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Abstract. In this paper, a predictive locally adaptive vector quantization (PLAVQ) for real-time image 
compression is developed and simulated_ It is a hybrid of improved predictor. LA VO and (VLC). The lat­
ter is a cumbination of Laplacian quantizer, Huffman coding, and optimum-modified B1-codc for encod­
ing the codewords and indices, respectively. Simulation shows that an improvement in speed of about 76% 
can be achieved with about 1.1 dB increase in the peak signal-to-noise ratio (PSNR) at the same bit rate. 
Optimization of the modified BI-code decreases the bit rate with an average of 37% fur the same image 
quality. Simulation data of PSNR and bit rate vs. error threshold can be expressed by a decaying exponen­
tial model independent of image type. 

Introduction 

Simple vector quantization (VQ) is a generalization of PCM (scalar quantization) 
where a block of sequence of (k) continuous samples (vectors) is mapped (quantized) 
into a digital sequence. Because of its high performance at low bit rate, ease of 
implementation, and its inherent ability to exploit the high correlation between the 
neighboring pixels; (VQ) has been receiving great importance in the field of data 
compression. Vector quantization is essentially a pattern matching technique 
between input vectors Xl and set of vectors xm in look-up table (codebook). The best 
possible match is extracted to represent the input vector pattern by a reproduction 
code vector and an index (m) [1]. 
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Classic (VO) can be regarded as a block of encoder and decoder which views the 
input Xl and generates quantized output vector (Xl) and an index (m) [2J. A typical 
monochrome image has a resolution (r) of 8 bits/pixel (bpp) and the goal of a (VQ) 
is to compress the image to a resolution < 1 bpp with same image quality. HOWl:vt::T. 

there are problems associated with the classical (VQ); e.g. (I) sensitivity to channel 
errors, (2) inefficient reconstruction of edge vectors, (3) large storage of codebook, 
(4) sub-optimality (for example, the LBO algorithm can easily be trapped in one of 
the local minima of the distortion surface), (5) large encoding complexity in time and 
space [2-5]. The computational complexity - in both time and space - increases 
linearly with the codebook size (N) and exponentially with the dimension (k), i.e. 
with kN, where N = 2" [6;7]. 

To overcome these problems, some variations of (VO) and combination with 
conventional image coding has been proposed in the literature. One way is to utilize 
the strongest properties of inter-vectur ur inter-block correlation of the image. This 
can be achieved through predictive (VQ) technique which is a vector extension of 
(DPCM). Also improved coding is possible by employing adaptive (VQ) where the 
codebook (or encoding rule) is changed slowly with respect to vector rate in time or 
space tu suit the local statistics of input vector sequence. Complexity reduction and 
robustness against channel mismatch using channel-matched multistage VQ was 
theoretically demonstrated by Phamdo, etal. [3]. Transform (VQ) is computationally 
complex yet it has several advantages over spatial (VQ), Predictive (VQ) and hybrid 
DPCM. For Spatial (VO), the effect of channel noi.e has not yet been investigated 
[2]. To reduce the edge degradation in the reproduced image, King and Ra [8] mod­
ified the conventional self-organizing map algorithm Jor 4 x 4 (VQ). A 3-layer 
address V A (A VQ) is introduced by Nasrabadi and Feng [9] which exploits the inter­
block as well", inter-colorcorrelations. A standard (VQ) codebooks in the first layer 
was used while the other two code books have codevectors consisting of the addresses 
of the previous layer codebook. Bit rate of 0.23 bpp and 0.35 bpp for monochrome 
and RGB image respectively were demonstrated. 

A reduction in total bit rate of 0.125 bpp for an average rate of 0.516 bpp at an 
SNR of 39.53 dB was reported by employing Huffman coding of the addre" codevec­
tors of moving image [10]. Ziv and Lampel [111 employed the concept of encoding 
future segments of the source-output via maximum length copying from a buffer con­
taining the recent past output. It was shown, theoretically, that for given codeword 
length, the compression efficiency i. comparable to that of an optimal variable-to­
block code book , but the algorithm is susceptible to channel error. A low-dimension­
ality (VQ) was used as a building block in predictive adaptive coding system, so that 
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the prediction error vector was coded by (VO). Adaptation was achieved by a class­
ifier to identify particular categories of speech statistics. An improvement of about 
7dB in SNR over previous VQ and well competition with tree and trellis at the same 
bit rate was reported [12]. A reduction as low as 28% of total number of operation 
of those required by full search ia (Va) was reported using nearest neighbor search 
[6]. Continuation method (which is globally convergent and exhaustive) was applied 
with reduced execution time [13]. However, the execution time is about twice as that 
of LBG. To exploit inter-vector correlation an address-predicted va (APVO) was 
introduced, where the address difference of the input and predicted vectors was 
encoded using Huffman code [14]. However, complexity and sensitivity to channel 
error were the shortcomings of (APVO). 

