J.King Saud Univ., Vol.9, Computer & Information Sci., pp. 57-93 (A.H. 1417/1997)

Prospects for Predictable Dynamic Scheduling in RTDOS

Bradley R. Swim, Murat Tayli and Mohamed Benmaiza

Computer Science Department, College of Computer & Information Sciences
King Saud University, Riyadh, Saudi Arabia

(Received,10 April 1995, accepted for publication, 09 October 1995)

Abstract. Future dynamic distributed hard real-time systems may control unpredictable
environments and will need operating systems that can handle unknown and changing task
populations. In this extreme case, not only is task scheduling totaily dynamic, but the
system's topology and architecture must adapt to unforeseen configurations. This paper
addresses the difficult problem of dynamic task scheduling in a Real Time Distributed
Operating System (RTDOS). RTDOS is unique because it possesses the potential to map, at
execution time, a flexible topology of networked nodes onto a network of tasks. Attempts
will be made to characterize the predictable adaptability of the scheduler so as to relax the pre-
run-time scheduling requirements for an RTDOS application. A scheduler architecture and
dynamic deadline guarantee scheme are presented along with some experimental results.

1. Introduction

Hard real-time distributed systems can be classified into 4 major clusters with respect to
their environment and behavior (Fig. 1). Even though many hard real-time systems of
today are considered to be static within a predictable environment (cluster A) [1], current
and future systems are seen to be more dynamic and controlling unpredictable
environments (cluster C). The environment's flexibility requires new task types to be

injected Into the systemn even during production mode (e.g. space exploration, battle
management, undersea exploration} {21.

57

58 Bradley R. Swim, et al.

Today's research and development in hard distributed real-time systems focuses on
dynamic systems controlling predictable environments {(cluster B). These systems
assume that the controlled environment is predictable to the extent that all application
task types are known. From the task scheduling perspective, not all task instantiations
are scheduled statically. New task requests, from predefined task types, can be scheduled
dynamically within known limits. The dynamic aspect of these systems is confined to
task creation and scheduling.

The scheduling complexity follows an exponential path (Fig. 1) between static
predictable systems and dynamic unpredictable systems (clusters A, B, C). It is obvious
that task scheduling is complicated significantly if the operating system handles
unknown and changing task populations. In this extreme case, not only is task
scheduling totally dynamic, but the system's topology and architecture must adapt to
unforeseen configurations.

Given the complexity of task scheduling for cluster C, many assumptions must
be simplified in order to build an efficient dynamic task scheduler. Currently, our Real
Time Distributed Operating System (RTDOS) [3] resides in cluster B, but we are
investigating the extent to which we can push RTDOS to control an unpredictable
environment. RTDOS is projected to be able to adapt itself to unforeseen
configurations during production mode operations.

This paper describes current research underway to develop a predictable dynamic -
scheduler for RTDOS. The existing platform currently supports predictable
communication between tasks distributed within the network {4], and synchronized
clocks [5]. Because we believe that a key solution to the dynamic scheduling problem
is the timely availability of resources, namely the CPU, we have implemented a Task
Manager along with a medium-level CPU scheduler on top of an existing hardware low-
level scheduler. The medium-level CPU scheduler enforces task deadlines even under
transient overloads and improves CPU utilization significantly (discussed below in
section 3.5). Building upon this predictable platform, the predictability of our
scheduling and time-dependent resource management approaches will be analyzed in order
to formalize the behavior and limitations of our solution.

The paper is organized as follows. The next section highlights existing
scheduling approaches with a focus on dynamic scheduling. Section 3 explains the
architectural model and design of the RTDOS scheduler along with some experimental
results from an RTDOS scheduler prototype.

Prospects for Predictable Dynamic ... 59

Environment
A
Unpredictable Undefined
Static distributed
systems in i Dynamic :
pn:c!lctable ! distributed systems |
environments ! in predictable :
! environments :
Predictable A : B
: 'Syslem
Suatic ic Behavior
Sehoduling
Complexity
]F
JSysren
Type

Fig. 1. Hard real-time distributed system classilication.

2. Dynamic Scheduling

In bard real-time systems, deadline task scheduling is crucial because missed
deadlines have severe comsequences that compromise safety, security, and cost

constraints. Tasks can be characterized by their:

1. Periodicity: tasks may be classified as periodic or aperiodic.

2. Deadlines: along a spectrum from hard to soft to none. Hard deadlines, if
missed, imply catastrophic system failure. Less hard deadlines, if violated,
compromise system integrity and utility, yet may still permit the system
to operate within defined safety limits. Some tasks are background and
have no deadlines.

60 Bradley R. Swim. er al

3. Precedence: the application may define a partial execution order for a set of
tasks because of logical relationships between tasks, communication
constraints, or resource availability.

4. Resources requirements: CPU, /O devices, communication, memory. etc.

Static systems are those where complete knowledge of all of the above task
characteristics s known a priori. In such systems, static scheduling can determine a
feasible schedule off-line for all possible task requests. The bulk of static scheduling
approaches limit their task sets to have periodic tasks where the task request umes and
other characteristics such as deadline, computation time, and precedence are known. If
aperiodic tasks with deadlines exist, then they are mapped into equivalent periodic tasks.
Optimal scheduling algorithms, such as the one described in [6], can derive a feasible
schedule on multiple processors for all known periodic tasks considering their request
time, computation, deadline, as well as their precedence and exclusion relations. The
schedule is implemented at run-time by a deterministic task dispatcher, often based on
task priorities.

Dynamic systems do not require a priori knowledge of all tasks and their
characteristics. Yet, critical periodic tasks are scheduled off-line so that their resources
can be preallocated (if a critical task fails, the system fails). For the remainder of tasks
with soft deadlines, a scheduler can determine on-line (dynamically) if a task
instantiation can meet its deadline without violating other task deadlines in the running
system [7, 8, 9, 10, 11]. Heuristics are used in all cases to speed up the otherwise
lengthy and costly process of determining a feasible schedule, in theory NP-complete.
Because these algorithms are distributed, they apply dynamic load distribution to
globally search the network for a suitable remote host for the incoming task.
Attempting near-optimal scheduling of all aperiodic tasks at runtime can be complex and
consumes precious {ime, Some authors have shown that heuristics can achieve
satisfactory results in such algorithms [9].

3. RTDOS Predictable Dynamic Scheduling

In RTDOS, critical and all known periodic tasks can be scheduled pre-run-time.
Critical tasks are assumed to never exceed estimated resource requirements, while
periodic tasks can be defined with average-case resource estimates. All pre-allocated tasks
can have resource and precedence constraints (e.g. I/O, memory, IPC, order of execution
and data availability). Off-line scheduling algorithms consider fine-grained task execution

Prospects for Predictable Dynamic ... 61

ordering when determining a feasible schedule (unlike on-line techniques). This will
yield a verifiable feasible schedule that guarantees satisfaction of timing, resource, and
precedence constraints for many types of tasks (most of them having hard deadlines).

There rematns the need to schedule on-line unknown periodic, aperiodic and
background tasks with deadlines and resource constraints. Because dynamic scheduling
may be the only alternative in unpredictable environments, the current research aims to
permit as many tasks as possible to be scheduled on-line using the novel technique
proposed in section 3.2. Before discussing the RTDOS scheduler, a brief overview of the
RTDOS system architecture is presented.

3.1 RTDOS architecture overview
RTDOS is an operating system running on a multi-loop topology of transputers
[12]. Although transputers are utilized in the current development platform, the

architecture of RTDOS does not depend on that particular processor. RTDOS
implements CSP [13] as the basic communication model for application level

processes. Figure 2 illustrates the topology of the transputer network assumed for
RTDOS.

Base

Doneain

Application
Domain

Control Links Data Links

i i
{, \'y Data Links

PUMS Iqeunueidoryg

Application
Pomain

Fig. 2. RTDOS network topology and communrication architecture,

62 Bradley R. Swim, er a/.

In summary, an RTDOS network is a set of intersecting loops of transputers.
The RTDOS topology as a minimum has at its core a Base Domain. At each transputer
of this loop, it is possible to attach additional loops scaled to meet application demands.
These loops are intended as Application Domains. The transputers connecting the main
system loop with each application/server domain are called Domain Managers. These
Domain Managers are reserved for system functions (e.g. monitoring, scheduling, etc.).
Domain nodes are linked through bi-directional links to form the control loop . The
control loop is dedicated for a datagram-based service between RTDOS kernels replicated
on each transputer. Transputer Links not used by the control loop are intended for
application specific data traffic between nodes. These data links can be all wired to a
Programmable Switch or to each other. At run time, the links are allocated between
communicating tasks on disjoint transputers. The application can choose to either
allocate the links in a permanent way (due to application timing constraints) or
temporarily for the duration of one communication transaction. Moreover, the network
topology can be dynamically reconfigured if the control loops are formed via a
programmable link switch. RTDOS's predictable circuit-switched point-to-point Inter
Process Communication (IPC) facility is described in more detail in [4,14].

