users to carry out the execution time cost analysis and evaluation. Generally 
speaking, what the TCSS system does is to take the user's computation as input and 

determine its execution time by using the simulation approach. The modified 
computation structure model discussed in section 2 is used as the underlying model in 

TCSS. Three parameterss, the number of processors, the processor speed and the 

allocation policy, are used in TCSS to characterize the property of the environment that 
supports the execution of the computation to be analyzed. The user can use some TCSS 

commands to change the characteristics of the execution envionment. By changing the 
characteristics of the environment, the execution time of the user's computation 
changes. 
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Figure 5 illustrates the general structure of the TCSS system. The user interface 
provides interaction between the TCSS system and users. It interprets user commands 
and calls corresponding system modules to fulfill the user's task. The user's computation 

to be analyzed is written in a language supported by TCSS. One of these language is a 
graphical language that allows a user to build the computation structure model directly 

[3]. However, a model deriver can be built for each language supported by TCSS. 
Currently, TCSS supports C and a Pascal-like language. The derived computation 

structure model contains all the information necessary to carry out the execution time 
cost analysis. Typically, each node in the model has a base time cost; each edge has a 

flow count that indicates the number of times the edge is traversed; and if a node is a 
lock or an unlock node, what and how many locks are to be obtained or released in that 

node are also specified. 

Once the computation structure is derived, a flow analysis technique [2] is used in 
the flow balance analyzer to determine the number of times each operation in the 

computation is performed. The computation with flows analyzed is then sent to the 
execution time cost simulator which uses the simulation technique to determine the 

execution time cost of the computation. The execution time cost obtained from 
simulation is then used by the execution time cost evaluator for further time cost 

analysis. 

The execution time cost evaluator contains a number of packages to calculate 
different execution time statistics of the user's computation. It can determine the 

minimum time cost, the maximum time cost, the average time cost and the time cost 
variance. It can also graphically represent the time cost against different performance 

paremeters and the time cost distribution. 

4. Time Cost Analysis Through Simulation 

The execution time cost simulator uses the simulation technique to determine the 
execution time cost of the computation to be investigated. What the execution time cost 

simulator does is to simulate the traveling of the activation signal in the computation to 
be investigated using the modified computation structure model described in Section 2. 
During the simulation, an activation signal carries three attributes, execution time cost 

attribute, processing power attribute and allocation policy attribute. Locks of all the 
variables in the computation are initialized before simulation. The simulation process 

starts when an activation signal enters the start node of the computation. The execution 
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Fig. 5. General structure of TeAS system. 

time cost attribute of this activation signal is initialized to zero. The processing power 

and allocation policy attributes of the signal are initialized according to the property of 
the execution environment in which the user's computation resides. 

When an activation S carrying processing power P and allocation policy A 

arrives at a node N that has a base time cost T , T is added to the execution 
min(\,P) 

time cost attribute of signal S. 

If node N is a decision node, a random number generator is used to determine 
which outgoing edge signal S should take. 

If node N is a fork node, the execution time cost simulator creates one activation 



14 Bin Qin. et a/. 

signal for each parallel path. The execution time cost and allocation policy attributes of 
signal S. The processing power attribute of each signal is assigned a proper value 

according to allocation policy A. 

If node N is a join node. signal S is buffered in the join node. When the join 
node receives all the required signals. an activation signal is created and then it leaves the 

join node. For this activation signal. its execution time cost attribute is set to the 
maximum value of the execution time cost attributes of the signals buffered in the join 

node; its processing power attribute is set to the sum of the processing power attributes 
of these signals; and its allocation policy attribute is set to the allocation policy 

attributes of these signals. 

If node N is a lock node. the execution time cost simulator checks if all the 
required locks can be obtained. If so. all the required locks are set. Otherwise. signal S is 

put into the lock waiting queue. 

If node N is an unlock node. certain number of variables are unlocked according 
to the description of the unlock node. Once some locks are released. signals in the lock 
waiting queue are checked. if all the locks for a signal can be obtained. such a signal is 
then removed from the queue. The amount of time the signal stays in the queue is added 

to the execution time cost attribute of the signal. 

Due to parallelism in the computation. there may be more than one signal that is 
active at a time. If two or more signals require conflict locks at the same time. a random 

number generator determines which signal can get locks fir:st. All the other signals are 
then put into the lock waiting queue. 

When an activation signal finally arrives at end node of the computation. the 

simulation process terminates. The execution time cost attribute of the signal is then 
the execution time cost of the computation. 