A combination of image-adaptive VO (IA VO) and variable length transform 
coding (VL TC) of the codeword solved the problem of overhead transmission and 
maintain the advantage of smaller codebook. Self-organized codebook and 
interblock correlation were also employed for further reduction of bit rate compared 
with (VLTC) up to 0.6 bpp [15]. Comparison of different algorithms for codebook 
design showed that simulating annealing algorithm (SA) produced the lowest distor­
tion but required longer time, and depend on several parameters, while Pairwise 
nearest neighbor algorithm (PNN) is the fastest but the distortion is the heighest [16]. 
There is no algorithm which could satisfy both low distortion and smaller CPU time 
criterion. The two main advantages of the locally adaptive va (LA VO) [17] are fine­
detailed representation and relatively high speed in code book generation and encod­
ing. However, the generated codebook is suboptimal resulting in inferior SNR- per­
formance compared with LEG algorithm. The (LA Va) can be considered a counter­
part to the LBG algorithm as summarized in Table 1. 

The Predictive LA VQ Algorithm 

In the following section, a new dynamic vector quantization algorithm - called 
PLA VQ - is proposed and described. The PLA VQ is a hybird of DPCM, an 
improved version of LAVa, and variable length coding (VLC). The latter is a com­
bination of Huffman coding and an optimization of modified BI-code (OPT. M-Bl 
Code) for further compression of the codewords and indices respectively. Figure 1 
illustrates the overall configuration of the proposed algorithm, and in thc following 
it is briefly explained. 

TheOPeM 

The differential pulse code modulation (DPCM) is used to utilize the image 
redundancy and the high correlation between adjacent pixels to improve the SNR-bit 
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Tobie 1. ComparisonofLBG & LAVQ algorithm 
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rate performance. It has been shown [18] that for a linear predictor of order R, the 
prediction error and prediction gain vary as a function of R, and most of the predic­
tion gain is realized with R = 3 after which the gain is saturated. The input image of 
size (N2) undergoes DPCM using two-dimensions third-order linear predictor (3-LP) 
where predicted pixel x(i,j) is generated from a previous pixel on the same line x(i,j­
I) as well as the two neighbor pixels on the previous line, x(i-l,j) and x(i-I ,j-I), i.e.: 

x(i,j) ~ b x(i,j-I) + c x(i-I,j) + d x(i-I, j-I) (I) 

The prediction coefficients b,c and d have to be optimized for minimum pre­
diction error variance 0;, where the prediction error is given by: 

e(i,j) ~ x(i,j) - x(i,j) (2) 

Optimal values of b ~ c ~ 0.52 and d ~ -0.52 for 3rd order 2-D isotropic act 
models; and b ~ 0.746, c ~ -0.52, and d ~ 0.82 for interframe predictor of 208 x 
250 grid image has been used [18]. On the other hand, b,c, and d were chosen to be 
0.5,0.25, and 0.25, respectively for HDTV images [19], or were equal to (llnumber 
of neighbor pixels) fOT HDTV signals [20]. 

Table 2. Effect of prediction coefficients on the PSNR for the tested images 

Coefficient Computed PSNR 

b c d Ref (dB) 

0.746 -0.524 0.820 [18) 26.20 

0.520 0.520 -0.058 [18] 26.75 

0.500 0.250 0.250 [19) 27.72 

0.333 0.333 0.333 [20] 27_54 

0.500 0.300 0.200 Thi~work 28.07 

In this work, it is found that b = 0.5, c .;.;... 0.3, and d = 0.2 are optimal values as 
shown in Table 2. The reconstructed output pixels are given by: 

y(i,j) ~ x(i,j) + e(i,j) - q(i,j) (3) 

where q(i,j) is the quantization error. The prediction error signal is used to generate 
the codebook of the (VQ). The elements of the codebook e(i,j) is organized as an 
array of vectors of dimension k ~ R or 16 pixels. 
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TheILAVQ 

