
J.King Saud Univ., Vol. 9, Computer & Information Sci., pp. 57-93 (A.H. 1417/1997)

Prospects for Predictable Dynamic Scheduling in RTDOS

Bradley R. Swim, Murat Tayli and Mohamed Benmaiza
Computer Science Department, Col/ege of Computer & Information Sciences

King Saud University, Riyadh, Saudi Arabia

(Recei ved, 10 April 1995; accepted for publication, 09 October 1995)

Abstract. Future dynamic distributed hard real-time systems may control unpredictable
environments and will need operating systems that can handle unknown and changing task

populations. In this extreme case, not only is task scheduling totally dynamic, but the
system's topology and architecture must adapt to unforeseen configurations. This paper
addresses the difficult problem of dynamic task scheduling in a Real Time Distributed

Operating System (RTDOS). RTDOS is unique because it possesses the potential to map, at
execution time, a flexible topology of networked nodes onto a network of tasks. Attempts
will be made to characterize the predictable adaptability of the scheduler so as to relax the pre
run-time scheduling requirements for an RTDOS application. A scheduler architecture and
dynamic deadline guarantee scheme are presented along with some experimental results.

1. Introduction

Hard real-time distributed systems can be classified into 4 major clusters with respect to

their environment and behavior (Fig. 1). Even though many hard real-time systems of
today are considered to be static within a predictable environment (cluster A) [1], current

and future systems are seen to be more dynamic and controlling unpredictable

environments(cluster C). The environment's flexibility requires new task types to be

injected into the system even during production mode (e.g. space exploration, battle
management, undersea exploration) [2].

57

58 Bradley R. Swim. et aJ.

Today's research and development in hard distributed real-time systems focuses on
dynamic systems controlling predictable environments (cluster B). These systems

assume that the controlled environment is predictable to the extent that all application
task types are known. From the task scheduling perspective, not all task instantiations

are scheduled statically. New task requests, from predefined task types, can be scheduled
dynamically within known limits. The dynamic aspect of these systems is confined to

task creation and scheduling.

The scheduling complexity follows an exponential path (Fig. 1) between static

predictable systems and dynamic unpredictable systems (clusters A, B, C). It is obvious
that task scheduling is complicated significantly if the operating system handles

unknown and changing task popUlations. In this extreme case, not only is task
scheduling totally dynamic, but the system's topology and architecture must adapt to

unforeseen configurations.

Given the complexity of task scheduling for cluster C, many assumptions must
be simplified in order to build an efficient dynamic task scheduler. Currently, our Real

Time Distributed Operating System (RTDOS) [3] resides in cluster B, but we are
investigating the extent to which we can push RTDOS to control an unpredictable

environment. RTDOS is projected to be able to adapt itself to unforeseen
configurations during production mode operations.

This paper describes current research underway to develop a predictable dynamic

scheduler for RTDOS. The existing platform currently supports predictable
communication between tasks distributed within the network [4], and synchronized

clocks [5]. Because we believe that a key solution to the dynamic scheduling problem
is the timely availability of resources, namely the CPU, we have implemented a Task

Manager along with a medium-level CPU scheduler on top of an existing hardware low
level scheduler. The medium-level CPU scheduler enforces task deadlines even under

transient overloads and improves CPU utilization significantly (discussed below in
section 3.5). Building upon this predictable platform, the predictability of our

scheduling and time-dependent resource management approaches will be analyzed in order
to formalize the behavior and limitations of our solution.

The paper is organized as follows. The next section highlights eXlstmg
scheduling approaches with a focus on dynamic scheduling. Section 3 explains the
architectural model and design of the RTDOS scheduler along with some experimental
results from an RTDOS scheduler prototype.

Unpmlictable

Predictable

Prospects for Predictable Dynamic ...

Undefined

Static distributed
systems in
predictable
environments

A

Dynamic
distributed systems
in predictable
environments B

L
________ ~ ______ ~SJ'Yfem

&haYior
Static

Scheduling
Complexity

A

Dynamic

c

L
_______________ ~·S~~m

TyIX'

Fig. 1. Hard real-time distributed system classification.

2. Dynamic Scheduling

59

In hard real-time systems, deadline task scheduling is crucial because missed
deadlines have severe consequences that compromise safety, security, and cost

constraints. Tasks can be characterized by their:

1. Periodicity: tasks may be classified as periodic or aperiodic.
2. Deadlines: along a spectrum from hard to soft to none. Hard deadlines, if

missed, imply catastrophic system failure. Less hard deadlines, if violated,

compromise system integrity and utility, yet may still permit the system
to operate within defined safety limits. Some tasks are background and

have no deadlines.

60

3.

Bradley R. Swim. et al

Precedence: the application may define a panial execution order for a set of

tasks because of logical relationships between tasks. communication
constraints, or resource availability.

4. Resources requirements: CPU, VO devices, communication. memory. etc.

Static systems are those where complete knowledge of all of the above task
characteristics is known a priori. In such systems, static scheduling can determine a

feasible schedule off-line for all possible task requests. The bulk of static schedulIng
approaches limit their task sets to have periodic tasks where the task request times and

other characteristics such as deadline, computation time, and precedence are known. If
aperiodic tasks with deadlines exist, then they are mapped into equivalent periodic tasks.

Optimal scheduling algorithms, such as the one described in [6]. can derive a feasible
schedule on multiple processors for all known periodic tasks considering their request

time, computation, deadline, as well as their precedence and exclusion relations. The
schedule is implemented at run-time by a deterministic task dispatcher. often based on

task priorities.

Dynamic systems do not require a priori knowledge of all tasks and their
characteristics. Yet, critical periodic tasks are scheduled off-line so that their resources

can be preallocated (if a critical task fails, the system fails). For the remainder of tasks
with soft deadlines, a scheduler can determine oll-lille (dynamically) if a task
instantiation can meet its deadline without violating other task deadlines in the running

system [7, 8, 9, 10, II]. Heuristics are used in all cases to speed up the otherwise
lengthy and costly process of determining a feasible schedule, in theory NP-complete.

Because these algorithms are distributed, they apply dynamic load distribution to
globally search the network for a suitable remote host for the incoming task.

Attempting near-optimal scheduling of all aperiodic tasks at runtime can be complex and

consumes precious time. Some authors have shown that heuristics can achieve
satisfactory results in such algorithms [9].

3. RTDOS Predictable Dynamic Scheduling

In RTDOS, critical and all known periodic tasks can be scheduled pre-run-time.
Critical tasks are assumed to never exceed estimated resource requirements. while
periodic tasks can be defined with average-case resource estimates. All pre-allocated tasks

can have resource and precedence constraints (e.g. I/O. memory. IPe, order of execution
and data availability). Off-line scheduling algorithmS consider fine-grained task execution

Prospects for Predictable Dynamic ... 61

ordering when determining a feasible schedule (unlike on-line techniques). This will
yield a verifiable feasible schedule that guarantees satisfaction of timing, resource, and

precedence constraints for many types of tasks (most of them having hard deadlines).

There remains the need to schedule on-line unknown periodic, aperiodic and
background tasks with deadlines and resource constraints. Because dynamic scheduling

may be the only alternative in unpredictable environments, the current research aims to
permit as many tasks as possible to be scheduled on-line using the novel technique

proposed in section 3.2. Before discussing the RTDOS scheduler, a brief overview of the
RTDOS system architecture is presented.

3.1 RTDOS architecture overview

RTDOS is an operating system running on a multi-loop topology of transputers
[12J. Although transputers are utilized in the current development platform, the

architecture of RTDOS does not depend on that particular processor. RTDOS
implements CSP [13] as the basic communication model for application level

processes. Figure 2 illustrates the topology of the transputer network assumed for
RTDOS.

Base
Domain

i ,

~
Application

Domain

: ,
:
-t Data Links

Fig. 2. RTDOS network topology and communication architecture.

.........•

Domain

62 Bradley R. Swim, ec al.

In summary, an RTDOS network is a set of intersecting loops of transputers.

The RTDOS topology as a minimum has at its core a Base Domain. At each transputer
of this loop, it is possible to attach additional loops scaled to meet application demands.
These loops are intended as Application Domains. The transputers connecting the main

system loop with each application/server domain are called Domain Managers. These
Domain Managers are reserved for system functions (e.g. monitoring, scheduling, etc.).

Domain nodes are linked through bi-directional links to form the cOlltrol loop. The
control loop is dedicated for a datagram-based service between RTDOS kernels replicated

on each transputer. Transputer Links not used by the control loop are intended for

application specific data traffic between nodes. These data links can be all wired to a
Programmable Switch or to each other. At run time, the links are allocated between

communicating tasks on disjoint transputers. The application can choose to either
allocate the links in a permanent way (due to application timing constraints) or

temporarily for the duration of one communication transaction. Moreover, the network
topology can be dynamically reconfigured if the control loops are formed via a

programmable link switch. RTDOS's predictable circUIt-switched point-to-point Inter
Process Communication (IPC) facility is described in more detail in [4,14].

