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Abstract. Decision feedback equalizers (DFE)s are used extensively in practical communication systems. They 
are more powerful than linear equalizers especially for severe inter-symbol interference (ISI) channels with 
deep frequency null. In this paper, radial basis function (RBF) network is used to implement DFE. Advantages 
and problems of this system are discussed and its results are then compared with DFE using multilayer 
perceptron net (MLP). Results indicate that the implemented system outperforms both the least-mean square 

(LMS) algorithm and MLP given the same signal-to-noise ratio.  
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Introduction 
 

Equalization is a technique used to remove inter-symbol interference (ISI) produced due 
to the limited bandwidth of the transmission channel [1]. When the channel is band-
limited, symbols transmitted through will be dispersed. This causes previous symbols to 
interfere with the next symbols, yielding the ISI. Also, multipath reception in wireless 
communications causes ISI at the receiver. Thus, equalizers are used to make the 

frequency response of the combined channel-equalizer system flat.   
 

  Two classes of equalizers are known: linear and nonlinear equalizers. An example 
of the latter type is the decision feedback equalizer DFE. The equalization process can 
be divided into two modes- a training mode and a decision-directed mode. In the first 
mode, 
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the equalizer is trained to produce the expected output, by sending a training sequence and 
the coefficients of the equalizer are adjusted to produce the required output at each 
sampling time. In the second mode, the equalizer is operated on the channel to be equalized 
to estimate the channel output. The second mode is the normal operating mode in a 
practical communication system. Since equalization technique is simply deciding on a 
symbol from signals available in the signal space, (1 or –1 for the binary phase-shift keying 
(BPSK) system), it can be considered as a classification problem [2]. It accepts the delayed 
received samples as inputs, and outputs its decision which is one of the possible signals. In 

the M-ary case, the system has M different possible classes at the equalizer output. 
 

Artificial neural nets ANNs are able to perform complex nonlinear classification 
problems, and hence they can be used as equalizers. Most ANNs use the mean square 
error (MSE) as the cost function to be minimized by the network. Problems encountered 
using ANNs in equalization are the slow rate of convergence and the possibility that the 
net does not reach the true minimum mean square error MSE [3]. In this case, the net 
will not be able to optimize its parameters to the least MSE. Two ANN models are used 

in this paper, namely MLP and RBF nets.  
 

Several approaches using ANNs in equalization have been proposed in the last few 
years. Kirkland in 1992 used feedfoward ANNs in equalizing a multipath fading channel 
[4]. In the same year, Peng modified the activation function of the MLP to be suitable for 
phase-amplitude modulation (PAM) and quadrature-amplitude modulation (QAM) 
schemes [5]. In 1994, Kechriotis used recurrent ANNs in equalizing different linear and 
nonlinear channels [6]. Chang, in the same year, introduced a neural-based DFE to equalize 
indoor radio channel [7]. He also used a wavelet ANN trained with recursive least squares 
(RLS) algorithm to equalize a nonlinear channel. Al-Mashouq used a feedforward NN to 
combine both equalization and decoding at the receiver [8]. This method performed better 
than the cascaded equalizer-decoder pair. Mulgrew investigated the implementation of 
DFEs using RBF nets in 1996 [9]. In 1997, a new algorithm for training recurrent NN was 
proposed [2]. It was called the discriminative least squares (DLS) and it was faster to 

converge than the RLS and LMS algorithms.  
 

In this paper, an RBF net is used as a DFE. The paper disscusses architectures of 
the DFE and the RBF net. Then, the use of RBF net to implement a DFE is presented. 
Simulation results are then discussed. Finally, conclusions and suggestions for future 

work are presented. 
 