5. Example 

To illustrate the use of the TeSS system. consider the classical producer -

consumer problem. Assume there are one producer and one consumer. The producer 
produces n products and puts the products into a buffer. while the consumer gets these 

products from the buffer and consumes them. However. the producer and the consumer 
can not access the buffer at the same time. the buffer can only hold ten products. the 

producer can not put a product into the buffer when the buffer is full and the consumer 
can not get a product from the buffer when the buffer is empty. The following is the 

corresponding computation which is written in a Pascal-link language. 
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computation (n: integer) 
( @ perf(n, full, empty) } 

var count, i, next, j, first, produce, consume: integer; 

buffer: array [1..10] of integer; 

begin 
count := 0; 

fork 
begin { producer} 

end 
end; 

next := I; 

for { @ n } i := 1 to n do begin 

produce := i; {.................... produces product} 
lock (buffer, count: write); 

while { full } count = 10 do 
begin 

unlock (buffer, count: write); 

lock (buffer, count: write) 
end; 

count := count + 1; 
buffer [next] := produce; ........ puts product into buffer 
unlock (buffer, count: write); 

next := next - (next 110) • 10 + I 

begin ........................... ...... ..... consumer 
first := I; 

for { n } j := 1 to n do 
begin 

end 
join 

end 

lock (buffer: read, count: write); 

while I @ empty} count = 0 do 
begin 

unlock (buffer: read, count: write); 

lock (buffer: read, count: write); 
end; 

count := count - 1; 
consume := buffer [first]; {.......... gets product from buffer} 
unlock (buffer: read, count: write); 

consume := consume + j; {.......... consumes product} 

first := first - (first I 10) • 10 + I 

15 
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In the above computation, the fork - join statement is used to create two parallel 
paths that correspond to the producer and the consumer. The lock and unlock statements 

are used to obtain and release locks, respectiyely. Special count segments that start with 
"signs are used to provide information needed for time cost analysis. The first special 

comment segment indicates the computation has three performance parameters, n, full 
and empty, with n indicating the number of products to be produced or consumed, 

full indicating the number of times the producer finds the buffer full when it needs to 
put products into the buffer, and empty indicating the number of times the consumer 
finds the buffer empty when it needs to consume products. For each " for " loop 

statement or while loop statement, a special comment segment is used to indicate the 
number of time the body of the loop is executed. Statement produce = i in the producer 

is used to simulate the product producing process, while statement consume = consume 
+ j in the consumer simulates the product consuming process. 

Assume the underlying computer system has one Vax processor and processing 

power is equally allocated. Assume the number of products to be produced is 8 and the 
buffer is never full or empty. Thus, n = 8, full = 0 and empty = O. In the following, the 

chg command is used to set the execution environment and the cost command 
determines the execution time cost (units are microseconds): 

=>chgpl 

= > chg rna Vax 
= > chg a equal 

= > cost produce_consume (8, 0, 0) 

produce30nsume: execution time cost: 1059.00 ~ sec 

Assume the underlying computer system has two PDP - II processors and 

processing power is equally allocated. Assume the number of products to be produced is 
50 and the consumer is always slower than the producer. Thus, n = 50 and empty = O. 

Further assume the number of times the producer finds the buffer full varies from 0 to 
100 and it is binomially distributed with p = 0.6. The following TeAS commands set 

the assumptions and determine the average execution time cost (command mean 
determines the average execution time cost): 

=>chgp2 
= > chg rna PDPII 

= > mean binomial produce_consume (50, 0: 100,0) 
produce_consume: computation structure derived 
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value for parameter p: 0.6 
average execution time cost of produce_consume: 16950.69 ~ sec 

Assume the underlying computer system is the same as before. Assume the 
number of products to be produced is 20, the consumer is always faster than the 

producer, and the number of times the consumer finds the buffer empty is 45. Thus, n = 

20, full = ° and empty = 45. The corresponding execution time cost is: 

= > cost produce_consume (20, 0, 45) 
produce_consume: execution time cost: 9137.13 ~ sec 

Assume the underlying computer system has the same properties as before. 
Assume the number of products to be produced is 30, the number of times the producer 

finds the buffer full is 40, and the number of times the consumer finds the buffer empty 
is 50. The corresponding execution time cost is: 

= > cost produce_consume (30, 40, 50) 

produce_consume: execution time cost: 13037.31 ~ sec 

We also used the tool to evaluate the execution time for the matrix 

multiplication when it runs on the Sequent Symmetry machine [10]. Figure 6 shows 
the results produced by the tool and the results produced by real measurement of the 

execution time. The dashed line represents results produced by the simulation tool 
whereas the solid line represents measurement. It is clear that performance evaluation 

derived by the tool matches real measurement. 

6. Conclusions 

This paper describes a software tool that has been designed and implemented to 
aid users in simulating the execution time of parallel computations. The tool is useful 

in that it provides considerable insight into the factors that are important in determining 
the execution time of parallel computations. This insight can be used to decide what 

Changes are necessary to improve the execution time. With this tool, it becomes easy 
for users to compare different designs of a parallel computation and choose the one with 

the minimum execution time as the best design [14]. The evaluation tool is being used 
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Fig. 6. Execution time of matrix multiplication. 

to develop high perfonnance computations and to study the effect of parallelism on real­
life applications [I]. 
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