The transputer architecture [12] presents unique opportunitics and challenges
when compared to more traditional architectures. Each transputer has at least 4 high-
speed serial links that can be connected with other transputers or a link switch to form a
network. The hardware supports many threads on one CPU (they are called processes,
but in practice they share the same address space) and dispatches them according to 2
priorities - High and Low. This dispatching (and forced timeslicing) is performed when
a Low-Priority thread blocks itself (e.g. on I/O), or executes one of many designated
descheduling instructions (e.g. timer, jump/loop, process start/end, etc.). Context
switching of threads is very fast - in the order of less than 1 microsecond. On the other
hand, the transputer does not have a memory management unit. This limitation of no

virtual memory readers program code relocation and process migration from one
processor to another completely impractical.

The RTDOS topology and architecture can be exploited to provide alternate
approaches to time-dependent resource management.

3.2 RTDOS scheduler architecture

The architecture of RTDOS enables a scaleable approach to processing power
because a given application can be mapped to one or more domains (leading {0 a given
application architecture). Moreover, after the initial application architecture has been

Prospects for Predictable Dynamic ... 63

determined, RTDOS can quickly and dynamically adapt the configuration of a domain to
possess more or less processing and communication power (more or less nodes - within
limits). Therefore, it is possible to dynamically scale and reconfigure the network to
meel unforeseen resource needs of an application in a time dependent fashion. The
adaptive hybrid dynamic scheduling of RTDOS is illustrated in Fig. 3.

OFFLINE ’
e — Reconfiguration
oo Inirial of System
E Initial System. Environment
| Specification : und Tasks Pre-run-time
' : »{ scheduling I
_______________ - .
Initial Schedule Initial Topology
. : Y 3
New Task Mna‘gmd ﬂ:form Global I’oll:y,. ‘;'/';opulogy
Specifivations Tark uild Task Configuration «+—— Reconfiguration
’ Pomulation y
& Schednle Resonrce and Task Allocation
* Resource

Analyze Refinements

1
i Expert i Schedulability

| Tntervention

Domain Schedelers
I.ocal Schedulera

CPU Schedulers ONLINE

Cinaranice I Process Dispaichers
x
Jailure policy

Muonitar events

(Global Scheduler components are shadowed]

Fig. 3. The adaptive hybrid dynamic scheduling of RTDOS.

Conventional distributed scheduling attempts to map a network of tasks upon a
fixed topology of networked processors. Adaptation of current systems frequently
employ pools of slack resources (e.g. processor pool) to support the changing demands
of the application. Nonetheless,the topology of the distributed system may remain
unchanged with respect to non-uniform IPC costs. For example, if a pool of spare nodes
were located on a disjoint segment or ring apart from the overloaded nodes, then IPC
costs to/from the pool are different from IPC costs among the overloaded nodes. On the
contrary, RTDOS has the potential to map, at execution time, a flexible topology of
networked nodes onto a network of tasks. That is, a domain can be extended by
"switching" in a new processor (perhaps from a pool) into the loop; or a domatn can be
split into 2 smaller loops. In any case, after the domain has been reconfigured, the IPC
costs remain uniform and predictable. In this way, the network topology changes at run-
time to absorb the demanded task network configuration.

64 Bradley R. Swim, ez al.

Off-line, the application tasks' requirements are specified using a declarative
language including all necessary task attributes such as deadline, period, computation
time, resource requirements, precedence constraints, etc. Static analysis of the
specification can determine an initial feasible periodic schedule and domain topology
where resource, deadline, and precedence constraints are guaranteed. The static scheduler
allocates resources for known periodic tasks as well as periodic servers for those
aperiodic tasks with large laxities and high probabilities of occurrence. It also determines
an initial upper bound of pre-loaded task clones (duplicates) needed to meet the resource
and deadline requirements of the known dynamically scheduled tasks {(e.g.known
aperiodic tasks with small laxities or low probabilities of occurrence). Nodes containing
a task clone are capable of hosting that dynamically scheduled task from birth to death.
Static scheduling produces an initial topology, task configuration and schedule for
known tasks.

RTDOS uses a 5-layered on-line scheduler model (Fig. 4). Level 5 is the Global
Scheduler which loads tasks in the initial schedule onto the network as well as the

current topology configuration. It is responsible to analyze the schedulability of the
current system (based on events generated by Level 4), to implement guarantee failure

policy based on instructions from an outside "expert’, and to reconfigure the domains if

necessary according to current policy in order to better fit the task topology. Any
topology or policy changes are forwarded to the concerned Domain Schedulers so that
their configurations can be updated. It also sets policy for task-forwarding by Domain
Schedulers. That is, if a Domain Scheduler cannot guarantee a deadline, it forwards the
task to another domain in hopes that the deadline can still be guaranteed.

Level 4 is the Domain Scheduler resident in every domain (Fig. 2), onc per
application domain. This scheduler accepts task instantiation requests and attempts to
guarantee the deadlines of those tasks given total resource availability (e.g. CPU,
memory, /O devices, transputer Links, etc.). Task requests can be local (intra domain}
or global (inter domain forwarding of tasks). All resources of a domain are managed and

scheduled by the Domain Scheduler. It uses a set of resource "planes”(described in

section 3.4) that keeps track of each resource's allocation with respect to the deadline and
computation requirements of the requesting tasks. If it cannot guarantee a task, it
attempts to forward (according to the global policy) the task request to another domain

for servicing. It also generates scheduling events to the fifth layer so that schedulability
can be analyzed.

Prospects for Predictable Dynamic ... 65

(Global Scheduler

* Implement palicy for
deadline guarantee failures,
Analyze schedulability.
Receive scheduler events. | System-

® Reorganize system Wide

topology.

omain Schedulers

* Find candidate hosts for
global task requests.

* Forward guarantee failures
to Global Scheduler.

Local Scheduler

® (uarantee task deadlines
on this host,

* Forward guarantee failures| On
to Domain Scheduler. Each

RaleCPU Scheduler Node
® Monitor task progress. 2

* Enforce deadlines of
started tasks under
transient overlpads.

rocess Dispatcher
® Transputer’s Microsecond | 1
context switching in HW
* Transputer’s Timeslicing
Transputer’s 2-Level
priority

Fig. 4. RTDOS's on-line 5-layer schedaler model.

Level 3 is the Local Scheduler resident on each host. All new task requests are
initially submitted to Local Scheduler, and if it cannot guarantee the task then the task
is forwarded to the Domain Scheduler. If the task is schedulable, then the task is started
as soon as possible.

Level 2 is the medium-level CPU scheduler: Safe CPU described in section 3.5.
SafeCPU resides on every node in RTDOS and enforces, if necessary, task deadlines for
all started tasks on its node. It improves CPU utilization and ensures that all previously
guaranteed tasks meet their deadlines even under transient overloads. If any deadlines
must be missed, they will be missed in an order that reflects their importance (i.e. well-
behaved tasks will finish and meet their deadlines before overloaded tasks).

66 Bradley R. Swim, ef al.

Level 1 is the transputer's hardware scheduler. This performs microsecond level
context switching between processes on a single processor.

Level 4 and 5 work together to map the network topology to the changing
application. Run-time monitors record significant task events (e.g. guarantee, failure,
overrun of allotted time, etc.) whereby schedulability statistics can be produced. If time
remains for an unguaranteed task, it is forwarded to a remote host for servicing.
Concurrently, schedulability analysis might be able to determine a more optimal
schedule and topology for the current environment. The system could then adapt by
extending or collapsing its domain structures subject to expert advise. Similarly, if new
tasks, previously unknown to the system, are injected into the system then the same
schedulability analysis can be performed (under expert control) yielding a modified
schedule and topology (see Fig. 3).

Currently, our research focus is on the dynamic scheduler and its predictability.
Utilizing RTDOS's predictable IPC and synchronized clocks, the above

scheduling/monitoring policies and mechanisms are being developed and formalized on
the current development platform. We presume the existence of a reconfiguration and
static schedule generation facility (the off-line components of Fig. 3). We also presume
that future research will address the on-line schedulability and topology analysis and
reconfiguration tools. These tools are important components of the system because
they improve the system's reliability. When a task fails to be guaranteed, a series of
network reconfigurations could ensue enabling the system to prevent future failures.