The transputer architecture [12] presents unique opportunities and challenges
when compared to more traditional architectures. Each transputer has at least 4 high

speed serial links that can be connected with other transputers or a link switch to form a
network. The hardware supports many threads on one CPU (they are called processes,

but in practice they share the same address space) and dispatches them according to 2
priorities - High and Low. This dispatching (and forced timeslicing) is performed when

a Low-Priority thread blocks itself (e.g. on I/O), or executes one of many designated
descheduling instructions (e.g. timer, jump/loop, process start/end, etc.). Context

switching of threads is very fast - in the order of less than 1 microsecond. On the other
hand, the transputer does not have a memory management unit. This limitation of no

virtual memory renders program code relocation and process migration from one
processor to another completely impractical.

The RTDOS topology and architecture can be exploited to provide alternate

approaches to time-dependent resource management.

3_2 RTDOS scheduler architecture
The architecture of RTDOS enables a scaleable approach to processing power

because a given application can be mapped to one or more domains (leading to a given
application architecture). Moreover, after the initial application architecture has been

Prospects for Predictable Dynamic ... 63

detennined, RTDOS can quickly and dynamically adapt the configuration of a domain to
possess more or less processing and communication power (more or less nodes - within

limits). Therefore, it is possible to dynamically scale and reconfigure the network to
meet unforeseen resource needs of an application in a time dependent fashion. The
adaptive hybrid dynamic scheduling of RTDOS is illustrated in Fig. 3.

OFFLINE

: Initial Sy!
: Specificat

tern:
ion i

:

New Fask
Specifkalio

1-------

: Expert ~ ,
: Intervent , ionl

, ,-------
lee (Jllaran

failllre polhy

I
ileconfigu ration

Initial of System
Environmem
undTa.~b Pre-run-time

scheduling r
- - --r - - - - -Ini/ial Schedule Initial Top%K)'

Modijied jerform Global Policy, l Topology ra.fk ~uild Task Configuration J .
Population

Reconfiguration

& S('hedule Re,\"ollne ;nd 7'a.~" Allocalion
Resource

Analyze
Refinemenr.f

Schedulability
Domain Schedulers
Local Scheduler!!.
CPU Schedulers ONLINE

i
Process Dispatchers

MOnitor ~\C'nt.\ ..
Global Scheduler components are shadowed

l'ig. 3. The adaptive hybrid dynamic scheduling of RTDOS.

Conventional distributed scheduling attempts to map a network of tasks upon a

fixed topology of networked processors. Adaptation of current systems frequently
employ pools of slack resources (e.g. processor pool) to support the changing demands

of the application. Nonetheless,the topology of the distributed system may remain

unchanged with respect to non-unifonn IPC costs. For example, if a pool of spare nodes
were located on a disjoint segment or ring apart from the overloaded nodes, then IPC

costs to/from the pool are different from IPC costs among the overloaded nodes. On the
contrary, RTDOS has the potential to map, at execution time, a flexible topology of

networked nodes onto a network of tasks. That is, a domain can be extended by
"switching" in a new processor (perhaps from a pool) into the loop; or a domain can be

split into 2 smaller loops. In any case, after the domain has been reconfigured, the IPC
costs remain unifonn and predictable. In this way, the network topology changes at run
time to absorb the demanded task network configuration.

64 Bradley R. Swim, et ai.

Off-line, the application tasks' requirements are specified using a declarative
language including all necessary task attributes such as deadline, period, computation

time, resource requirements, precedence constraints, etc. Static analysis of the
specification can determine an initial feasible periodic schedule and domain topology

where resource, deadline, and precedence constraints are guaranteed. The static scheduler
allocates resources for known periodic tasks as well as periodic servers for those

aperiodic tasks with large laxities and high probabilities of occurrence. It also determines
an initial upper bound of pre-loaded task clones (duplicates) needed to meet the resource

and deadline requirements of the known dynamically scheduled tasks (e.g.known
aperiodic tasks with small laxities or low probabilities of occurrence). Nodes containing

a task clone are capable of hosting that dynamically scheduled task from birth to death.
Static scheduling produces an initial topology, task configuration and schedule for

known tasks.

RTDOS uses a 5-layered on-line scheduler model (Fig. 4). Level 5 is the Global
Scheduler which loads tasks in the initial schedule onto the network as well as the

current topology configuration. It is responsible to analyze the schedulability of the
current system (based on events generated by Level 4), to implement guarantee failure

policy based on instructions from an outside" expert"", and to reconfigure the domains if

necessary according to current policy in order to better fit the task topology. Any
topology or policy changes are forwarded to the concerned Domain Schedulers so that

their configurations can be updated. It also sets policy for task-forwarding by Domain
Schedulers. That is, if a Domain Scheduler cannot guarantee a deadline, it forwards the

task to another domain in hopes that the deadline can still be guaranteed.

Level 4 is the Domain Scheduler resident in every domain (Fig. 2), one per
application domain. This scheduler accepts task instantiation requests and attempts to

guarantee the deadlines of those tasks given total resource availability (e.g. CPU,
memory, I/O devices, transputer Links, etc.). Task requests can be local (intra domain)

or global (inter domain forwarding of tasks). All resources of a domain are managed and

scheduled by the Domain Scheduler. It uses a set of resource ""planes""(described in

section 3.4) that keeps track of each resource's allocation with respect to the deadline and

computation requirements of the requesting tasks. If it cannot guarantee a task, it
attempts to forward (according to the global policy) the task request to another domain

for servicing. It also generates scheduling events to the fifth layer so that schedulability
can be analyzed.

Prospects for Predictable Dynamic. 65

ltilobal Scheduler
• Tmplement policy for

deadline guarantee failures. 5

• Analyze schedulability.
• Receive scheduler events. System-
• Reorganize system Wide

topology.

uomam ~chedulers
Find candidate hosts for

4
global task requests.
Forward guarantee failures
to Global Scheduler.

Local,",cneOUler
• Guarantee task deadlines

on this host.
3

Forward guarantee failures On
to Domain Scheduler. Each

SateLYU Scheduler Node

• Monitor task progress. 2
• Enforce deadlines of

started tasks under
transient overloads.

roeess Uispateher
• Transput.er's Microsecond 1

context switching in HW

• Transputer's Tinaeslicing
• Transputer's 2-Level

priority

Fig. 4. RTDOS's on-line S-layer scheduler model.

Level 3 is the Local Scheduler resident on each host. All new task requests are

initially submitted to Local Scheduler, and if it cannot guarantee the task then the task
is forwarded to the Domain Scheduler. If the task is schedulable, then the task is started

as soon as possible.

Level 2 is the medium-level CPU scheduler: Safe CPU described in section 3.5.
SafeCPU resides on every node in RTDOS and enforces, if necessary, task deadlines for

all started tasks on its node. It improves CPU utilization and ensures that all previously
guaranteed tasks meet their deadlines even under transient overloads. If any deadlines

must be missed, they will be missed in an order that reflects their importance (i.e. well
behaved tasks will finish and meet their deadlines before overloaded tasks).

66 Bradley R. Swim, ef al.

Levell is the transputer's hardware scheduler, This performs microsecond level
context switching between processes on a single processor.

Level 4 and 5 work together to map the network topology to the changing

application. Run-time monitors record significant task events (e.g. guarantee. failure.
overrun of allotted time. etc.) whereby schedulability statistics can be produced. If time

remains for an unguaranteed task. it is forwarded to a remote host for servicing.
Concurrently, schedulability analysis might be able to determine a more optimal

schedule and topology for the current environment. The system could then adapt by
extending or collapsing its domain structures subject to expert advise. Similarly, if new

tasks, previously unknown to the system, are injected into the system then the same
schedulability analysis can be performed (under expert control) yielding a modified

schedule and topology (see Fig. 3).

Currently, our research focus is on the dynamic scheduler and its predictability.
Utilizing RTDOS's predictable IPC and synchronized clocks, the above

scheduling/monitoring policies and mechanisms are being developed and formalized on
the current development platform. We presume the existence of a reconfiguration and

static schedule generation facility (the off-line components of Fig. 3). We also presume
that future research will address the on-line schedulability and topology analysis and

reconfiguration tools. These tools are important components of the system because
they improve the system's reliability. When a task fails to be guaranteed, a series of

network reconfigurations could ensue enabling the system to prevent future failures.

3.3 Task model
This section lays the theoretical framework for RTDOS's task model. The model

assumes that tasks follow CSP semantics precisely and use RTDOS IPC exclusively for

communication. This precludes shared memory models of communication reducing
problems associated with exclusion constraints found in other scheduling algorithms.