Decision Feedback Equalizers (DFE)s 
 

A schematic diagram of a DFE is shown in Fig. 1. An (n,m) DFE denotes an 
equalizer with n tapped delayed inputs and m feedback signals. So, m output samples are 
fed back to the input through a feedback filter in addition to the input samples. This 
feedback helps the system to decorrelate the noise that is produced by the ISI at the final 
output [10]. DFEs are usually implemented using LMS or RLS algorithms [1]. In all 

cases, the input-output relation is expressed in the following equation [11]: 
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IRkR = ∑
=

n

1j
cRjR xRk-jR + ∑

=

m

1j
gRjR yRk-jR + cReR eRk         R              (1) 

where IRkR is the output of the filter, xRkR is the received signal, yRkR is the decided symbol at 
the equalizer output. Also, cRjR, gRjR and cReR are the coefficients of the feedforward and 
feedbackward filters. The error signal eRkR, is the difference between the equalized signal 
yRkR and the output of the equalizer IRkR. The subscript (k-j) in both filters indicates that the 
samples are shifted in the line at each sampling interval. Both the feedforward and the 
feedbackward filters are considered as finite impulse response (FIR) filters. Equation (1) 
describes the function of the combined filters as an infinite impulse response (IIR) filter. 

 
 

Since the DFE is considered to be a nonlinear equalizer, it is used more often than 
linear equalizers, especially for the case of severe-ISI channels. These channels are 
characterized in their frequency response by the existence of frequency nulls that make 

them totally nonlinear and produce disturbed output [10].  
 

The performance of DFEs depends on the number of the delayed inputs and the 
number of the feedback signals from output to input. It can be improved by feeding an 
error signal (the difference between the expected output and the produced output) back 

to the input in addition to the normal feedback signals [11].  
 

Radial Basis Function (RBF) 
 

RBF nets are well suited to solve interpolation problems. Such problems are stated 
as follows: given a set of input vectors {xRiR} and the corresponding output vectors {yRiR}, 
find the appropriate transfer function that can fit noisy input vectors to produce the most 

 
Fig. 1. DEF using two FIR filters, one as feedforward and another as feedbackward. 

FB filter 

FF filter 
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appropriate output according to the given input/ouput vector pairs [9]. It is clear that the 
equalization problem is a typical interpolation problem.  

A general architecture of an RBF net is shown in Fig. 2. It consists of two layers 
with the activation functions in the first layer are radial, and in the output layer are 
linear. The activation function of the first layer is called the basis function. It is a radial 
function  characterized by being monotonically increasing or decreasing from a center 
value [9]. Examples of radial functions are the thin plate spline, multi-quadratic, inverse 
multi-quadratic and the Gaussian functions [9].  The Gaussian function is most 

commonly used because of its smooth characteristics. It is given by [3]: 
 

 h(x) = 2

2

r
)cx(

e
−−

     (2) 
 

where c is the center of the function and r is its spread constant. The center and the 
spread constant control the location and the spread of the decision region of the radial 
function, respectively. The spread constants should be chosen such that the functions 
cover their areas and some of the adjacent areas in the space, increasing the ability of the 

ANNs to generalize for noisy patterns [12]. The output of the RBF net is given by: 
 

 y = ∑
=

n

1j
wRjR hRjR(X)  where  X = ∑

=

p

1j
xRjR.        (3) 

 

 

Radial functions 

Output layer 
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Fig. 2. General architecture of an RBF net. 

The basic idea behind the RBF development is Cover’s theorem [3]. It says that 
complex pattern-classification problems are more likely to be linearly separable in high-
dimensional than in low-dimensional space. Using Gaussian radial functions in the RBF 

net converts problems into new ones in higher dimensional space.  
 

The RBF net is trained by presenting the training data vectors and the 
corresponding output vectors to the net, and it will compute its weight matrix that 

minimize the cost function C given by [3]: 

 C = ∑
=

p

1i
{ yRiR - ∑

=

n

1j
wRjR hRjR(XRiR) }P

2
P         (4) 

 
These calculations are repeated by adding one basis function at a time until the required 

MSE is reached. 