3.3 Task model
This section lays the theoretical framework for RTDOS's task model. The model
assumes that tasks follow CSP semantics precisely and use RTDOS IPC exclusively for

communication. This precludes shared memory models of communication reducing
problems associated with exclusion constraints found in other scheduling algorithms.

Additionally, tasks are scheduled by the Local Scheduler in a nonpreemptible fashion.
See Fig. 5 for an illustration of the model's concepts.

The RTDOS task model supercedes other models [6,15,16] inasmuch as tasks
with resource constraints, scheduled both statically and dynamically, are supported.
Because the ultimate goal of RTDOS is dynamic adaptability, the static aspects of our
approach are only a step towards a completely dynamic model.

. An Application A = {TGy,...,TG,,} is a finite set of m Task Groups utilizing a

Prospects for Predictable Dynamic ... 67

Application

TG 1 TG 2

Task 1

Task 3

Task
Segments

Messages

Task Timing
f,—\cmal execunen

r m/ Sustemn time
i

Ta, «—I1—3 0 -

Tc;

Ta; — arrival ime

IR = release time {earliest start time)
71, = laxity time

7 = begin time (latest start time)

Tc; — total compute (elapsed) time

> = deadline

W = wrapup time (new requests accepted after this time}

Fig. 5. An application composed of communicating task groups,
and tasks with associated task timing.

distributed system consisting of & nodes. Task Groups are user defined in order
to specify intertask dependencies, i.e. precedence constraints among cooperating
dynamictasks. Precedence constraints for statictasks are specified using task
segments (discussed below). Task Group specifications are also utilized during

dynamic scheduling in order to optimize the placement of tasks on processor
nodes.

A Task Group TG; = (T Jr--» 1y } is a finite set of ¢+ Tasks distributed over one

or more nodes.

68

Bradley R. Swim, et al.

A Task T; is the basic execution unit and has 2 attributes: a set of s resources

needed by the task{RIi,...,Rsi } and a finite sequence of k execution segments T;
[1],....,T; [k]. Resources are non shared entitics such as CPU, memory, I/O

devices and communication facilities. Execution segments are ordered such that
T; [1] is the first segment and 7; (k| is the last segment. Fine grained precedence

constraints for static tasks are defined as ordered pairs of task segments (e.g. (T)i
[3].T4 [1]) implies that the third segment of task T; must complete its execution

before the first segment of T4 begins). Task segments are the smallest granule
utilized when specifying precedence relations. Hence, they are visible only to the
static scheduler. Such precedence constraints must be specified for the static
scheduling algorithm so that proper order is maintained in the derivation of a
feasible schedule. More investigation is needed to find the best method of
expressing task segments at the application level and how to dispatch them at
runtime. Dynamic tasks are defined with k=7 segment. The entire task is the
smallest granule of distributton possible within the network.

Each segment T; [f] is characterized by{T; [j]r, T; [i]b, T; [i]c, T; [j]d} where T;
[j]r = release tme of segment j, 7; [j]b = latest begin time of segment j, T; [j}c =

elapsed compute time of segment j, and 7; [j]‘:l = deadline of segment j .
Given a particular task, T €TG; , the following time relationships hold

for both periodic and aperiodic tasks:
Ta 1s the arrival, or instantiation real time of task T.

Tr = T[l]r is the user defined release time, or earliest time that the task's first
segment may begin execution. Release tumes for other segments, if not user

defined, are defined as T[i +]]r =Tl]d+l, i.e. the release time for segment { +1
is immediately after segment { 's deadline (assumting discrect time).

Th = T[IJb < Td -Tc is the begin time, or the latest time that the task's first
segmenl may begin execcution. Otherwise, the task's deadline will be
compromised. This is usually computed by the scheduler, but can also be user
defined. Begin times for all other segments, if not user defined, are comnputed as

Tl]b < Tl jd-T[i IC, 1.e. the begin time for segment i is no later than the
elapsed time necessary to execute segment i .
T! = Th -Tr is the laxity time between the task's earliest start time and latest

Prospecis for Predictable Dynamic ... 6y

start time. This measure, initially defined by the scheduler, quantifies the urgency
of the task with respect to its deadline. This value changes dynamically, after the
task is started, to be Td -Tc (the deadline minus the remaining compute time
needed for this task).

Tc is the user defined compute time needed by this task. It is the sum of the
estimated/calculated execution elapsed tmes for all segments; i.e.

c . ..
Tc =% T[] . After the task starts execution, Tc represents the remaining

compute time required. Tc should include all processing, /O, IPC, and
synchronization time. Note that among all timing measures, only the compute
time Te and laxity time T/ constraints are tallies of elapsed time. The other task
timing measures can be non-negative offsets from the arrival time Ta .

Td is the user defined deadline by which all segments of task T must complete. In

addition, the relations Vi, T[i 19 < T[i +11%and TrTe < (TIk 19 € Th + Te = Td
must hold (T{k] being the last segment). That is, all segment deadlines must be
ordered such that a segment's deadline is strictly less than its successor segment’s
deadline, if it exists. Also, the deadline for the last segment must lie between the
earliest time at which the task can terminate and the latest time at which the task
can terminate which is the task's deadline.

Tw is the user defined wrap-up, or recovery time after the task's deadline before
which a subsequent request for task T cannot be serviced. After Tw, the task is
free to be reinstantiated. This parameter can be used to specify recovery times for
aperiodic tasks as well as to formulate the period for periodic tasks.

In real time, if R =Ta+ Tr, B=Ta+ Th, D=Ta+ Td, and W = Ta+ Tw, then
initially the relation Ta <R <R +TI=B< B+ Tc=D < W holds. This
relationship is also shown in Figure 5.

Any task (either statically or dynamically scheduled) is capable of missing
its deadline by exceeding its allotted compute time Tc . RTDOS's SafeCPU
scheduler degrades gracefully and does not allow these excessive tasks to corrupt
the deadlines of other tasks. Nonetheless, when either the deadline or Tc¢ has been
exceeded, a system-defined or user-defined exception handler will be invoked.

This feedback mechanism allows an application to terminate 'faulty“tasks and

facilitates dynamic monitoring, debugging, system reconfiguration and
scheduling.

70 Bradley R. Swim, ef al.

3.4 RTDOS deadline guarantee policy

Dertouzos and Mok [16] showed that an optimal dynamic scheduler for 2 or more
processors is impossible to build, However, they did prove necessury and sufficient
conditions required to ensure that a task set is conflict free at any point in time (i.e. all
tasks will meet their deadlines) without a prioriknowledge of the task start times. They

demonstrated that both the Earliest Deadline and Least Laxity algorithms can
implement these conditions. Their analysis considered the CPU as the only resource and

that tasks were preemptible.

RTDOS dynamic scheduling considers resource constraints including CPU,
memory, /O devices, and communication resources. The scheduler receives requests to
start new tasks or task groups. As assumed in [6], tasks with precedence constraints
form a task group and each task in the group is given the same arrival time Ta, the same
deadline Td, and the same wrap-up time Tw since these tasks "are most likely to be
constrained to occur in the same time period” [6, p.151]. In contrast, the group does
not have a summed compute time Tc since tasks conceptually receive processing power

in parallel on disjoint hosts. In the following discussion task and task group are
interchangeable.

Extending the scheduling game model given in [16], when the task ¢ arrives, it
can be characterized by the ordered pair t = (7!, Tc;) (laxity and compute). If we

assume that the task's arrival time Tq, = T#; (the task’s release time) then, by definition,
Te¢ + Tl = Td; (the task's deadline). The ordered pairt =(T1;, T¢;) can be plotted on
a Cartesian Coordinate system (LxC) for a particular resource R; (Fig. 6). For

example, if a task with a deadline of 3 arrives, then it can be plotted anywhere on the
line C = 3-L. This line and the line L = Td = 3 separate the plane into 3 regions Rgy,

Rgy, Rg3. Region Rgj contains tasks whose deadlines are earlier than 7d = 3 and they
must receive the resource within the next 3 time units. Region Rgs contains tasks

whose deadlines are later than Td but they must receive the resource for a time period
proportional to their distance from the line L=3. Region Rg3 contains tasks that do not

need attention within the next 3 time units, As shown in Fig. 6, task (1,1) has a
deadline of 2 and needs 1 unit of computation time. Task (2,2) has a deadline of 4 and
needs 2 units of computation time, however, it must receive at feast 1 unit of
computation time within the next 3 time units. Task (4,1} has a deadline of 5 and needs
I unit of computation time to complete, however, it needs no attention within the next
3 time units.