Additionally, tasks are scheduled by the Local Scheduler in a nonpreemptible fashion.
See Fig. 5 for an illustration of the model's concepts.

The RTDOS task model supercedes other models [6,15,16] inasmuch as tasks

with resource constraints, scheduled both statically and dynamically, are supported.
Because the ultimate goal of RTDOS is dynamic adaptability. the static aspects of our

approach are only a step towards a completely dynamic model.

• An Application A = {TGj •... ,TGml is a finite set ofm Task Groups utilizing a

Prospects for Predictable Dynamic ...

Application

TG 1 TG 2

Task 6 Task 2 Task 1 i---.rt __ ...:::JTask 5

D

Task
Segments

Messages

Task Timing

~TI,

... Actual e-:eCU!10n

~---Y

rU j - arrival time
= release time (earliest start time)

Ti, = laxity time
= begin time (latest start time)

Te i - total compute (elapsed) time
= deadline

")stem fmle

W = wrapup lime (new requests accepted after this time)

Fig. 5. An application composed of communicating task groups.
and tasks with associated task timing.

67

distributed system consisting of N nodes. Task Groups are user defined in order
to specify intertask dependencies, i.e. precedence constraints among cooperating

dynamic tasks. Precedence constraints for static tasks are specified using task
segments (discussed below). Task Group specifications are also utilized during

dynamic scheduling in order to optimize the placement of tasks on processor
nodes.

• A Task Group TGi = {Tj, ... ,Tt } is a finite set of t Tasks distributed over one

or more nodes.

68 Bradley R. Swim, et al.

• A Task T; is the basic execution unit and has 2 attributes: a set of s resources

needed by the task{RJi, ... ,R
s; } and a finite sequence of k execution segments T;

[1], ... ,T; [kl. Resources are non shared entities such as CPU, memory, 1/0

devices and communication facilities. Execution segments are ordered such that
Ti [Il is the first segment and Ti [k] is the last segment. Fine grained precedence

constraints for static tasks are defined as ordered pairs of task segments (e.g. (TJ

[3],T 4 [1]) implies that the third segment of task T 1 must complete its execution

before the first segment of T 4 begins). Task segments are the smallest granule

utilized when specifying precedence relations. Hence, they are visible only to the
static scheduler. Such precedence constraints must be specified for the static

scheduling algorithm so that proper order is maintained in the derivation of a
feasible schedule. More investigation is needed to find the best method of

expressing task segments at the application level and how to dispatch them at
runtime. Dynam;c tasks are defined with k=J segment. The entire task is the

smallest granule of distrihution possible within the network.

• Each segment T; Ul is characterized by{ T; U{, T; Ulb, Ti uf. Ti Uld} where T;

U{ = release time of segmentj, T; Ulb = latest begin time of segmentj, T; ut =

elapsed compute time of segmentj, and Ti Uld = deadline of segmentj .

Given a particular task, T ETG; , the following time relationships hold

for both periodic and aperiodic tasks:

• Ta is the arrival, or instantiation real time of task T.

• Tr = T[Ilr is the user defined release time, or earliest time that the task's first
segment may begin execution. Release times for other segments, if not user

defined, are defined as T[i + I 1" = T[i ld + I, i.e. the release time for segment i +I

is immediately after segment i 's deadline (assuming discreet time).

• Tb = T[l]b ~ Td -Tc is the begin time, or the latest time that the task's first

segment may begin execution. Otherwise, the task's deadline will be
compromised. This is usually computed by the scheduler, but can also be user

defined. Begin times for all other segments, if not user defined, are computed as

11; lb ~ T[i IT[i lC, i.e. the begin time for segment i is no later than the
elapsed time necessary to execute segment i .

• TI = Tb -Tr is the laxity time between the task's earliest start time and latest

Prospects for Predictable Dynamic ... 69

start time. This measure, initially defined by the scheduler. quantifies the urgency

of the task with respect to its deadline. This value changes dynamically, after the
task is started, to be Td -Tc (the deadline minus the remaining compute time

needed for this task).
• Tc is the user defined compute time needed by this task. It is the sum of the

estimated/calculated execution elapsed times for all segments; i.e.

Tc = LiT[/]c • After the task starts execution, Tc represents the remaining

compute time required. Tc should include all processing, I/O, IPC, and

synchronization time. Note that among all timing measures, only the compute
time Tc and laxity time Tl constraints are tallies of elapsed time. The other task

timing measures can be non-negative offsets from the arrival time Ta .
• Td is the user defined deadline by which all segments of task T must complete. In

addition, the relations 'ii, T[i]d < T[i + l]d and Tr+ Tc :s; (T[k]~ :s; Tb + Tc = Td

must hold (T[k] being the last segment). That is, all segment deadlines must be
ordered such that a segment's deadline is strictly less than its successor segment's

deadline, if it exists. Also, the deadline for the last segment must lie between the
earliest time at which the task can tenninate and the latest time at which the task

can terminate which is the task's deadline.
• Tw is the user defined wrap-up, or recovery time after the task's deadline before

which a subsequent request for task T cannot be serviced. After Tw, the task is
free to be reinstantiated. This parameter can be used to specify recovery times for

aperiodic tasks as well as to fonnulate the period for periodic tasks.

In real time, ifR =Ta+ Tr, B=Ta+ Tb, D=Ta+ Td, and W=Ta+ Tw, then
initially the relation Ta :s; R S R + Tl = B < B + Tc = D :s; W holds. This
relationship is also shown in Figure 5.

Any task (either statically or dynamically scheduled) is capable of missing

its deadline by exceeding its allotted compute time Tc . RTDOS's SafeCPU
scheduler degrades gracefully and does not allow these excessive tasks to corrupt

the deadlines of other tasks. Nonetheless, when either the deadline or Tc has been
exceeded, a system-defined or user-defined exception handler will be invoked.

This feedback mechanism allows an application to tenninate' faulti'tasks and

facilitates dynamic monitoring, debugging, system reconfiguration and

scheduling.

70 Bradley R. Swim. et al.

3.4 RTDOS deadline guarantee policy
Dertouzos and Mok [16] showed that an optimal dynamic scheduler for 2 or more

processors is impossible to build. However. they did prove necessary and sufficient

conditions required to ensure that a task set is conflict free at any point in time (i.e. all
tasks will meet their deadlines) without a priori knowledge of the task start times. They

demonstrated that both the Earliest Deadline and Least Laxity algorithms can
implement these conditions. Their analysis considered the CPU as the only resource and

that tasks were preemptible.

RTDOS dynamic scheduling considers resource constraints including CPU.
memory. I/O devices, and communication resources. The scheduler receives requests to

start new tasks or task groups. As assumed in [6], tasks with precedence constraints

form a task group and each task in the group is given the same arrival time Ta, the same
deadline Td, and the same wrap-up time Tw since these tasks "are most likely to be

constrained to occur in the same time period" [6. p.151]. In contrast. the group does
not have a summed compute time Tc since tasks conceptually receive processing power

in parallel on disjoint hosts. In the following discussion task and task group are
interchangeable.

Extending the scheduling game model given in [16]. when the task t arrives. it
can be characterized by the ordered pair t = (Tit. TCt) (laxity and compute). If we

assume that the task's arrival time Tar = Trt (the task's release time) then, by definition.

TCt + Tit = Tdr (the task's deadline). The ordered pair t = (Tit. Tet) can be plotted on

a Cartesian Coordinate system (LxC) for a particular resource R i (Fig. 6). For

example, if a task with a deadline of 3 arrives, then It can be plotted anywhere on the
line C = 3-L. This line and the line L = Td= 3 separate the plane into 3 regions Rg I ,

Rg2, Rg3' Region Rgi contains tasks whose deadlines are earlier than Td = 3 and they

must receive the resource within the next 3 time units. Region Rg2 contains tasks

whose deadlines are later than Td but they must receive the resource for a time period
proportional to their distance from the line L=3. Region Rg3 contains tasks that do not

need attention within the next 3 time units. As shown in Fig. 6, task (I, I) has a

deadline of 2 and needs I unit of computation time. Task (2,2) has a deadline of 4 and
needs 2 units of computation time, however, it must receive at least I unit of

computation time within the next 3 time units. Task (4.1) has a deadline of 5 and needs
I unit of computation time to complete, however, it needs no attention within the next

3 time units.

Prospects for Predictable Dynamic ... 71

3 Rg2 Rg,
0
0 -" 0 (2,2) ~
0 • '" 2 -2-u "- (I,I) (4,1) E
" • • ~

" Rg i a.
S
0

u
0

2 Tiki 4 5

Laxity(L)

Fig. 6. Utilization forecast plane for resource R; .