When the RBF is trained using the exact interpolation method, the number of 
basis functions needed is the same as the number of examples used in training. This 
makes the ANN need more computations because of the large number of basis 
functions used [3,12]. The training process used in this paper is the one used in 
MATLAB. It uses the minimum number of basis functions that are able to solve the 
problem undertaken with the required MSE [3]. Of course, for a given number of 
training examples, the number of basis functions used in this method is less than the 
number of training examples [3,12]. This improves the generalization  abilities of the 
RBF net because using a number of  basis functions equal to the number of examples 
makes the ANN unable to draw decisions for noisy examples; that may be 

encountered later during the operation mode [12]. 
 

The Implemented System 
 

The implemented RBF-based DFE consists of a tapped-delay line that has 5 taps. 
At each sampling interval, the signals in the line are shifted by one location and a new 
received signal is put at the first tap. The RBF net is trained using 500 training samples 
with  their   corresponding  outputs.  It is  initialized  with one  neuron  whose  activation 
function is Gaussian with a spread constant of 0.7. Each time, the RBF computes the 
weight matrix and adds one neuron if the MSE is still high. This process is repeated until 
 the required MSE is obtained. The hidden layer consists of 170 and 300 basis functions 
for the DFE and linear equalizers, respectively. These numbers are the minimum 
numbers of basis functions needed to solve the equalization problem in each case and to 

have a MSE of 10 P

-4
P.  
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The RBF-based DFE is compared with an MLP-based DFE that consists of a 
(9,3,1) MLP. This means that there are 9, 3 and one neurons in the input, hidden and 
output layers, respectively. The 9 input signals constitute a delay line of 9 taps. Both the 
hidden and the output layers have activation functions of the tan-sigmoid shape. The 
MLP net is initialized using the first training example from the channel. The training 
process then continues using the back-propagation algorithm with a variable training 
rate. Upon receiving a new training example, it computes the MSE and updates its 
coefficients accordingly. This process is repeated recursively until the required MSE, 

which was set to10 P

-4
P, is achieved.   

 
The two RBF and MLP-based DFEs are used to equalize two channels that are 
of practical importance. The first is a linear channel that introduces small distortion 
to its input [1]. The second is a severe-ISI channel whose frequency response has a 
deep null [10]. The latter type is faced often in practical communication systems and 
is very difficult to equalize using linear equalizers. However, they can be equalized 
efficiently using nonlinear equalizers such as DFEs. The two channels used are 

shown in Fig. 3.  
 

 
Fig.  3. (a) Channel 1,   (b) Channel  2. 

 
Two DFE cases were simulated in this paper. The first case is a DFE in which the 
detected symbols are used as feedback signals. In the second case, the correct symbols 
are the signals that are used as feedback signals, which is not possible practically. This is 
because if the correct symbols are known to the receiver, there is no need for doing 
communication [10]. However, it is used to find the lower bound of the performance of 
the DFE used. In summary, (5,0) and (4,1) DFEs are implemented using both MLP and 

RBF nets. 
 

Simulation Results 
 

The results of using linear equalization for channels 1 and 2 are shown in Figs. 4-a 
and b, respectively. The RBF-based equalizer performance is better than that of the 
MLP-based by 5 and 4 dBs, for channels 1 and 2, respectively at 10 P

-2
P bit error rate 



Decision Feedback Equalizers Using Radial … 

 

٢٦٣ 

(BER). It is clear that channel 2 was not equalized well using linear equalization because 
of its severe-ISI.  
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Figs. 4. Performance of linear equalization of (a) channel 1 (b) channel 2. 

Figure 5-a shows the performance of both MLP and RBF-based (4,1) DFEs for 
channel 1. It is clear that the RBF-based equalizer outperforms the MLP-based one by 
about 4 dBs at 10 P

-3 
PBER.  Figure 5-b  shows the same information as part (a) for channel 

2. Also, the RBF-based DFE outperforms the DFE based on MLP by about 2 dB. Of 
course, the overall performance for channel 2 is worse than that of channel 1 because 
channel 2 is more severe. In both channels, the DFE based on RBF is better than the one 
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based on MLP even when the correct symbol is fedback in the MLP and the detected 
one is feedback in the RBF. This means the former DFE is better than the latter always, 

since feeding back the correct symbol is the most ideal case. 
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Figs. 5.  (a) Performance of DFE of channel 1, (b) Performance of DFE of channel 2. 
 