In the basic LA VO [17], full search for approximate matched codewords -
stored in the code book - with input vector is c2rried out. The approximation is gov­

erned by a choice of suitable threshold (or di,t"nion allowance). If found, the index 
(m) of the codeword is sent while this codewl"d;, ~'",shed to the topofthe codebook. 
If not found, a special index is sent followed by the vector itself, which becomes a new 
added codeword at the top of the code book. All other codewords are pushed dawn 
the codebook. The same sequence occurs at the receiver so that the encoder and the 
decoder will have the same codebook at each matching step. In this research, vectors 
which fail the comparison test of absolute error to the sequare root of the minimum 
distortion are rejected resulting in complexity reduction. In this work, instead offul) 
search, the improved version (ILA VO) stops the search at minimum distortion 
threshold T. The matching method of vector is performed by calculating the pixel­
wise distortion distance d(m) as: 

where 

veil 
Vm(i) 
k 

{ 

k [Veil - V m (i)]' } II' 
d(m)= I ",T 

i=l k 

= pixel value of image vector, i = 1,2, . ... , k. 
= pixel value of codeword vector. 
= vector size (8ar 16 pixds). 

m = codeword index, m = 1,2, ..... L. 
L = codebook size (255 or 511 codewords). 

(4) 

If the test of d(m) '" T fails, the comparison is aborted and the next codeword 
is compared. Simulation comparison of the (ILA VO) and the basic (LA VO) showed 
that the relative reduction of execution time is about 62% to 88% for T = 6 to 18 
respectively, with insignificant effect on bpp. Therefore, this improvement will result 
in faster search than the basic LA VO. 

Codebook compression 

The code book is a significant fraction of the total compressed image. Therefore, 
the use of lossless data compression of the quantized levels of the sent codewords and 
the indices of the codebook can enhance the bit rate performance without image 
quality degradation [21]. Therefore, a 28-level symmetric, non-uniform Laplacian 
quantizer is used to quantize the codebook vector. The discrete levels of the quan-
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tizer output can be encoded by entropy coding to reduce the bit rate. This is carried 
out by means VLC procedures, such as Huffman codes [22], where highly probable 
levels are assigned shorter code bits. 

Index compression 

For each image vector, an index is sent whether it is of a matched codebook vec­
tor or a special index which tells the receiver that an image vector itself is transmitted. 
Since each index is sent as 8 or 9 bits (for 255 or 511 codebook respectively), then the 
bit rate (bit/pixel) is always:;' 1 bpp for the LAVQ, Moreover, the percentage con­
tribution of the indices in representing the reconstructed image is significant. For 

Lena monochrome image of size 512 x 512 pixels and 8 bpp resolution, the percen­
tage can reach about 43% from the total bit rate for a threshold error of 10. Compres­
sion of indices will result in a further reduction in bit rate. B1-code [21] may be 
employed where a unique and shorter code than the binary index representation is 
assigned for each index. However, the HI-code becomes unuseful when it exceeds 8 
bits, and bit rate reduction could not be achieved. 

A modification of Bl-code (MB I-Code) was employed [23] where a continuous 
(C) bit was included in each code, where C = a or 1 for odd and even locations respec­
tively. The application of the MBI-Code as it is to this work does not reduce signific­
antly the hit rate. This may be explained by the fact that the assignment of Bl-code 
is based on the index order. Therefore, the MBl-codes are optimized for different 
images such as Lena, Truck and APC (USC-SIPI data base); by assigning the codes 
according to the probability occurrence of the indices of the codebook. Those indices 
with higher probability of occurrence are assigned fewer bits code and vice versa. 
Examples of the frequency of occurrence of codebook indices at T = 14 for the three 
images are depicted in Fig. 2, which indicates that optimization is in general, image 
dependent. 

Table 3 shows the optimization of MB 1-code of the 28 indices according to their 
probability of occurrence for Lena and at different threshold errors (T) as an exam­
ple. The three different ranges of T (0 '" T '" 6, 6 < T '" 10, 10 < T '" 20) are quan­
tized to T = 6, 10, 14; respectively. The improvement in the bit rate performance is 
found to be a reduction of about 0.4 bpp at the same PSNR due to the application of 
OPT. MBl-code, compared to the basic LA VQ. It is found that the reduction in 
transmitted indices is about 41.5%,32.8%,36.7% forT = 6, 10, 14; respectively due 
to index compression. 
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Fig.2. Frequency of occurrence of cudebook Indices at T = 14 for Lena. APC and Truck. 