Using the above defined regions, the dynamic Local Scheduler can determine if
there exists enough spare resource utilization time upon the arrival of a new task. If

o::;L,Cj+L, (Tdr-Li)::;Tl t
RSI RSl

then the new task can be scheduled. That is, if the sum of computation times for all
tasks in region Rg I plus the sum of all required computation time needed in the next

Tdr units by tasks in region Rg2 is less than or equal to the laxity of the new task t ,

then the new task can be scheduled. Considering the above example scenario, region
Rg I has task (I, I) and region Rg2 has task (2,2). Therefore, in the next 3 time units,

the resource is already committed for 2 time units. If the new task has a deadline of 3,
then it can only be scheduled to utilize the resource if its computation time Tc ~ I ~

Tl ~ 2 possibly corresponding to the task I = (2, I).

When scheduling the next task to run, the scheduler chooses the task with the
least laxity and/or the earliest deadliJIln the above example, the scheduler looks ahead

for the next 3 time units (Td). If the new task's computation Tc = I, then it is
schedulable and it is plotted at t = (2,1). The next task to be scheduled is (1,1) since it
has least laxity. Afterwards, task (2,2) and the new task (2,1) both have least laxity.

Since the new task (2,1) has a earliest deadline, it will be scheduled second. Next, task
(2,2) is scheduled.

72 Bradley R. Swim, et al.

Because tasks are nonpreemptible from the Local Scheduler's perspective and all

resources must be in place before the task is scheduled, the dynamic scheduling
algorithm can model a (LxC) plane for every schedulable resource - CPU, memory, I/O

devices, transputer links, and Connection Service capacity (the Connection Service
establishes point-to-point connections for IPC and has a limited capacity of connections

per second). Replicated resources (e.g. identical CPUs, memory segments, transputer
links, maximum connections per second) can be represented as heaps. A resource plane

will then be dynamically allocated as a subset of the heap. All resource planes in use are
conceptually updated every time unit. In practice, this can occur less frequently such a,s

at every scheduling point. The "cube" of (LxC) resource planes allows the dynamic
scheduler to maintain proper control and allocation of all resources in its domain loop.

3.5 RTDOS deadline monitoring
In most cases, a task's required compute time (Tc) is derived by statistical

analysis. Deadline scheduling policies based on stochastic computation times perform

well in average but fail in the presence of transient overloads, causing already
"guaranteed" tasks to miss their deadline. Moreover, a task missing its deadline may

result in a domino effect, causing other tasks to miss their deadline. And these deadlines
are not missed in an order that reflects their importance [17]. This may have adverse

effects on the system's behavior as critical tasks begin to miss their deadlines. For
example, the Rate Monotonic algorithm [18], with transient overloads, causes the
processes with the longest periods to miss their deadlines. And according to Burns, most

scheduling schemes (including Earliest Deadline) cause aperiodic deadlines to be missed
not in an order that reflects their importance. Therefore, any deadline scheduling strategy

without proper CPU scheduling policies to handle transient overloadis subject to
failure even though the deadline was previously "guaranteed". This is true for both

static and dynamic deadline scheduling strategies.

This section presents an approach using medium-term scheduling policies to cope
with the problem of transient overload in dynamic real-time environments. As our

approach also considers computation times as stochastic, we do not claim to solve the
problem in all the cases, but experimental results showed that the proposed approach

performs better than the existing ones, and produces higher CPU utilization ratios.

The RTDOS solution to this problem is a medium-term CPU scheduler
operating on top of the transputer hardware scheduler. The medium-term scheduler,
running at every node, monitors periodically the laxity and deadline of executing tasks.

It reschedules the active task list according to Least LaxitylEarliest Deadline policy.

Prospects for Predictable Dynamic ... 73

This activity results in the suspension (and therefore the CPU preemption) of tasks with

large laxity to the benefit of tasks with smaller laxities. As a result the proposed schema
always takes the system from a "safe state" (all the tasks are schedulable) to another safe

state. Note that RTDOS approach departs from existing approaches [19, 16] that
establishes fixed schedules. It periodically establishes new feasible execution schedules

depending on task laxities and deadlines. This preemptive strategy deals efficiently with
transient overloads, and increases CPU utilization.

3.5.1 The SafeCPU algorithm
The following is assumed by the SafeCPU algorithm:

a) Tasks are classified as critical, essential, or background (the task clout). Tasks
may be periodic or aperiodic.

b) Time constraints for an RTDOS task T are expressed by several parameters
including Tr= task release time (earliest start time), Tb = task latest begin time,

T! = task laxity time, Tc = task's remaining elapsed (compute) time to finish, and
Td = task deadline in real-time. Task laxity (Tl) is defined as Td -Tc (spare time

between the current clock and the task's deadline considering how much compute
time remains).

c) Critical tasks never exhaust their specified compute requirement (the initial Tc).
However, maximum Tc values of essential tasks are determined stochastically and

may not represent the worst-case. It is possible for an essential task to exceed its
initial Tc. This applies to both periodic and aperiodic tasks. In this case, the task
can be called a gluttonous task. If a task does not exceed its initial Tc then it is
called temperate (well-behaved).

d) A task is monitored by SafeCPU if and only if its deadline has been guaranteed

either off-line, or on-line by the Local Scheduler. Off-line scheduling preallocates
all necessary resources for known tasks (processor time, memory,

communication load, VO devices, etc.) considering their time and fine-grained

prece-ience constraints. The Local Scheduler dynamically performs the same
function on-line, but precedence constraints of dynamically scheduled tasks are

handled by giving the constrained tasks a common group release time and
deadline. The RTDOS kernel processes arc not monitored by SafeCPU.

e) When a new task is guaranteed, it may begin execution anytime between Tr and
Tb . The task can straightway be launched at Tr, or as soon as all required

resources are available. This implies that as new tasks are guaranteed, they are
dispatched as soon as possible.

74 Bradley R. Swim. er al.

The SafeCPU algorithm (Fig.?) periodically wakes up to ensure that the CPU is
not overburdened with active tasks causing a deadline to be compromised. If a deadline

is in jeopardy, then SafeCPU will "freeze" (suspend) sufficient tasks in order to meet the
most urgent deadline(s). Conversely, it will also "thaw" (resume) frozen tasks when the

system is again in a safe state. It thus monitors the sets of active and frozen tasks
maximizing CPU utilization and ensuring that no deadline is compromised. SafeCPU's

period is a crucial tuning parameter for the application system. We plan to build tools
that will aid the application developer in determining a proper period gi yen various task

population characteristics such as CPU vs. non cpe beha\·ior. shortest and longest
application task times, deadline laxity profiles. etc.

SafeCPU algorithm
Every 1 milliseconds do

Recalculate the Laxity for all tasks in Q(A) and Q(F)
for all tasks in Q(A) do -- merge Q(A) into Q(F)

EnQ(DeQ(Q(A», Q(F))
end for
if Q(F) ;<0 then -- some tasks asking for CPU "loans"

SlackCPUTime = TI (laxity) of first task in the Q(F)
Approve (thaw if needed) the first task in the Q(F)
EnQ(DeQ(Q(F», Q(A))
for the remaining tasks in the Q(F) do

TimeRemain = remaining compute time T c of frrst task in Q(F)
if TimeRemain ;< 0 and TimeRemain ,;; SlackCPUTime

else

and SlackCPUTime .. 0 then
SlackCPUTime = SlackCPUTime - TimeRemain:
Approve (thaw if needed) this task
EnQ(DeQ(Q(F», Q(A))

SlackCPUTime = 0;
exit for loop

endif
end for
Freeze all remaining tasks in Q(F)

endif
end do

Fig. 7. SaC.CPU algoritbm.

Prospects for Predictable Dynamic ... 75

SafeCPU utilizes two Queues, ReadyQ and FrozenQ and each queue is ordered by

task clout so that critical tasks are serviced before essential tasks, which in turn receive
attention before background tasks. Furthermore, each task clout is ordered according to

the scheduling policy: Least Laxity andlor Earliest Deadline (LLIED) [16]. In order to
describe SafeCPU's queue structure more formally,

I. Let C = {Ti : Ti is a critical task}, E = {Ti : Ti is an essential task}, B = {Ti : Ti

is a background task}.

2. Define the queue of critical tasks ordered by LUED as QC = Tl' T2, ... , Tn

where Ti E C and Ti has least laxity andlor earlier deadline than Ti+ 1 (i.e., Tlj

< Tlj +1 or (Tlj = Tlj +1 and Tq :0; Tq +1)). QC can be 0. Form similar

queues QE for E and QB for B. Also, QC, QE, QB contains all released

unterminated tasks presently in the system.
3. Let Q (A) be an ordered queue of active tasks defined initially as QC, QE, QB

(active tasks ordered by clout). Let Q (F) be an ordered queue of frozen tasks
defined similarly to Q(A) but initially 0. It is noteworthy that task clout

overrules scheduling policy LLIED. That is, it is possible for a critical task to
have a greater laxity or 41ter deadline than an essential or background task.
Nonetheless, the critical task will receive allocation of CPU resources before the

essential or background task. In other words, essential or background tasks will
nevcr be able to cause a critical task to miss its deadline.