Prospects for Predictable Dynamic ... 71

, 3 Rg, Rg;
[#]
3
@ 2.2
gl @2)
P
)
g (1,1} (4,1)
S] n
= Rg
E- 1
=]
“ 9
1 2 T3 4 5
Lanity (1)

Fig. 6. Utilization forecast plane fur resource R; .

Using the above defined regions, the dynamic Local Scheduler can determine if
there exists enough spare resource utilization time upon the arrival of a new task. If

0<) Ci+ 3 (Td,-L;)<T,

Rg, Rg.,

then the new task can be scheduled. That is, if the sum of computation times for all
tasks in region Rgj plus the sum of all required computation time needed in the next

Td, units by tasks in region Rg, is less than or equal to the laxity of the new task ¢,

then the new task can be scheduled. Considering the above example scenario, region
Rg has task (1,1) and region Rgy has task (2,2). Therefore, in the next 3 time unils,
the resource is already committed for 2 time units. If the new task has a deadline of 3,
then it can only be scheduled to utilize the resource if its computation time 7c £ 1 =
Tl 22 possibly corresponding to the task ¢ = (2,1).

When scheduling the next task to run, the scheduler chooses the task with the
least laxity and/or the earliest deadlindn the above example, the scheduler looks ahead
for the next 3 time units (7d). If the new task's computation Tc = 1, then it is
schedulable and it is plotted at # = (2,1). The next task to be scheduled is (1,1) since it
has least laxity. Afterwards, task (2,2) and the new task (2,1) both have least laxity.
Since the new task (2,1) has a earliest deadline, it will be scheduled second. Next, task
(2,2) 1s scheduled.

72 Bradley R. Swim, et al.

Because tasks are nonpreemptible from the Local Scheduler's perspective and all
resources must be in place before the task is scheduled, the dynamic scheduling
algorithm can model a (LxC) plane for every schedulable resource - CPU, memory, /O
devices, transputer links, and Connection Service capacity (the Connection Service
establishes point-to-point connections for IPC and has a limited capacity of connections
per second). Replicated resources (e.g. identical CPUs, memory segments, transputer
links, maximum connections per second) can be represented as heaps. A resource plane
will then be dynamically allocated as a subset of the heap. All resource planes in use are
conceptually updated every time unit. In practice, this can occur less frequently such as
at every scheduling point. The "cube” of {LxC) resource planes allows the dynamfc
scheduler to maintain proper control and allocation of all resources in its domain loop.

3.5 RTDOS deadline monitoring

In most cases, a task's required compute time (T¢) is derived by statistical
analysis. Deadline scheduling policies based on stochastic computation times perform
well in average but fail in the presence of transient overloads, causing already
“guaranteed” tasks to miss their deadline. Moreover, a task missing its deadline may
result in a domino effect, causing other tasks to miss their deadline. And these deadlines
are not missed in an order that reflects their importance |17]. This may have adverse
effects on the system's behavior as critical tasks begin to miss their deadlines. For
example, the Rate Monotonic algorithm [18], with transient overloads, causes the
processes with the longest periods to miss their deadlines. And according to Burns, most
scheduling schemes (including Earliest Deadline) cause aperiodic deadlines to be missed
not in an order that reflects their importance. Therefore, any deadline scheduling strategy
without proper CPU scheduling policies to handle transient overloadis subject to
failure even though the deadline was previously “guaranteed”. This is true for both
static and dynamic deadline scheduling strategies.

This section presents an approach using medium-term scheduling policies to cope
with the problem of transient overload in dynamic real-time environments. As our
approach also considers computation times as stochastic, we do not claim to solve the
problem in all the cases, but experimental results showed that the proposed approach
performs better than the existing ones, and produces higher CPU utilization ratios.

The RTDOS solution to this problem is a medium-term CPU scheduler
operating on top of the transputer hardware scheduler, The medium-term scheduler,
running at every node, monttors periodically the laxity and deadline of executing tasks.
It reschedules the active task list according to Least Laxity/Earliest Deadline policy.

Prospects for Predictable Dynamic ... 73

This activity results in the suspension (and therefore the CPU preemption) of tasks with
large laxity to the benefit of tasks with smaller laxities. As a result the proposed schema
always takes the system from a "safe state” (all the tasks are schedulable} to another safe
state. Note that RTDOS approach deparis from existing approaches [19, [6] that
establishes fixed schedules. It periodically establishes new feasible execution schedules

depending on task laxities and deadlines. This preemptive strategy deals efficiently with
transient overloads, and increases CPU utilization.

3.5.1 The SafeCPU algorithm

a)

b)

<)

e)

The following is assumed by the SafeCPU algorithm:

Tasks are classified as critical, essential, or background (the task clout). Tasks
may be periodic or aperiodic.

Time constraints for an RTDOS task T are expressed by several parameters
including 77 = task release time (earliest start time), Th = task latest begin time,
T! = task laxity time, Te = task's remaining elapsed (compute) time to finish, and
Td = task deadline in real-time. Task laxity (71) is defined as Td -T'¢ (spare time
between the current clock and the task's deadline considering how much compute
time remains).

Critical tasks never exhaust their specified compute requirement (the initial Tc¢).
However, maximum 7T ¢ values of essential tasks are determined stochastically and
may not represent the worst-case. It is possible for an essential task to exceed its
initial Tc. This applies to both periodic and aperiodic tasks. In this case, the task
can be called a gluttonous task. If a task does not exceed its initial Tc then it is
called temperate (well-behaved).

A task is monitored by SafeCPU if and only if its deadline has been guaranteed
either off-line, or on-line by the Local Scheduler. Off-line scheduling preallocates
all necessary resources for known tasks (processor time, memory,
communication load, I/O devices, etc.) considering their time and fine-grained
precedence constraints. The Local Scheduler dynamically performs the same
function on-line, but precedence constraints of dynamically scheduled tasks are
handled by giving the constrained tasks a common group release time and
deadline. The RTDOS kernel processes are not monitored by SafeCPU.

When a new task is guaranteed, it may begin execution anytime between Tr and
Th . The task can straightway be launched at Tr, or as soon as all required
resources are available. This implies that as new tasks are guaranteed, they are
dispatched as soon as possible. '

74 Bradley R. Swim. er al.

The SafeCPU algorithm (Fig.7) periodically wakes up to ensure that the CPU is
not overburdened with active tasks causing a deadline to be compromised. If a deadline
1s in jeopardy, then SafeCPU will "freeze" (suspend) sufficient tasks in order to meet the
most urgent deadline(s). Conversely, it will also "thaw” (resume) frozen tasks when the
system is again in a safe state. It thus monitors the sets of active and frozen tasks
maximizing CPU utilization and ensuring that no deadline is compromised. SafeCPU’s
period is a crucial tuning parameter for the application system. We plan to build tools
that will aid the application developer in determining a proper period given various task
population characteristics such as CPU vs. non CPU behavior. shortest and longest
application task times, deadline laxity profiles, etc.

SafeCPU algorithm
Every 1 milliseconds do
Recalculate the Laxity for all tasks in ({A) and O(F)
for all tasks in ((A) do -- merge O(A) into O(F)
EnQ(DeQ(Q(A)), (A(F))
end for
if O(F) #(J then -- some tasks asking for CPU “loans”
SlackCPUTime = 7/ (laxity) of first task in the Q(F)
Approve (thaw if needed) the first task in the O(F)
EnQ(DeQ(O(F)), O(A))
for the remaining tasks in the O(F) do
TimeRemain = remaining compute time Tc of first task in O(F)
if TimeRemain # 0 and TimeRemain < SlackCPUTime
and SlackCPUTime = 0 then
SlackCPUTime = SlackCPUTime — TimeRemain:
Approve (thaw if needed) this task

EnQ(DeQ(Q(F)), Q(A))

else
SlackCPUTime =0,
exit for loop
endif
endfor
Freeze all remaining tasks in Q(F)
endif
end do

Fig. 7. SafeCPU algorithm.