Figures 6-a and 6-b show the convergence of both the MLP and RBF-based DFEs, 
respectively. Both equalizers were able to reach the required MSE but the RBF is faster. On the 
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other hand, the RBF-based DFE needs more computations in the decision-directed modes. 
This is due to the high number of basis functions in the hidden layer of the RBF system 
compared to the MLP system. Simulation results showed that increasing the number of neurons 
in the hidden layer of the MLP will not improve the convergence time or the BER performance. 
So, the price payed for reducing the BER and speeding up the training process by using the 

RBF-based DFE, is the more computations required in the decision-directed mode. 
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Figs. 6. (a) Convergence of MLP-based DFE. (b) Convergence of RBF-based DFE.  
Conclusion and Discussion 

 

MSE for Training the MLP DEF 

MSE for Training the BRF DEF 
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In this paper, linear and DFE equalizers were implemented using both MLP and 
RBF nets. The above systems were tested for two different channels. Results showed 
that linear equalizers are not good for severe-ISI channels. Also, it is seen that the RBF-
based equalizers perform better than the MLP-based one, especially at high SNR. 
Moreover, the RBF equalizer converges faster than the MLP in the training mode but 
needs more computational time in the decision-directed mode, because of its large 
number of neurons compared with the MLP. Trade-off between fast convergence and 
performance in one side and the on-line computational time in the other side should be 

taken into consideration upon designing such systems in practice. 
 

The DFE performs better when the correct symbol is the feedback signal that is an 
ideal case. They also are efficient in reducing the effect of the deep frequency null of 
channel 2. According to [1], the MLP- based DFE outperforms the conventional DFE 

based on LMS and hence does the RBF-DFE implemented in this paper. 
 

Extension of this research is to implement the same concept using different training 
algorithms that converge faster. Regarding the RBF net, regularization terms can be 
added to its weight matrix equation. It is claimed in [3] that this can reduce the noise 
variance in the output signal, which improves the performance. Also, DFE can be 

implemented using error feedback as in [11] but via the ANN approach. 
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تصميم معدلات مرجعة للرموز المقررة باستخدام الشبكات العصبية 
 المصممة

 باستخدام الدوال المحورية الأساسية

 

 سلام زمو، عادل بلغنيم ومحمد مهندس

  ۱۱٤۲۱، الرياض ۸۰۰ب .قسم الهندسة الكهربائية، كلية الهندسة، جامعة الملك سعود، ص
 ؛ المملكة العربية السعودية۳۱۲٦۱ومعهد البحوث، جامعة الملك فهد للبترول والمعادن، الظهران 

 

 ) م۹/۱۱/۱۹۹۹م؛ وقبل للنشر في ۱۰/۲/۱۹۹۹استلم في (
 

تستخدم المعدّلات عند أجهزة الاستقبال لتقليل ما يحدثه تحديد مقدار الطيف  .ملخص البحث
ية المسموح به في أنظمة الاتصالات من أخطاء ناتجة عن تداخل النبضات الكهربائ

أكثر ) decision feedback equalizers(و تعتبر المعدّلات المرجعة للرموز المقررة . المرسلة
وخصوصا عندما يزيد التداخل بين ) linear equalizers(تأثيرا من المعدلات الموازنة 

 . الرموز
استخدمت في هذا البحث الشبكات العصبية المصممة باستخدام الدالة المحورية 

 الأساسية
(radial basis function) تم مناقشة المزايا والمشاكل . لتصميم معدل مرجع للرموز المقرّرة

التي يتميز بها هذا المعدل  ومقارنته بالمعدل المرجع للرموز المقررة والمصمم باستخدام 
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ودلت نتائج المحاكاة بالحاسب . (multi-layer perceptron)الشبكات العصبية متعددة الطبقات 
 .أن النظام المنفذ يفوق الأنظمة السابقة بالنسبة لاحتمال الخطأ تحت نفس الظروفعلى 
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