4. Define EnQ (T,Q) as inserting the given task T into the given queue Q
preserving the queue's properties based on the task's clout, laxity and deadline.

Similarly, define DeQ (Q) as removing and returning the task at the head of the
given queue Q. Q may either be Q (A) or Q (F).

Active tasks are those tasks that can use processing resources. Frozen tasks are
denied the CPU resource in the interest of preserving a safe state for the most important

tasks: those with higher clout, or least laxity and earliest deadline within the same clout.

SafeCPU is a periodic system task whose period may be application system
dependent and can change dynamically, if necessary. Because real-time deadlines are

"moving targets", laxities are always changing based on how much CPU time each task
has received and the distance between the current clock and the deadline. Therefore,

laxities for all tasks in both queues must be recalculated for each iteration of SafeCPU
(see the following example). After laxities are adjusted, Q (A) can be merged into Q (F).

Conceptually, tasks in Q (F) receive no CPU time and are thus in the correct order with

76 Bradley R. Swim. ef(ll.

respect to themselves. However, tasks in Q (A) receive CPU time and thus have new

laxities. Merging Q (A) into Q (F) places all tasks into proper order based on the
scheduling policy. SafeCPU can then begin to "loan out" the CPU to the tasks at the

head of Q(F).The first task is always approved, and subsequent tasks are approved as
long as sufficient CPU time remains to allocate the elltire t(lsk to its completion.

Critical tasks are approved before essential tasks, which are approved before background
tasks. Approving a task means changing its state back to Active and, if it is suspended,

the process is placed back onto the transputer's hardware dispatch chain. Freezing a task
means changing its state to "frozen". The task will suspend itself by executing an

instruction that removes the process from the hardware dispatch chain. It can only be
"thawed" by another iteration of SafeCPU.

For example, assume that essential tasks I, 2, 3, 4 are created and their deadlines
are guaranteed on a particular CPU by the Local Scheduler. Task I has a deadline = 20

and requires 5 compute units. Recall that compute time Tc= CPU + I/O (elapsed time).
Task 2 has a deadline =17 and requires 9 compute units. Task 3 has a deadline =10 and

requires 5 compute units. Task 4 has a deadline = 15 and requires 1 compute unit. All 4
tasks are started and become active at the same time. Figure 8 shows the initial queue

structure at time t=O and latest begin times for each task. The timing diagram is not a

feasible schedule since there is only one CPU per node. Task 3 has least laxity out of
the four tasks. SafeCPU has not yet been invoked.

3(100 , 5c, 5L) 0
2(170 , 9c, 8L)

4(150' Ie' l4J
1(200, 5e, 15J
at 1=0
[)=deadline, C=compute, L=laxity

Task
I

2

3

4

"""TlTr::======-"''7t7'T1'I'7.units

T6=15. Tc=5

()

Jb=8.],;=9

()

Tb-5. h=5

()

Time 5 10

10=14. Tc-'--!

~

15 20

Fig.8. Example of initial queue state and task compute times.

Assume that SafeCPU's period is 3 time units. Figure 9 shows the sequence of

Queue changes until all tasks finish. For time 1 .. 3, assume task 3 receives 2 units,
task 2 receives I unit. On the first iteration of SafeCPU, the laxities of all tasks are

recomputed based on the current clock and remaining compute time. The tasks are then

Prospects for Predictable Dynamic ... 77

merged into Q (F) based on LLIED. Task 4's deadline is 3 units closer, but it did not
receive any compute time. Thus, it's laxity has dropped from 14 to 11. SafeCPU

begins to loan the CPU to the tasks. Task 3 is approved and SlackCPUTime (in the
algorithm, Fig. 7) is set to 4 which is the laxity of task 3. SafeCPLf tries to give the

SlackCPUTime to task 2, but task 2 requires 8 time units. Therefore, it cannot be
approved. Thus only task 3 is active in Q (A) while tasks 2, 4, 1 are frozen in Q (F).

Note that even though Task 4 could be approved (since it only needs 1 time unit),
SafeCPU does not violate the scheduling policy: LLfED because deadlines are top

priority. For time 4 .. 6, task 3 receives exclusive compute time and terminates at t=6 (its
deadline was 10). On the second iteration of SafeCPU at t=6, the laxities are recomputed

although tasks 2. 4, I are properly ordered in Q (F). Task 2 is approved. SlackCPUTime
= 3; the laxity of task 2. Task 4 needs I compute time unit and so SlackCPUTime is

decremented to 2. Task I cannot be approved since SlackCPUTime<5. Thus tasks 2 and
4 are approved and active, while task I remains frozen. At r=9. task 4 completes (its

deadline was 15) and tasks 2 and 1 compete for CPU loans. Task 2 is approved and task
I remains frozen. Task 2 still requires exclusive use of the CPU at r=12, until it

completes at (=15 (its deadline was 17). At this point SafeCPU can approve task 1 and
it finally terminates at r=20, just in time.

1=3 ~(/D' J e• 4~
2(14", 8e• 6e)

4(12", Ie. IIJ
1(170) 5e• 12J

ask J g.!ts 2. la:ik 2 g\:ts I

t=6 > j\ q", Uc• 4el«
2(11", 8c• 3e)

4(9[)o Ie, 8J
1(141) 5e, 9,)

task 3 gel~] and Couts

1=9 L\ .~. 0e, Lei
»4(6", 0c> 6J«
1(11", 5e, 6J

task 4 gets 1 and exits,
ta~k 2 gets 2

1=15 ~:l£", Ue, ~J«
1(5", 5e, OJ

task 2 gets 3 3t 1=12 and
3 at /'" 15 and fill3lh exits
task I finally exits ;';r=20

SlackCPUtime New Q(A)
Active

4 Ij\l", je. 4el
=I-8~O

0

°
3

~~IIt> 'e,:u
4(91) Ie, 8,)

~3-1~2

~2-5~O

New Q(F)
Frozen

I :l~4", ·e. tV
4(12", Ie, IIJ
1(17", 5e, 12,)

1(14", 'c> ~e)

EJDD ~2-5~0

DDD
Fig. 9. Queue changes by Sar,CPU.

Prospects for Predictable Dynamic ...

SafeCPU· and tasks with 83% non CPU, 17%CPU: each task needs 1200MS

25000 ~ _I slight la~i_ty reduced finish time 50% 1_

f ::)
I- '
~ 10000 1-_
w

5000

o ~_+_~~+_I --+~+__~__+~+_
234 5 6 7 8 9

-sample rate in all charts is 62ms
10 11 12 13 14 15 16 17 18 19

Task ID

Fig. 10. Non CPU tasks with various laxities.

79

~ Exit time 0% lax
__ Exit time Seq Oisp

~Exittime 10% lax

-X- Exit time 20% lax

I -: Exit time 50% lax :
~Exit time 100% lax

......-. Deadline for 100% Lax

Sat.CPU and tasks with 42% nan CPU, 58%CPU: each task needs 1200ms

1 ___ Exit time Seq Disp --<>-Exit time 50% lax -+-Deadline for 50% lax]

35000 T
I tasks finish in groups I

30000 ~ ..
';'----- -----_____________ -:-:-:o~_

----" 25000 t
~. 20000 t,

~ ~ ~ .. ~ ..

~ 15000

10000 ~

5000

~+_~~+___+~_+_~+__+~+_-~~_+____+I-·__O_+__+~-f_· ~~~

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Task ID

Fig, 11, CPU-type tasks with 50% laxity.

task I begins at time t=O, then the tightest deadlines under 0% laxity is Td] = lOO,T~

= 300,Td3 = 350.

80

25000 r
20000 r

f 15000 t
3 10000 t·

5000 J

Bradley R. Swim, et 01.

SafeCPU and tasks with 42% non CPU, 58%CPU: each task needs 1200ms

-.-Deadline for 100% lax I

-+-Oeadlinefor1D%lax I'

___ Exit time Seq Disp ,

--+- Exit lime 10% lax i
'--I:r-Exit time 1~

o I -f--+I-f--~

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Task lD Only the first 2 tasks missed deadlines undef' 0% laxity

Fig, 12. CPU-type tasks with 10% and 100% laxity.

30000 r--
25000 t·

~ 20000 I
E 15000 -

SafeCPU, 20% laxity and tasks 12 and 16 overrun Tc by over 300%

[=!=-Deadline _for 20% lax ___ Exit time Seq Oisp --X-Exit time 20% lax I

~ ':::: It_, • ..®~~~~F~~;:~"'~~~
o - ~---+---, --+--+--1- ------+---+---j-

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

TasklD

Fig. 13. Two tasks overrun Tc by 300%, uniform laxity of 20%.