Prospects for Predictable Dynamic ... 75

SafeCPU utilizes two Queues, ReadyQ and FrozenQ and each queue is ordered by
task clout so that critical tasks are serviced before essential tasks, which in turn receive
attention before background tasks. Furthermore, each task clout is ordered according to

the scheduling policy: Least Laxity and/or Earliest Deadline (LL/ED) [16]. In order to
descrnibe SafeCPU's queue structure more formally,

1. Let C = {T;j : T 1s a cntical task}, E = {T; : Tj is an essential task}, B = {T; : Tj
1s a background task}.
2. Define the queue of critical tasks ordered by LIL/ED as QC Ty, Ty, ..., Ty

where T; € C and Tj has least laxity and/or earlier deadline than T;, 1 (1.e., T/;
< Ti; +1 or (Tl; =Ti; +1 and Td; < Td; +1)). QC can be &. Form similar

queues QF for E and QB for B. Also, QC, QF, QB contains all released
unterminated tasks presently in the system.,

3. Let Q (A) be an ordered queue of active tasks defined initially as QC, QF, OB
(active tasks ordered by clout). Let @ (F) be an ordered queue of frozen tasks
defined similarly to Q(A) but initially &. It is noteworthy that task clout
overrules scheduling policy LL/ED. That is, it is possible for a critical task to
have a greater laxity or later deadline than an essential or background task.
Nonetheless, the critical task will receive allocation of CPU resources before the
essential or background task. In other words, essential or background tasks will
never be able to cause a critical task to miss its deadline.

4. Define EnQ (T,Q) as inserting the given task T into the given qucue Q
preserving the queue's properties based on the task's clout, laxity and deadline.
Similarly, define DeQ (Q) as removing and returning the task at the head of the
given queue Q. Q may either be Q (A) or Q (F).

Active tasks are those tasks that can use processing resources. Frozen tasks are
denied the CPU resource in the interest of preserving a safe state for the most important

tasks: those with higher clout, or least laxity and earliest deadline within the same clout.

SafeCPU is a periodic system task whose period may be application system
dependent and can change dynamically, if necessary. Because real-time deadlines are
"moving targets”, laxities are always changing based on how much CPU time each task
has received and the distance between the current clock and the deadline. Therefore,
laxities for all tasks in both queues must be recalculated for each iteration of SafeCPU
(see the following example). After laxities are adjusted, Q (A) can be merged into Q (F).
Conceptually, tasks in @ (F) receive no CPU time and are thus in the correct order with

76 Bradley R. Swim, et al.

respect to themselves. However, tasks in @ (A) receive CPU time and thus have new
laxitics. Merging @ (A) tnto @ (F) places all tasks into proper order based on the
scheduling policy. SafeCPU can then begin to "loan out" the CPU to the tasks at the
head of Q(F).The first task is always approved, and subsequent tasks are approved as
long as sufficient CPU time remains to allocate the entire task to its completion .
Critical tasks are approved before essential tasks, which are approved before background
tasks. Approving a task means changing its state back to Active and, if it is suspended,
the process is placed back onto the transputer's hardware dispatch chain. Freezing a task
means changing its state to "frozen”. The task will suspend itself by executing an
instruction that removes the process from the hardware dispatch chain. It can only be
"thawed" by another iteration of SafeCPU.

For example, assume that essential tasks 1, 2, 3, 4 are created and their deadlines
are guarantced on a particular CPU by the Local Scheduler. Task 1 has a deadline = 20
and requires 5 compute units. Recall that compute time 7¢c= CPU + IO (elapsed time).
Task 2 has a deadline =17 and requires 9 compute units. Task 3 has a deadline =10 and
requires 5 compute units. Task 4 has a deadline = 15 and requires | compute unit. All 4
tasks are started and become active at the same time. Figure 8 shows the initial queue
structure at time =0 and latest begin times for each task. The timing diagram is not a
feasible schedule since there is only one CPU per node. Task 3 has least laxity out of
the four tasks. SafeCPU has not yet been invoked.

A F)] Task 1 Th=15, Te=5

(A) (k) \

3(10p, 5¢, 51) @ Tb=8. [+=9

2(175, 9¢, 8)) 2 -——

415, 1e, 14)) Th—%. Te=5

1(20p, 5., 15)) 3 -—

at =0 76=14, Tc-

D=deadline, C=compute, [=laxity 4 . <> 5
PU 15 allocated for 20720 units Time 5 10 15 20

Fig. 8. Example of initial queue state and task compute times.

Assume that SafeCPU's period is 3 time units. Figure 9 shows the sequence of

Queue changes until all tasks finish. For time 1..3, assume task 3 receives 2 units,
task 2 receives | unit. On the first iteration of SafeCPU, the laxities of all tasks are

recomputed based on the current clock and remaining compute time. The tasks are then

Prospects for Predictable Dynamic ... 77

merged into ¢ (F) based on LL/ED. Task 4's deadline is 3 units closer, but it did not
receive any compute time. Thus, it's laxity has dropped from 14 to 11. SafeCPU
begins to loan the CPU to the tasks. Task 3 is approved and SlackCPUTime (in the
algorithm, Fig. 7) is set to 4 which is the laxity of task 3. SafeCPU tries to give the
SlackCPUTime to task 2, but task 2 requires 8 time units. Therefore, it cannot be
approved. Thus only task 3 is active in Q (A) while tasks 2, 4, 1 are frozen in @ (I9).
Note that even though Task 4 could be approved (since it only needs 1 time unit),
SafeCPU does not violate the scheduling policy: LL/ED because deadlines are top
priority. For time 4..6, task 3 receives exclusive compute time and terminates at 1=6 (its
deadline was 10). On the second iteration of SafeCPU at t=6, the laxities are recomputed
although tasks 2, 4, 1 are properly ordered in Q (F). Task 2 is approved. SlackCPUTime
= 3; the laxity of task 2. Task 4 needs 1 compute time unit and so SlackCPUTime is
decremented to 2. Task 1 cannot be approved since SlackCPUTime<5. Thus tasks 2 and
4 are approved and active, while task ! remains frozen. At r=9, task 4 completes (its
deadline was 15) and tasks 2 and 1 compete for CPU loans. Task 2 is approved and task
1 remains frozen. Task 2 still requires exclusive use of the CPU at =12, until it
completes at r=15 (its deadline was 17). At this point SafeCPU can approve task | and
it finally terminates at r=20, jusl in time.

=3

=9

£15

Merged (F)

SlackCPUtime New Q(A)

Active

New O(F)
Frozen

3(7p. 3¢, 4)

2(14,, 8., 6,)
4(12, 1, 11)
(175 S0 12)

kask 3 pets 2; task 2 pets |

—
=4-8=0
0
0

37 3¢, 40

(T4, 35 6)
412, 15, 11)
1175, 5¢. 12,)

R C
2(11;, 8¢, 3)
495 1¢, 8)
{145, 5¢. 9))

task 3 gets 3 and exils

=3-1=2
=2-5=0

2 1, Bc, 31)
49, 1, 8,)

114, 3. 9)

2(8p, Oc. 2,)
>>4(65, O, 6,)<<
1(L1p 5c, 6,)

task 4 gets [and exits,

task 2 gets 7

=2-5=0

(g, 6c:2)

I{I1g, 5. 60)

ST U, 2=
1(55. 54, 0)
task 2 gets 3 at =12 and

3 at =15 and fimlly exits
task | finally exits arr=20

I35 5¢: 00

Fig. 9. Queue changes by SafeCPU.

Exit Time {ms)

Prospects for Predictable Dynamic ...

SafeCPU* and tasks with 83% non CPU, 17%CPU; each task needs 1200ms

| stight laxity reduced finish time 50% |

25000 —

20000 L. nmeoo oo T ey

45000 --c-ooecoanans

10000 ~--- -

5000

,,,

1.2 3 4

pm——————+— 4 e ———

7 8 9 10 11 12 13 14 15 16 17 18 19

5 8§
*sample rate in all charls is 62ms

Task ID

Fig. 10. Non CPU tasks with various laxities.

79

' —1— Exit time 0% lax

—l— Exit time Seq Disp
—4=—Exit time 10% lax
—— Exit time 20% lax
—O— Exit time 50% lax
—— Exit time 100% lax
—i— Deadline for 160% Lax

SafeCPU and tasks with 42% non CPU, 58%CPU: sach task needs 1200ms

‘—I—Exit time Seq Disp —0—Exit time 50% lax —&— Deadline for 50% lax

L4 e

[tasks finish in groupsi

30000 —-- ==

e e M e e e imemeiaaa- P

w
E-N
(%)}
o +
~J
o -
© +

Task ID

Fig, 11, CPU-type tasks with 50% laxity.

10 11 12 13 14 15 16 17 18 19

task 1 begins at time t=0, then the tightest deadlines under 0% laxity is Tdy = 100,Tdy

= 300,7d3 = 350.

80 Bradiey R. Swim, et al.

SafeCPU and tasks with 42% non CPU, 58%CPLU: each task needs 1200ms

25000 T e e S e S e
20000 +--- o--eee- e e CLEer s e g T
— ‘, —— Deadiine for 100% lax |
£ 15000 f---oveoooreoees Y SRR B g = - " | —@—Deadline for 10% lax
£ r ——Exittme Seq Disp |
= 10000 Lo " . - Y |—+—Exittme10%lax |
= ' L =—f— Exit time 100% tax {
5000 + & s e
0 ! —+ —— + —
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Task 1D Only the first 2 tasks missed deadlines under 0% laxity

Fig, 12. CPU-type tasks with 10% and 100% laxity.