Simulation Result 

Simulations are carried out using PC IBM-486, 66MHz on the three mono­
chrome images: Lena, Truck, and APC of 512 X 512 pixels size and 8 bpp resolution 
(USC-SIPI data base). The proposed algorithm is written in Visual Basic V -3. In the 
program the vector size can be set to either 8 or 16 pixel, the codebook size can be 
set to 255, or 511 codewords, and the threshold error T can be varied in the range 6 
'" T '" 20. The performance of the coding algorithm is evaluated by calculating lhe 
peak signal-to-noise ratio and bit rate (bpp) as follows: 

where 

(255j2 
PSNR (dB) ~ 10 10glO ---­

MSE 

1 N 
MSE ~ -- L [x(i,j) - x(i,j)]' 

N' i.j 

(5) 

(6) 
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Table 3. The optimization ofBl-code assignment of indices according to their probability of occurrence for 
Lena at three different threshold error (T) 

Indices for ranges of T 

O<T:$;6 6:$;T~ 10 10<T~20 

(T~6) (T ~ 10) (T ~ 14) 
BI-Code Bits 

I I()() 3 

52 2 2 110 3 

51 41 32 101 3 

53 40 34 111 3 

50 41 33 10000 5 

54 44 3 11010 5 

49 43 S 10001 5 

2 39 3fi 11011 5 

55 3R 9 101()() 5 

4R 37 31 11110 5 

47 45 30 IUlUl 5 

56 3 0 11111 5 

3 36 35 1 ()()()()()() 7 

46 35 28 1101010 7 

57 34 10 1000001 7 

4 46 14 1101011 7 

30 4 37 1000100 7 

44 33 7 1101110 7 

45 12 27 1000101 7 

43 1 I 29 11011 11 7 

32 5 38 1010000 7 

33 19 24 1111010 7 

42 32 5 1010001 7 

5 13 25 1111011 7 

31 9 23 101OJ()() 7 

58 8 26 1111110 7 

9 10 13 1010101 7 

16 6 11 1111111 7 
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= the (i,j)th pixel of input image, . 
= the (i,j)th pixel ofthe compressed image, 
= image size, pixels. 
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(7) 

Figure 3 shows the PSNR vs. bit rate using the (PLA VQ) coding for different 
vector and codebook sizes, and the (LBG) result for comparison. It is shown that 
using vector size of 8 pixel results in better performance than using vector size = 16; 
and approximates that of LBG within about 1.1 dB for the same bpp. 

Figure 4 depicts the relation between bit rate (bpp) and PSNR vs. threshold (T) 
as well as fitting models to the simulation data. It is found that, on the average of the 
tested images, the bit rate (bpp) decreases exponentially with the threshold (T) as; 
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(T-6.0) 
bpp(T) = 0.47 + 1.15 exp [----

3.46 
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(8) 

The model can be used to deduce the suitable threshold for certain required 
bpp. Similarly, thc average PSNR vs. threshold (T) can be expressed by a decreasing 
exponential model as: 

PSNR(T) = 23.26 + 9.86 exp [ 
(T-8.38) 

12.42 1 dB (9) 

Figure 5 shows the PSNR vs. bit rate performance for the tested images using 
PLA VQ with code book = 255 and vector = 8 pixel. LBG performance is also shown 
for comparison. It is seen that the performance of the tested images be rated in 
descending order as APC > Truck> Lena, and the LBG is very near to PLA VO for 
Truck image. 
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Fig. 6. APe image: a) original, b) reconstructed at bit ute or 1.16 
bpp, c) reconstructed at bit ute of 0.61 bpp. 
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Figure 6.a illustrates the original image of APC, while Fig. (6.b) and Fig. (6.c) 
illustrate the reconstructed image at bit ratc of 1.16 bpp and 0.61 bpp, respectively. 
It is clear that the visual quality of the reconstructed images using PLA VO are 
acceptable at low bit rate. 

Conclusion 

A new dynamic predictive, locally adaptive vector quantization (PLA VO) 
algorithm is developed and implemented. It combines the advantages of adaptive 
predictive coding and lossless compression. It is shown that optimization of modified 
B 1-code decreases the bit rate for the same image quality. Information can be trans­
mitted at any desired bit rate with a pre-decided image quality. The PLA VO is rela­
tively fast and can be used for real-time transmission. 
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