Sequential dispatching is the simple comparison to SafeCPU. Sequential

dispatching starts each task (after its release time) when all required resources are ready.
No other task is started until the current task completes. The next task is dispatched in
like fashion.

Prospects for Predictable Dynanuc .. 81

SafeCPU with random laxities from 0% to 190/0; tasks 12 and 16 overrun Tc by over 300%

30000 T~~

25000

~-;;- 20000
-.S
.~ 15000

'x 10000

5000 t
O~

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Task 10

Fig. 14. Transient overload with random laxities.

3.5.2.1 Normal load

_ EXit time Seq Disp

-+- Deadline

-X- Exit time SafeCPU

By chat'1ce. the overloaded
tasks had small laxities of

0% and 7%

In order to test SafeCPU under normal conditions. each task consumed as much
compute time as specified by its Te. Figure 10 illustrates that given a lask population

which is non CPU intensive (83% non CPU, 17% Cpe). SafeCPU performs quite

well. Even with 0% laxity, SafeCPU performs slightly better than sequential

dispatching because very small levels of concurrency occur (due to the transputer's

efficient process dispatcher). With the slightest bit of laxity (1 O'7c), Safe CPU allowed
several tasks to switch between the CPU and still ensured that tasks 1 ... 8 met their

deadlines by close margins. By this time, however, the other tasks had received enough
CPU time (tasks 9 ... 19) so that they all soon finished well before their deadlines (in

about half the time as sequential dispatch). Higher laxities produced better results. Please
note that not all deadlines are shown because they would skew the y-axis scaling. For

reference, only part of the "Deadline for 100'7c laxity" line is shown. The line for 0'7c
laxity deadlines is not shown, but it follows the "Exit time Seq Disp" line: other laxity
deadlines are between these two extremes.

Tasks can be more CPU intensive. Fig. II and Fig, 12 illustrate SafeCPU's

behavior with tasks that are 580/0 CPU and 42'7c non CPU. 50S{ laxity is shown in
Fig. 11 and the extreme laxities 1O'7c and 1009c are shown in Fig. 12. Only part of the

100% laxity deadline is shown so as to not skew the y-axis scaling thus rendering the
other plots unreadable. Again, all tasks were injected into the system at the same time

and all tasks were started immediately after their creation. As expected. both charts show

82 Bradley R. Swim, et al.

that with greater than 0% laxity. SafeCPU loans available CPU time out to collections

of tasks according to the scheduling policy. This explains why the sample tasks (with
equal compute times) finish in stair-step fashion. 100% laxity clearly shows this

behaviour where task I finishes by the deadline. yet sufficient CPU time was given to
tasks 2.3,4 so that they soon finished next. Similarly, tasks 5 through 11 were approved

collectively so that they all finished about the same time. And the same holds true for
the remaining tasks.

The Exit time for 0% laxity is not shown for clarity since it is very close to the

"Exit time Seq Disp" line. All tasks under 0% laxity finished their deadlines except the
first two tasks. This can be explained that as all 19 tasks were thrust into the system at

the beginning, it took at least one iteration of SafeCPU to freeze all tasks but the first
one. And perhaps SafeCPU's period was not sufficiently frequent to thaw task 2 in time

for it to meet its deadline. But more likely, crucial CPU time was consumed by all tasks
at their initial burst into the system before the latter tasks (3 .. 19) could be frozen. This

caused task I and 2 to miss their deadlines. This is the extreme initial case and
demonstrates that SafeCPU behaves poorly if a too many tasks are injected into the
system and the initial tasks have 0% laxity. Further experiments are needed to determine

the relationship between SafeCPU's period and the maximum rate at which new tasks all
with 0% laxity can be started at the same time.

3.5.2.2 Transient overload
To experience transient overload, we caused 2 of the tasks to exceed their Tc

considerably. That is, the normal 17 tasks still had profiles of 42% non CPU and 58%
CPU. whereas 2 tasks (task Ids 12 and 16) became excessively CPU intensive and

overran their Tc by over 300% (from 1200 ms to 3700 ms) making their profiles 14%
non CPU. and 86% CPU. All tasks had deadlines with 20% laxity and all tasks

specified Tc = 1200. As Fig. 13 illustrates, sequential dispatching had enough
cumulative laxity built up in reserve to survive the first overrun (task 12), but the

second overrun (task 16) missed its deadline and caused all remaining tasks (17,18,19) to
also miss their deadlines. SafeCPU, however, only missed the first deadline. All other
deadlines were met.

SafeCPU's behaviour is deterministic during transient overloads, as described

below. When a task overruns, its remaining compute time essentially becomes negative.
SafeCPU treats all negative values as zero and thus the task's laxity (deadline-remaining

compute time) becomes greater than any other active task with the same deadline (since
these non overrun tasks have a non zero remaining compute time). This has the effect of

Prospects for Predictable Dynamic. 83

demoting the overrun task to receive less CPU than other normal tasks with the same
deadline. As time elapses, the deadline gets closer and closer causing the laxity to

decrease enabling the overrun task to compete with other tasks who have later deadlines.
However, immediately after the overrun task's deadline has past. SafeCPU computes the

task's laxity as zero and thus the SlackCPUTime in Fig. 7 is zero causing all tasks to
freeze except the overrun task (unless a task of higher clout exists). If all active tasks are

of the same clout, this has the effect of promoting this O\'errull alld overdllllask to

receive exclusive use of the CPU time until it completes. This is demonstrated in

Fig. 13 since task 12 soon finishes after its deadline (exit time 17000ms). Tasks 16 and
19 are the only remaining tasks in the system after exit time 17000ms and they finish

after task 12 (task 13, 14, IS, 17, 18 all finish before exit time 17000ms). In most
cases, such behavior is unacceptable and the application should take necessary stcps to

kill the overdue and overrun task.

It is important to note that SafeCPU's queue structure keeps critical tasks before
essential tasks, which are before background tasks. Because SafeCPU's overhead is low,

it can be used to manage several critical tasks in the CPU at the sam~ time, instead of
the classical approach of exclusive CPU use for each critical task. We also assume that
critical tasks wilI never overrun. Even if a task's laxity is zero (the smallest possible

value), it will only be serviced if there are no other tasks present with higher dout. This
means that even if during a transient overload, an essential task overruns and misses its

deadline, and if the laxities are very tight (e.g. 0%), the overrun and overdue task will
not cause critical tasks to miss their deadlines.

In order to simulate non deterministic task deadline behaviour, task laxities (and
hence their deadlines) were drawn randomly from a uniform distribution ranging from

0% to 19%. The tasks were still composed of 42% non CPU, 58% CPU and all Tcs
remained defined as 1200 ms. The same two tasks (IDs 12 and 16) experienced over

300% Tc overrun. Sequential dispatching had worse (unpredictable) results, as shown in
Figure 14. The first overrun caused itself and (this time) all 7 remaining tasks to miss

their deadlines. It is important to remember that these deadlines were previously
"guaranteed". But, SafeCPU had predictable results. Only the overran tasks missed their
deadlines. All other tasks met their deadlines. The overran tasks missed their deadlines

because, by chance, they received extremely low laxities: 0% and 7%. Thus·, in a
dynamic deadline environment, SafeCPU successfully monitors task progress predictably

ensuring that tasks meet their deadlines. It also degrades gracefully during transient
overloads.

84 Bradley R. Swim, er al.

3.5.3 Real time boiler control
In order to fully test SafeCPU, a real time steam boiler control application was

designed and developed. A boiler simulator was constructed that modeled a certain

volume (V) of water, of a certain temperature (T), and under a certain pressure (P).
Inputs into the boiler were water tlow and heat. Boiler output was steam. Inputs and

output were controlled by valves that increased or decreased the tlow (water, heat,
steam). The purpose of the control application was to automatically maintain given

pressure and water level parameters so that the boiler did not explode. Steam demand
(output) could tluctuate and thus created unpredictable events at which the application

corrected the inputs (more or less heat and water) in order to maintain steady pressure and
water level. Process control applicat~ons such as this commonly utilize a Proportional

Integral Derivative (PID) algorithm which compares past and present readings against
elapsed time. The simple PID algorithm k (V n-1 - V n)+ keY goal - V n) [20] was used in

this experiment to control the water level. Please note that V n-I is the previous Volume

reading, V n is the present Volume reading, V goal is the setpoint Volume parameter that

must be maintained, and k is an experimental constant related to the control substance
and the time between measurements. A similar algorithm was used to stabilize the
Pressure (P).

The application's design (Fig. 15) consisted of 4 major tasks: Controller,
Monitor, Correction, and Display along with the boiler simulator. The Controller was a

periodic critical task that received commands from an operator (to change steam output

Operator Cmds

D
Steam Demand
changes

Samples

Fig. 15. Boiler control communication graph.