SafeCP{J, 20% laxity and tasks 12 and 16 overrun Te by over 300%

~—8— Deadline for 20% lax —il—Exit time Seq Disp —-3¢—Exit time 20% lax }

Task 1D

Fig. 13, Two tasks overrun Tc¢ by 300%, uniform laxity of 20%.

Sequential dispatching is the simple comparison to SafeCPU. Sequential
dispatching starts each task (after its release time) when all required resources are ready.
No other task is started until the current task completes. The next task is dispatched in

like fashion.

Prospects for Predictable Dvnamic ... 21

SafeCPU with random laxities from 0% tc 19%; tasks 12 and 18 cverrun Tc by over 300%.

30000 - S el
i

25000 4o e . O —— K

—M— Exit time Seq Disp
15000 J(______ R A . Y A, —&— Deadline
—X=— Exit time SafeCPU

Exir time (ms)

By chance. the overicaded

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 taskshad small laxities of
0% and 7%.
Task ID

Fig. 14. Transient overload with random laxities.

3.5.2.1 Normal load

In order to test SafeCPU under normal conditions. each task consumed as much
compute time as specified by its Te. Figure 10 illustrates that given a task population
which is non CPU intensive (83% non CPU, 17% CPU). SafeCPU performs quite
well. Even with 0% laxity, SafeCPU performs slightly better than sequential
dispatching because very small levels of concurrency occur (due to the transputer’s
efficient process dispatcher). With the slightest bit of laxitv (10%), SafeCPU allowed
several tasks to switch between the CPU and still ensured that tasks 1..8 met their
deadlines by close margins. By this time, however, the other tasks had received enough
CPU time (tasks 9...19) so that they all soon finished well before their deadlines (in
about half the time as sequential dispatch). Higher laxities produced better results. Please
note that not all deadlines are shown because they would skew the y-axis scaling. For
reference, only part of the "Deadline for 100% laxity" line is shown. The linc for 0%
laxity deadlines is not shown, but it follows the "Exit time Seq Disp" line; other laxity
deadlines are between these two extremes.

Tasks can be more CPU intensive. Fig. 11 and Fig. 12 illustrate SafeCPU's
behavior with tasks that are 58% CPU and 42% non CPU. 50% laxity 1s shown in
Fig. 11 and the extreme laxities 10% and 100% are shown in Fig. 12. Only part of the
100% laxity deadline is shown so as to not skew the y-axis scaling thus rendering the
other plots unreadable. Again, all tasks were injected into the system at the same ume
and all tasks were started immediately after their creation. As expected, both charts show

2 : Bradley R. Swim, et al.

that with greater than 0% laxity, SafeCPU loans available CPU time out to collections
of tasks according to the scheduling policy. This explains why the sample tasks (with
equal compule times) finish in stair-step fashion. 100% laxity clearly shows this
behaviour where task 1 finishes by the deadline, yet sufficient CPU time was given to
tasks 2,3,4 so that they soon finished next. Similarly, tasks 5 through 11 were approved

collectively so that they all finished about the same time. And the same holds true for
the remaining tasks.

The Exit time for % laxity is not shown for clarity since it is very close to the
"Exit time Seq Disp” line. All tasks under 0% laxity finished their deadlines except the
first two tasks. This can be explained that as all 19 tasks were thrust into the system at
the beginning, it took at least one iteration of SafeCPU to freeze all tasks but the first
one. And perhaps SafeCPU's period was not sufficiently frequent to thaw task 2 in time
for it to meet its deadline. But more likely, crucial CPU time was consumed by all tasks
at their initial burst into the system before the latter tasks (3..19) could be frozen. This
caused task 1 and 2 to miss their deadlines. This is the extreme initial case and
demonstrates that SafeCPU behaves poorly if a too many tasks are injected into the
system and the initial tasks have 0% laxity. Further experiments are needed to determine

the relationship between SafeCPU's period and the maximum rate at which new tasks all
with 0% laxity can be started at the same time.

3.5.2.2 Transient overload

To experience transient overload, we caused 2 of the tasks to exceed their Tc
considerably. That is, the normal 17 tasks still had profiles of 42% non CPU and 58%
CPU, whereas 2 tasks (task Ids 12 and 16) became excessively CPU intensive and
overran their Te by over 300% (from 1200 ms to 3700 ms) making their profiles 14%
non CPU, and 86% CPU. All tasks had deadlines with 20% laxity and all tasks
specified Tc = 1200. As Fig. 13 illustrates, sequential dispatching had enough
cumulative laxity built up in reserve to survive the first overrun (task 12), but the
second overrun (task 16) missed its deadline and caused all remaining tasks (17,18,19) to

also miss their deadlines. SafeCPU, however, only missed the first deadline. All other
deadlines were met.

SafeCPU's behaviour is deterministic during transient overloads, as described
below. When a task overruns, its remaining compute time essentially becomes negative.
SafeCPU ireats all negative values as zero and thus the task's laxity (deadline-remaining

compute time) becomes greater than any other active task with the same deadline (since
these non overrun tasks have a non zero remaining compute time). This has the effect of

Prospects for Predictable Dynamic ... 83

demoting the overrun task to receive less CPU than other normal tasks with the same
deadline. As time elapses, the deadline gets closer and closer causing the laxity to
decrease enabling the overrun task to compete with other tasks who have later deadlines.
However, immediately after the overrun task's deadline has past. SafeCPU computes the
task's laxity as zero and thus the SlackCPUTime in Fig. 7 is zero causing all tasks to
freeze except the overrun task (unless a task of higher clout exists). If all active tasks are
of the same clout, this has the effect of promoting this overrun and overduaask to
receive exclusive use of the CPU time until it completes. This is demonstrated in
Fig. 13 since task 12 soon finishes after its deadline (exit time 17000ms). Tasks 16 and
19 are the only remaining tasks in the system after exit ime 17000ms and they finish
after task 12 (task 13, 14, 15, 17, 18 all finish before exit time 17000ms). In most
cases, such behavior is unacceptable and the application should take necessary steps to
kill the overdue and overrun task.

It is important to note that SafeCPU's queue structure keeps critical tasks before
essential tasks, which are before background tasks. Because SafeCPU's overhead is low,
it can be used to manage several critical tasks in the CPU at the same time, instead of
the classical approach of exclusive CPU use for each critical task. We also assume that
critical tasks will never overrun. Even if a task’s laxity is zero (the smallest possible
value), it will only be serviced if there are no other tasks present with higher clout. This
means that even if during a transient overload, an essential task overruns and misses its
deadline, and if the laxities are very tight (c.g. 0%), the overrun and overdue task will
not cause critical tasks to miss their deadlines.

In order to simulate non deterministic task deadline behaviour, task laxities (and
hence their deadlines) were drawn randomly from a uniform distribution ranging from
0% to 19%. The tasks were still composed of 42% non CPU, 58% CPU and all T¢'s
remained defined as 1200 ms. The same two tasks (IDs 12 and 16) experienced over
300% Tcoverrun. Sequential dispatching had worse (unpredictable) results, as shown in
Figure 14. The first overrun caused itself and (this time) all 7 remaining tasks to miss
their deadlines. It is important to remember that these deadlines were previously
"guaranteed”. But, SafeCPU had predictable results. Only the overran tasks missed their
deadlines. All other tasks met their deadlines. The overran tasks missed their deadlines
because, by chance, they received extremely low laxities: 0% and 7%. Thus, in a
dynamic deadline environment, SafeCPU successfully monitors task progress predictably
ensuring that tasks meet their deadlines. It also degrades gracefully during transient
overloads. :

84 Bradley R. Swim, et al.

3.5.3 Real time boiler control

In order to fully test SafeCPU, a real time steam boiler control application was
designed and developed. A boiler simulator was constructed that modeled a certain
volume (V) of water, of a certain temperature (T), and under a certain pressure (P).
Inputs into the boiler were water flow and heat. Boiler output was steam. Inputs and
output were controlled by valves that increased or decreased the flow (water, heat,
steam), The purpose of the control application was to automatically maintain given
pressure and water level parameters so that the boiler did not explode. Steam demand
(output) could fluctuate and thus created unpredictable events at which the application

corrected the inputs (more or less heat and water) in order to maintain stcady pressure and
water level. Process control applications such as this commonly utilize a Proportional

Integral Derivative (PID) algorithm which compares past and present readings against
elapsed time. The simple PID algorithm k& (V1 - Vp)+ k(Vggat - Vi) [20] was used in

this experiment 1o control the water level. Please note that V1 is the previous Volume
reading, V,, is the present Volume reading, Vgoal is the setpoint Volume parameter that

must be maintained, and k is an experimental constant related to the control substance
and the time between measurements. A similar algorithm was used to stabilize the
Pressure (P).

The application's design (Fig. [5) consisted of 4 major tasks: Controller,
Monttor, Correction, and Display along with the boiler simulator. The Controller was a
periodic critical task that received commands from an operator (to change steam output

Correction
Task -
Operator Cmds
SetPoint

Controller
Task

Display Task

Fig. 15, Boiler control communication graph.

Boiler State Readings
and Parm Corrections

\\s

Boiler State
Readings

Monitor
Task

Steam Demand
changes

'Gampics

Prospects for Predictable Dynamic ... 85

settings along with the required water level (V) and internal boiler pressure (P)). It also
received Monitor samples and compared them with the required parameter settings. If V
or P changed, the Controller launched the Correction Task to bring the beiler back to
equilibrium. It also made sample data available to the display task. The Monitor task
was a critical periodic task which never terminated. Its period was 800ms and it had a
compute time 7¢c =10ms and a deadline 7d =50ms after the start of each period. The
Corrective task was an essential periodic task that was scheduled and launched at
unpredictable times. It had a lifetime of 110000ms, its period was 200ms, its compute
time Tc¢=60ms, and its deadline 7d =100ms after the start of each period. It terminated
when V and P stabilized around their setpoints. The display task was a background
periodic task that displayed all parameters on the console.

The above application executed comfortably on 1 host (Fig. 16) where P = 10

16

14 1

12 1

10 |

——— SteamOut -
Pressure ,
. e CorTECHON taSkS

|
\ Lifetime

Pressure and steam
o

Hapsed time

Fig. 16. Boiler control during output Muctuations,

kg/cmz, V=150 liters, and steam output ranged between 15 and 13 units. Only the
Corrective task is shown. A second independent boiler application was placed on the
same host so that the host was busy controlling two boilers (Fig. 17). The second

boiler maintained P =9 kg/cm2 and generated between 11 and 9 units of steam. In order
10 schedule the second boiler application, the Corrective task timing parameters had to
be changed (Td =200) so that both Corrective tasks could execute comfortably during the

86 Bradley R. Swim, ef al.

16
14
12
e Pres sura B1
10 Pressure BO
% 8 st_t Zoorn n on -—,—Correcfwtal Tasks B1
o Periodic Corrective g Corr Lifetime B1
* 6 Tasks = Corractive Tasks 80
Corr. Lifetime BO
4 ,_J,,-"*"‘ -/_\\\A I — |
A N, w
2 foe , F g
o]

Bapsed time

Fig. 17. Twa boiler control process.

same 200ms time interval. In order to get a better understanding of the control process,

Figure 18 shows execution traces at 30ms granularity. It shows Controller tasks for
both boiler 0 (BO) and boiler [(B1) along with each boiler's Monitor task.

e fi et e e A | Corrective tasks B
) ——)) —— =——) q 1—C{f}l'l'ecti\i'e tasks BO‘
h:.:(g TX 'Y B | Monitor B1 {
[1 [|
Monitor BO i
[+ 7Y [+ 1 i
a Deadlines

i

Pt — F——t—t

2 B B R @3 &8 85 &8 %

¥ 0 @ K~ 0 @ v & o ¢ 0

@ W O W W © ~ M~ ~ ~ K

Elapsed time (ms)

Fig. 18, Corrective task executions.

An unexpected implementation phenomenon arose during one of the tests
(Fig.19). Monitors {critical tasks) for both boilers executed during a Corrective task's
period. SafeCPU thus froze the Corrective task while the critical task executed. But

Prospects for Predictable Dynamic ...

— — *\ — —
' \“__‘_,/J
@ .
: u: %
- . 2Critical tasks occured
. during task's cycle
* causing deadline miss
© (SafeCPU latency:
58ms)
[Ty} [] L1} i ™3 (=] -~ [] P~ e 8 bt o 2
2 8 8 o B8 3 838 8 8 b & &
~r ~t ~t < ~r -+ ~r <r - - ~r - - -
Bapsed time (ms)

Fig. 19. Critical tasks preempt.

==t Corractive tasks B1i
—— Corrective tasks BO
Monitor B1
Monitor BO
4 Deadlines

87

because SafeCPU's period was 58ms, it did not wakeup in time to thaw the frozen

Corrective task. Thus it missed its deadline. To solve this problem, task period
termination was changed to thaw any frozen tasks, if the terminating task was the only
running task. Figure 20 shows the result where the latency was reduced and the

Corrective task was able to meet its deadline.

— A —_ A — — A e ;
Doy | Corrective tasks B1
S H N
P @A ~ | —— Corrective tasks BO
[S 4 Monitor B1
" DT a
Lo “\ Monitor BO
F Y .
H_ : 4 Deadlines
: Inmediately thawing next
— | + ; 1 i f . . frazen task after cmical
[=] [=] .
8 3 g § E E g g =4 § § § § =4 § g o task tenTinates reduces
e N
R O O L I T T B R i 2 8 & latency and deadiine is mel
-— - - — - - o - - - -— -— - — —
Hapsed time (ns)

Fig. 20. Thaw after task exits.

88 Bradley R. Swim. ef a,

Without SafeCPU, task deadlines were vulnerable because task concurrency was
unrestrained. Figure 21 shows that under normal conditions, Corrective tasks for both
boilers slowed each other down so that a deadline was missed. In the worst case of
transient overload, the Corrective task for B1 was changed to execute continuously for
tts entire period (Fig. 22) and obviously, most deadlines were compromised.

i* e e e— e e g | Corrrective tasks B1

-—1———A-—A——A-——t——s

] | . Monitor B1
é Monitor BO
".— "
A Deadlines
\
|
I -
S : S Unrestrained cchcurrency
S 2 83 83X 3 28 383 2 8 causes missed deadline
- [32 0 0 O M~ o ©Q — o o]
© W D W Y © © N~ M~ = K~
Hapsed time (ms)

Fig. 21. No SafeCPU - normal operation. .

-

- Corrective tasks 81!
| * * * A * Cerrective tasks BO
7] !
§ ; [X (X Monitor B1
F Monitor B0
B
P‘ a Deadlines
, | R
|
T TR —_—
o I~ [] o (=] o o = o (] o
o [\ o [7¢] W - L+ o] =] [] -— o
M w m (=] — N 3] == w P ©
© © o & OO, O & D

Hapsed time {ms

—

Fig, 22. No SafeCPU - overload condition.

Prospects for Predictable Dynamic ... 89

Once SafeCPU was introduced, deadlines were enforced (Fig. 23) favoring
temperate tasks over gluttonous tasks and in no case was a critical task deadline
compromised. It should be noted in Fig. 23 that sometimes SafeCPU awoke and favored
Corrective B1 task for a short time (Corrective BQ was frozen). This is because Bl had a
smaller laxity than BQ even though B1 was gluttonous. Nevertheless,B1 was soon
terminated at the end of its period which thawed B0). When SafeCPU awoke again, 1t
favored BO so that its deadline was met.

wx Freezing

é%_% a _%_%_é .“%_é‘ —Corrective tasks B1
' Corrective tasks BO
<1 Monitor B1
i+ | Monitor BO
A
]

Tasks

Deadiines
SafaCPU

L
P
- B

* 4 ‘ * 0 . .

DQONDONNIODODOIQQI‘)D
8 3358222882338 35¢8 3
Bapsed time (ms})

Fig, 23, SafeCPU - deadlines guaranteed.

3.5.4 Cost of SafeCPU
SafeCPU is computationally efficient except for merging Q (R) into @ (F). The

complexity of an ordered queue merge is O (n2) because the entire queue might be
scarched in order to insert the new element. An implementation of SafeCPU has been
incorporated into the RTDOS kernel and the cost of SafeCPU was measured. A task
population from 10 to 80 tasks was created and executed on a T425 transputer running at
20 MHz. All tasks were created and started immediately after task creation. All tasks had
the same clout (essential) and all tasks were specified with large deadlines so that all
tasks were reevaluated and approved during each SafeCPU period. The experiment
intended to measure the worst-case cost of one execution of the SafeCPU algorithm, not

90 Bradley R. Swim, er al.

including costs associated with starting and stopping each SafeCPU period and costs of
user tasks. Table 1 tabularizes the measured results on the T425. The trial test case was

faster than O (nz) and indeed approaches (n/ 10)1 ‘5+ 1.