Boiler State
Readings

Prospects for Predictable Dynamic ... 85

settings along with the required water level (V) and internal boiler pressure (P». It also
received Monitor samples and compared them with the required parameter settings. If V

or P changed, the Controller launched the Correction Task to bring the boiler back to
equilibrium. It also made sample data available to the display task. The Monitor task

was a critical periodic task which' never terminated. Its period was 800ms and it had a
compute time Tc =iOms and a deadline Td =50ms after the start of each period. The

Corrective task was an essential periodic task that was scheduled and launched at
unpredictable times. It had a lifetime of 11 OOOOms, its period was 200ms, its compute

time Tc=60ms, and its deadline Td=iOOms after the start of each period. It terminated
when V and P stabilized around their setpoints. The display task was a background
periodic task that displayed all parameters on the console.

E .,
~

"' '0
<:: .,
~
::J

"' "' ~
a.

The above application executed comfortably on 1 host (Fig. 16) where P = 10

16

14

12

10

8

6

4

2

O.

6apsed time

Fig. 16. Boiler control during output fluctuations.

_Steam Out

__ Ftessure i

i-Correction tasks I
I t3 L~etirre

kg/cm2, V= 150 liters, and steam output ranged between 15 and 13 units. Only the
Corrective task is shown. A second independent boiler application was placed on the

same host so that the host was busy controlling two boilers (Fig. 17). The second

boiler maintained P = 9 kglcm2 and generated between 11 and 9 units of steam. In order
to schedule the second boiler application, the Corrective task timing parameters had to

be changed (Td=200) so that both Corrective tasks could execute comfortably during the

86 Bradley R. Swim. el al.

16 r---------------~------------------~--_.

14

12

10

M.Jst Zoom on
~iodic OJrrective
Tasks

~
4 --""\ -

2,.;...---...:,. I(,.~. __ _)
Bapsed tilT'e

Fig. 17. Two boiler control process.

II

_PI'essure B1

__ A'essure SO

~Correctlve Tasks 81

f3 Corr. Ufetirre B1

_Corrective Tasks 80

II Corr. L~etime BO

same 200ms time interval. In order to get a better understanding of the control process,

Figure 18 shows execution traces at 30ms granularity. It shows Controller tasks for
both boiler 0 (BO) and boiler I (B I) along with each boiler's Monitor task.

-- .. • _ .. • I-Corrective tasks B11 - - - - -<f)
I_Corrective tasks SO I

.>< B B <f) ! fa Monitor B1 !
~

Dt. g. II Monitor BO

• Deadlines

-+- ----t----------.-------t----+--+
a a a a '" a «> '" a a
'" '" <D «> 0> a a ~ '" '" <D ex:> 0> ~ '" '" ... '" '" <D <D <D '" '"

Bapsed tirre (ms)

Fig, 18. Corrective task executions.

An unexpected implementation phenomenon arose during one of the tests
(Fig. 19). Monitors (critical tasks) for both boilers executed during a Corrective task's

period. SafeCPU thus froze the Corrective task while the critical task executed. But

-
-4

0 0 0 0 0

'" N '" <0 ..,
'" 0 0 ;0 N

'" ~ <0 <0

'" '" '" '"

._---

Prospects for Predictable Dynamic ...

-

t- o
0 t-.., ..,
<0 <0

'" '"

-- -(.-1 - 4
",~j

a4 ~,
2 Critical tasks occured

I"

'" ..,
;g
'"

during task's cycle
causing deadline niss
(SaleCPU latency:
S8ms)

'" ;: 0 0 t-
0 '" ;: <0

'" '" :8 t-
<0 <0 <0 <0

'" '" '" '" '"

o
'" <0
<0

'" Bapsed tirre (ITS)

I Corrective tasks B1 I

I-Corrective tasks BO ,
t3 Mlnttor B1

III Mlnttor BO

Deadlines

87

Fig. 19. Critical tasks preempt.

because SafeCPU's period was 58ms, it did not wakeup in time to thaw the frozen

Corrective task. Thus it missed its deadline. To solve this problem, task period
termination was changed to thaw any frozen tasks, if the terminating task was the only

running task. Figure 20 shows the result where the latency was reduced and the
Corrective task was able to meet its deadline.

- - -
~." --.. --J- /:, !-CorrectNe tasks 81 I

II'" ~ i --Corrective tasks BO I

-~f~ ~ I a Mondor B1

.. ~ ~~~ ::~~~.:

--

Il1TT"ediately 1haWng next

frozen task after cmical
0 0 0 0 0 0 "' 0 0 0 0 0 0 0 0 '" '" task terrrinates reduces m on <D '" t- l:l

., v 0 <D N .,
i 0 <D '" "' t- ., ., m m 0 ;0 '" N .., .., on on "' latency and deadline is rrel ~ ~ ~ ::: t- t- ~

.,
~ ~ ~ ~ ~

., .,
~ ~

Sapsec tire (11"0)

Fig. 20. Thaw after task exits.

88 Bradley R. Swim. et (ll.

Without SafeCPU, task deadlines were vulnerable because task concurrency was

unrestrained. Figure 21 shows that under normal conditions. Corrective tasks for both
boilers slowed each other down so that a deadline was missed. In the worst case of

transient overload, the Corrective task for B 1 was changed to execute continuously for
its entire period (Fig. 22) and obviously, most deadlines were compromised.

- - - - - -
-;"'-\, ---... ---... ---... ---... ---

'" 8'~~ ~ D ..
f-

I

Do.

. -------t-----l-- ' ----- -~~

0 0 0 0 0 0 0 0 0

'" ~ '" on r-.. '" ~ '" on r-.. '" '" on CD "- '" 0 N '" <D CD CD <D CD CD <D
8apsed tirre (rTS)

Fig. 21. No SafeCPU - normal operation.

* * * * do

--. -- -- -. --'" ! "" 8 8 '" .. I f-

~ gr.

+----f-- , ~~~. --~ ---
0 r-.. 0 0 0 0 0 0 0 0 0
N '" on <D r-.. a:J '" 0 N
r-.. a:J '" 0 N '" ..,. CD <Xl
<Xl a:J <Xl '" '" '" '" '" '" '" '" 8apsed time (rTS)

Fig. 22. No SafeCP(J - overload condition.

_Corrective tasks B1

__ Corrective tasks SO

a MJnitor B1

GI MJnitor BO

... Deadlines

Unrestrained concurrency
causes mssed deadline

--. .--- ::-o.l
I-Corrective tasks B1 •

__ Corrective tasks BO

a MJnitor B1

MJnitor BO J GI
... Deadlines

~-~

Prospects for Predictable Dynamic ... 89

Once SafeCPU was introduced, deadlines were enforced (Fig. 23) favoring

temperate tasks over gluttonous tasks and in no case was a critical task deadline
compromised. It should be noted in Fig. 23 that sometimes SafeCPU awoke and favored
Corrective B I task for a short time (Corrective BO was frozen). This is because B I had a

smaller laxity than BO even though B I was gluttonous. Nevertheless,B I was soon
terminated at the end of its period which thawed BO. When SafeCPU awoke again, it

favored BO so that its deadline was met.

_~-c:i , . ~ ~: * ~X«X * ,

: x Freezing

1-:-1' .. -x 4- .. -Corrective tasks 61 ,. . , __ Corrective tasks SO

~ II Mlnilor 81
~
~
~

II Mlnitor BO 0-

I :11 lA:!adlines

I :
: • SafeO'U II ..

• • • • • : . • • • • • ,.
I

0 0 0 '" 0 0 .., ... 0 0 0 0 0 0 0 '" 0 a: ;t '" N 8 0 ..,
'" N '" 0 ~ '" N '" 0 ~ ~ 53 ;0 ;0 ;0 N ~ ::l ..,

~ ~ '" '" '" '" '" '" '" Bapsed line (ITS)

Fig. 23. SafeCPlJ - deadlines guaranteed.

3.5.4 Cost of SafeCPU
SafeCPU is computationally efficient except for merging Q (R) into Q (F). The

complexity of an ordered queue merge is 0 (n2) because the entire queue might be
searched in order to insert the new element. An implementation of SafeCPU has been

incorporated into the RTDOS kernel and the cost of SafeCPU was measured. A task
population from 10 to 80 tasks was created and executed on a T425 transputer running at

20 MHz. All tasks were created and started immediately after task creation. All tasks had
the same clout (essential) and all tasks were specified with large deadlines so that all

tasks were reevaluated and approved during each SafeCPU period. The experiment
intended to measure the worst-case cost of one execution of the SafeCPU algorithm. not

90 Bradley R. Swim, et cd.

including costs associated with starting and stopping each SafeCPU period and costs of
user tasks. Table I tabularizes the measured results on the T425. The trial test case was

faster than 0 (n2) and indeed approaches (n/1O) 1. 5 + 1.