Table 1. Actual SafeCPU cost,

number of | actual cost (n/10)2+1 (m/10y1.541
tasks (ms) approximation approximation
10 2 2 2
20 4 5 4
30 7 10 7
40 9 17 9
50 12 26 13
60 15 37 i6
70 19 50 20
80 23 a5 24

3.5.5 SafeCPU’'s period

SafeCPU's peniod is a crucial factor in the responsiveness of the system. If the
period 1s too large, and if processor utilization is high (meaning laxity is tight) then
potentially only 1 task is running every period. This latency could be unacceptable for
certain applications. Nevertheless, if SafeCPU has a moderate peried and it is
monitoring a reasonably-sized task population, then it incurs acceptable overheads. For
e¢xample (on the current platform), if the processor’s task population is limited to 30
tasks (which is quite large for a transputer), then SafeCPU consumes at the very worst
7ms each period. This allows a SafeCPU period of 50ms to consume 14% overhead in
the absolute worst case.

3.5.6 Critical factors for SafeCPU

In summary, SafeCPU requires several factors to be taken into consideration.
First, the algorithm assumes that the host processor is not overburdened, 1.e. ali task
deadlines have been guaranteed online or offline by the Local Scheduler. Second, it
assumes that critical tasks will never exceed their specified compute time. Third,
SafeCPU's period must be balanced with the task set population so that overhead is kept
low. The above costs are worst-case. In the experiments of section 3.5.2 using a period
of 62.5ms and a task population of 19 tasks, SafeCPU consumed an average of about 1
ms of CPU time each period because many of the tasks were blocked on I/O and thus
were not merged into Q (F). Last, any tasks executing after their deadlines (including
overrun tasks) receive top priority and are thus terminated.

Prospects for Predictable Dynamic ... 91

4. Conclusion

The main thrust of RTDOS is predictable services for dynamic hard real-time

distributed systems. The proposed scheduler is unique among current trends in that it
distributes the scheduling burden between 3 components:

a pre-run-time static scheduler for known tasks (periodic tasks),

a 5-level dynamic scheduler modet for the remaining types of known and
unknown periodic, aperiodic and background tasks. The dynamic schedulability
analysis and topological reconfiguration tools can adapt the network topology to
meet unforeseen deadline, resource, and precedence constraints. Also,

a deadline priority and guarantee scheme that when coupled with the dynamic
scheduler and the deadline monitor (SafeCPU) can truly provide a dynamic system
adapting to unforeseen conﬁgurations.

Pending research is identifying and quantifying the predictability of the proposed

scheduling model. Local and global dynamic schedulers are currently under development
and measurement.

(1

[2]

[3]

[4]

(5]

(6]

References

Xu, . and Parnas, D.L. "On Satisfying Timing Constraints in Hard-real-time Systems."
IEEE Transactions on Software Engineering, 19, No.1 (Jan. 1993), 70-84.

Stankovic, J.A."Real-Timne Computing Systems: The Next Generation.” In: Tuterial
Hard Real-Time Systems., Stankovic, J.; Ramamritham, K. (eds}. IEEE Computer
Society Press, (1988), 14-37.

Tayli, M.; Bor, M.; Benmaiza, M., and Eskicioglu, M.R., "RT-DOS A Real-Time
Distributed Operating System for Transputers.” Proceedings of the 13th Occam User
Group Technical Conference, Real-Time Systems with Transputers, York, UK,
H.Zedan, (ed), 108 Press, (Sept 1990), 1-11.

Benmaiza, M. and Tayli, M. "Circuit-switched IPC for Predictable Message Passing in
a Multiloop Transputer Network.” Proceedings of the World Transputer Congress,
Transputer Applications and Systems '93, Aachen, Germany: R. Grebe et al. (eds.), TOS
Press, (Sept. 20-22, 1993),890-898.

Xu, J. "Multiprocessor Scheduling of Processes with Release Times, Deadlines,
Precedence, and Exclusion Relations.” IEEE Transactions on Software Engineering
19, No. 2 (Feb 1993), 139-154,

Stankovic, J.A, and Ramamritham, K. "The Design of the Spring Kemnel.” Tutorial

Hard Real-Time Systems. JEEE Computer Society Press, Stankovic, J.; Ramamritham,
K. (eds.), (1988), 371-382.

(71

(8]

(9]

{10]

i11]

[12]

[13]

[14]

[15]

t16)

[17]

(18]

[19]

Bradley R. Swim, et al.

Zhao, W.; Ramamritham, K., and Stankovic, J. "Preemptive Scheduling under Time and
Resource Constraints."IEEE Transactions on Computers, C-36, No.8 (Aug 1987), 949-
960.

Ramanmiritham, K.; Stankovic, J.A., and Zhao, W. "Disiributed Scheduling of Tasks
with Deadlines and Resource Requirements." [EEE Transactions on Computers, 38,
No. 8 (Aug. 1989), 1110-23.

Stankovic, J.A. "Decentralized Decision-making for Task Reallocation in a Hard Real-
time System.” IEEE Transactions on Computers, 38, No. 3 (March 1989), 341-55.
Stankovic, J. A."The Spring Architecture.” Proceedings. EUROMICRO, Workshop on
Real Time, Horsholm, Denmark, IEEE Computer Science Press, (June, 6-8, 1990},
104-113.

SGS-Thomson Microelectronics. The Transputer Databook, 3rd ed., INMOS, Lid., #72
TRN 203 02, order code DBTRANST/3, 1992.

Hoare, C.A.R. "Communicating Sequential Processes.” Communications of the ACM,
21, No.& (Aug 1978), 666-677.

Tayli, M. and Benmaiza, M. "An Efficient Circuit-switching Mechanism for Inter
Process Communication in a Transputer Network.” Proceedings of the {EEE Workshop
on Future Trends in Distributed Computing Systems, Lisbon (Sep,22-24, 1993),
215-220. ,

Xu, J. and Parnas, D.L. "Scheduling Processes with Release Times, Deadlines,
Precedence, and Exclusion Relations.” [EEE Transactions on Software Engineering,
16, No.3 (March 1990), 360-369.

Dertouzos, M.L. and Mok, A K."Multiprocessor on-line Scheduling of Hard-real-time
Tasks" [IEEE Transactions on Software Engineering, 15, No.12 (Dec. 1989),
1497-1506.

Burns, A. "Scheduling Hard Real-time Systems: A Review." Software Engineering
Journal, 6, No.3 (May 1991]), 116-128.

Lehoczky, J.; Sha, L., and Ding, Y."The Rate Monotonic Scheduling Algorithm: Exact
Characterization and Average Case Behavior." Proceedings: Real Time Systems
Symposium, IEEF Cat. No.89CH2803-5 (Dec. 1989), 166-71.

Stankovic, J. and Ramamritham, K."The Spring Kernel: A New Paradigm for Real-Time
Operating Systems.” ACM Operating Systems Review, 23, No.3 (July 1989), 54-71.
Auslander, D.M. and Sagues, P. Microprocessors for Measurement and Control.
Berkeley, CA: Osbome/McGraw-Hill (1981).

Prospects for Predictable Dynamic ...

RTDOS il dds pyge pllas 5 LSaluall Tyadd

g ‘(LD dasea ‘!L;U FY e ‘i “‘]al_ﬂ
g U dnaly = Solaglally sl pyle £A5

M‘ia—&lﬂ;auﬁ?c‘;@ul&f)‘q;ﬁ)A'#‘L}Jud‘l‘eﬁl‘w .L:.-‘h-:-” U"';"L'
J-_.‘GOJ_’-L?'_, quJllta_nA:gb.'mM e of el &H;;:LM&J._’JJ\ JL«.GN'_, uﬁLLJJ\ 3da] Lg._.! C;":“
di...‘..ldz caallae %Q:Huﬂl ‘_‘A‘LA.J..:-J UJJJ_-‘Q‘.‘.:J el N alda J_ﬁa‘_,j .;.'Q_;‘.&A
Ukt IS B, 00 0dn sl lasonll S8l e iy lanlly placl) pLWI Sl S of L
AUSLl oda on alalas 5 T 5 placll s dagy . RTDOS il im0 plai b ASnlioad
pll Jolowy 2 sl Ll g o S e sie W 0 S0 LSS g e e G 2 (Tl
b Dladadl Lo eoall diiy o mi gl S pd st ailas et RTDOS
ae it Do) Soaliys 5 pn bl S Bebadi ekl 5, 01 iy okl b ey e

Ayl CEL"H R dLe.J!

93