Table t. Actual SaC.CPU cost.

number of actual cost (n/IO)2+1 (nlI0)1.5+1
tasks (ms) approximation approximation

10 2 2 2
20 4 5 4
30 7 10 ,

;

40 9 17 9
50 12 26 13
60 15 37 16
70 19 50 20
80 23 65 24

3.5.5 SafeCPU's period
SafeCPU's period is a crucial factor in the responsiveness of the system. If the

period is too large, and if processor utilization is high (meaning laxity is tight) then
potentially only I task is running every period. This latency could be unacceptable for

certain applications. Nevertheless, if SafeCPU has a moderate period and it is
monitoring a reasonably-sized task population, then it incurs acceptable overheads. For

example (on the current platform), if the processor's task population is limited to 30
tasks (which is quite large for a transputer), then SafeCPU consumes at the very worst
7ms each period. This allows a SafeCPU period of 50ms to consume 14% overhead in

the absolute worst case.

3.5.6 Critical factors for SafeCPU
In summary, SafeCPU requires several factors to be taken into consideration.

First, the algorithm assumes that the host processor is not overburdened, i.e. ali task
deadlines have been gualanteed online or offline by the Local Scheduler. Second, it

assumes that critical tasks will never exceed their specified compute time. Third,
SafeCPU's period must be balanced with the task set population so that overhead is kept

low. The above costs are worst-case. In the experiments of section 3.5.2 using a period
of 62.5ms and a task population of 19 tasks, SafeCPU consumed an average of about 1
ms of CPU time each period because many of the tasks were blocked on I/O and thus

were not merged into Q (F). Last, any tasks executing after their deadlines (including
overrun tasks) receive top priority and are thus terminated.

ProspeClS for Predictable Dynamic ... 91

4. Conclusion

The main thrust of RTDOS is predictable services for dynamic hard real-time

distributed systems. The proposed scheduler is unique among current trends in that it

distributes the scheduling burden between 3 components:

• a pre-run-time static scheduler for known tasks (periodic tasks),

• a 5-level dynamic scheduler model for the remaining types of known and

unknown periodic, aperiodic and background tasks. The dynamic schedulability

analysis and topological reconfiguration tools can adapt the network topology to

meet unforeseen deadline, resource, and precedence constraints. Also,

• a deadline priority and guarantee scheme that when coupled with the dynamic

scheduler and the deadline monitor (SafeCPU) can truly provide a dynamic system

adapting to unforeseen configurations.

Pending research is identifying and quantifying the predictability of the proposed

scheduling model. Local and global dynamic schedulers are currently under development
and measurement.

References

r I] Xu, 1. and Pamas, DL "On Satisfying Timing Constraints in Hard-real-time Systems."

IEEE Transactions on Software Engineering, 19, No.1 (Jan. 1993),70-84.
[2] Stankovic, 1.A."Real-Time Computing Systems: The Next Generation." In: Tutorial

Hard Real-Time Systems., Stankovic, 1.; Ramamritham, K. (eds). IEEE Computer
Society Press, (1988), 14-37.

[3] Tayli, M.; Bor, M.; Benmaiza, M., and Eskicioglu, M.R., "RT-DOS A Real-Time

Distributed Operating System for Transputers." Proceedings of the 13th Occam User
Group Technical Conference, Real-Time Systems with Transputers, York, UK,
H.Zedan, (ed), lOS Press, (Sept 1990), 1-11.

[4] Benmaiza, M. and Tayli, M. "Circuit-switched IPC for Predictable Message Passing in
a Multiloop Transputer Network." Proceedings of the World Transputer Congress,
Transputer Applications and Systems '93, Aachen, Germany: R. Grebe et al. (eds.), lOS

Press, (Sept. 20-22, 1993),890-898.
[5] Xu, J. "Multiprocessor Scheduling of Processes with Release Times, Deadlines,

Precedence, and Exclusion Relations. ll IEEE Transactions on Software Engineering
19, No.2 (Feb 1993), 139-154.

[6] Stankovic, J.A. and Ramamritham, K. "The Design of the Spring Kernel." Tutorial

Hard Real-Time Systems. IEEE Computer Society Press, Stankovic, J.; Ramamritham,
K. (eds.), (1988), 371-382.

92 Bradley R. Swim, et al.

[7] Zhao, W.; Ramamritham, K., and Stankovic, J. "Preemptive Scheduling under Time and

Resource Constraints. "IEEE Transactions on Computers, C-36, No.8 (Aug 1987), 949-
960.

[8] Ramamritham, K.; Stankovic, J.A" and Zhao, W, "Distributed Scheduling of Tasks

with Deadlines and Resource Requirements," IEEE Transactions on Computers, 38,
No, 8 (Aug, 1989), 1110-23.

[9] Stankovic, J,A, "Decentralized Decision-making for Task Reallocation in a Hard Real

time System," IEEE Transactions on Computers, 38, No, 3 (March 1989),341-55,
[10] Stankovic, J, A,"The Spring Architecture," Proceedings, EUROMICRO, Workshop on

Real Time, Horsholm, Denmark, IEEE Computer Science Press, (June, 6-8, 1990),
104-1 13,

[11] SGS-Thomson Microelectronics, The Transputer Databook, 3rd ed" INMOS, Ltd" #72

TRN 203 02, order code DBTRANST/3, 1992,
[12] Hoare, C.A,R, "Communicating Sequential Processes," Communications of the ACM,

21, No.8 (Aug 1978),666-677,

[13] Tayli, M, and Benmaiza, M, "An Efficient Circuit-switching Mechanism for Inter
Process Communication in a Transputer Network," Proceedings of the IEEE Workshop
on Future Trends in Distributed Computing Systems, Lisbon (Sep,22-24, 1993),
215-220,

[14] Xu, j, and Parnas, D.L. "Scheduling Processes with Release Times, Deadlines,

Precedence, and Exclusion Relations," IEEE Transactions on Software Engineering,
16, No.3 (March 1990), 360-369,

[15] Dertouzos, M.L. and Mok, A.K,"Multiprocessor on-line Scheduling of Hard-real-time

Tasks" IEEE Transactions on Software Engineering, 15, No,12 (Dec, 1989),
1497 -1506,

[16] Burns, A. "Scheduling Hard Real-time Systems: A Review," Software Engineering

Journal, 6, No,3 (May 1991), 116-128.
[17] Lehoczky, J,; Sha, L., and Ding, Y. "The Rate Monotonic Scheduling Algorithm: Exact

Characterization and Average Case Behavior." Proceedings: Real Time Systems

Symposium, IEEE Cat. No,89CH2803-5 (Dec, 1989), 166-71.
[18] Stankovic,1. and Ramamritham, K."The Spring Kernel: A New Paradigm for Real-Time

Operating Systems," ACM Operating Systems Review, 23, No,3 (July 1989),54-71.

[19] Auslander, D,M, and Sagues, p, Microprocessors for Measurement and Control.
Berkeley, CA: Osborne/McGraw-Hill (1981),

Prospects for Predictable Dynamic ...

.;,....0 .:r. ~ ..\.0.-. .J .,4 U .1.)" , 1"'1"'" .." .Ir,

> yo- ..:JJj I .c... t..- - .;., t. .J.11 J .,...... iJ-1 i P <,1.>

~ ~L:" v~ c: ~I.y)i -i ~j}1 ~I J-l.....;;;,1 c'pl.y . ~I ...,....;..t...

.rJ- "J~J .y)1 c: ~ ,.wII.i.a.;,I....,L,:. ,~L... ~.;JI Jw'JIJ ""';;lJ;}1 ,.w 4-:i c'.,:!1

~ J .illk.. ~L:" ~.;JI "" lA~J <lJJ.,l1 ~ ,,;l.!J1 v~iJ-I • .i.a J-!- -i .<iJ

<lJJ.,l1 <K!... <;J}I • .i.a dWJ . <J..::,..ll v~1 c: <.ut......lIJ iUZ:.1J rWI ~I ~ .;,1 w,1

lK!.l1 • .i.a c: u.W -i Ii,r' rll2J1 1.i.a~.J . RTDOS .y)l ~ tJy rl!2; -i ~L:,.>JI

il!;;J1 JJL..; .~...-l>-I""';;lJ;}I.y ~.p '~)U';'.r' J,.;. ~ J? i-"'..;t..:J]; .~I

t-..,i vl.i,--,k::J1 .)s- • ..,...,JI ~ ..;-- c' pio.f;J1 • ~ .j J J..c..."J.1 ~ L.,a,:. "";1..:...:>1 RTDOS

~}I .;,l.-.a.J ~L:" rl!2; c: JJ~ ... WI ~Jt......ll uJ}1 c::-' YJ .l,dl J:.i vL,J.b:l~ JL.::,

. ~r.-"I ~l;;J1 ~) ~4J1

93

