J. King Saud Univ., Vol. 7, Eng. Sci. (2), pp. 267-287 (A.H. 1415/1995)
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Abstract. The problem of mixed convection along an inclined wall. acting as a source or sink with lateral
mass flux, embedded in a porous medium is solved by the local non similarity method. The wall surface
temperature. the flow free stream velocity and lateral surface velocity vary in a power law along the wall.
The two components of buoyancy force are retained. The inclination of the plate ranges from horizontal
to vertical. Numerical solutions are carried out up to the third level of truncation and results are presented
for a wide range of mass flux parameter at different wall temperature distributions and inclination angles.

Nomenclature
C = specific heat of convicted fluid
f = dimensionless steam function defined by Equation (6)
f' = dimensionless velocity in streamwise direction
g = acceleration due to gravity
G = auxiliary velocity function, (= 9/9E)
K = permeability of the porous medium
k = thermal conductivity of fluid
m = constant defined in Equation (4)
n = constant defined in Equation (5)
P = coefficient of the first derivative in the ordinary differential equations
Pe, = Peclet number. Pe, = u_ x/a
Pe’, = modified Peclet number, Pe; = V_ x/a
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= local heat flux at the wall
= local Rayleigh number, Ra=p_fg (T, — T,,) x*/pa
= temperature
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= Darcy’s velocity in x-direction.

Darcy’s velocity in y-direction.

= lateral surface velocity defined in Equation (4)
= coordinate along the streamwise direction.

€
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= coordinate normal to the streamwise direction.

Greek symbols

= equivalent thermal diffusivity

= coefficient of thermal expansion

= thermal boundary layer thickness

= dimensionless similarity variable defined by Equations (8)
= values of  at the edge of the thermal boundary layer

= injection or withdrawal parameter defined by equations (9)
= dimensionless temperature defined by Equation (7)
constant defined in Equation (4)

= viscosity of convective fluid

= kinematic viscosity of convective fluid

density of convective fluid

inclination angle from vertical

auxiliary temperature function, (= 96/3E)
auxiliary temperature function, (= 9®/3E)
= stream function

I
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Subscripts

o0 = conditions at the free stream
local values at x

X

Il

condition at wall
denote the differential equation associated with the particular
dependent variable

w
f,G,H,0,9 X

m.c. = mixed convection
n.c. = natural convection
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Introduction

As a continuous effort toward a complete understanding of transport phenomena in
porous media, the influence of lateral mass transfer on mixed convection over an
inclined plate is considered. The interest in this process is due to its applications in
geothermal energy, Cheng [1]. Little work has been done to study the effect of lateral
surface velocity, although a lot was made to study the convective process over
impermeable surfaces. Cheng [2] discusses the problem of aiding and opposing
mixed convection flow over an inclined impermeable flat plate. However, he neg-
lects the normal buoyancy force component in the momentum equation and obtains
similarity solution for a special case of free stream velocity and wall temperature dis-
tributions. As an extension to Cheng’s work, Abu Romman [3] considers the same
problem but the normal component of buoyancy force was retained. He uses the
local non-similarity approximation to solve the problem. To the author’s knowledge,
the only work that shows the effect of lateral mass transfer on mixed convection is the
work made by Lai and Kulacki [4] in which they studied the effect of mass transfer
on mixed convection over horizontal plates. Dweik et al. [S] studied the effect of lat-
eral mass flux on free convection from inclined plate embedded in a saturated porous
medium using the local non-similarity approximation. In this work, the effect of lat-
eral mass flux on mixed convection flow over an inclined flat plate is considered.

Analysis

Consider the problem of convective heat transfer in a porous medium adjacent
to an inclined surface as shown in Fig. 1, which is maintained at a temperature differ-
ent from that of the porous medium. The origin of the coordinate system is placed on
the surface where its temperature begins to deviate from that of the ambient temper-
ature with y and x denoting the coordinates perpendicular and parallel to the bound-
ing surface. Figure 1 shows the physical model of two configurations (a) and (b),
where (b) is a mirror image of (a). Itis shown that in configuration (a) the inclination
angle ¢ measured from vertical is positive in clockwise direction and negative in
counter clockwise direction, while for configuration (b), ¢ is negative in clockwise
direction and positive in counter clockwise direction.

Having invoked the Boussinesq and boundary layer approximations, the gov-
erning equations based on Darcy’s law are given by Cheng [1]

il & %

> T m

cosq)——a—rl—‘sinq)} (1)
ox
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Fig. 1. Coordinate system



Local Non-Similarity Solutions for Mixed Convection Flow ... 271

9T _ 1{8T oy aT 8\1!}

5% " o| %y 3y ox @
where the stream function v is defined as

oV _ W _

dy s ox v 3)

The + ve sign on the RHS of equation (1) indicates aiding flow, while the — ve sign
indicates opposing flow. This applies for both configurations (a) and (b). K is the per-
meability of the porous mediuum; p,u,p are the density, viscosity, and thermal
expansion coefficient of the convected fluid; o = k/(p,.C), is the equivalent thermal
diffusivity with (p_ C),; denoting the product of density and specific heat of the con-
vected fluid, T is the temperature; g is the gravitational acceleration. The subscript
o refers to the condition at the free stream. The boundary conditions considered
here are:

at y=0, v=V_ =Cx",T, =T, + Ax" 4)

as y—>o, u=u_=Bx", T=T,_ (5)
where A and B are positive constants; C is a positive constant in casc of injection (i.e.
V,, > 0), and negative in case of withdrawal (i.e. V< 0). Aiding flows are attained
if the buoyancy force has a component in the free stream direction and opposing
flows are attained when the buoyancy force has a component opposite to the free
stream direction. Thus, aiding flows are obtained for configuration (a) if the wall is
hotter than the free stream temperature (i.e. T, = T, + Ax"), and for configuration
(b) if the wall is colder than the free stream temperature (i.e. T, = T, — Ax").
Opposing flows are obtained for configuration (a) if the wall is colder than the tree
stream and for configuration (b) if the wall is hotter than the free stream.

Equations (1) and (2) subjected to the boundary conditions (4) and (5), in gen-
eral do not admit similarity solution. Thus, approximate solutions based on the local
non-similarity method will now be presented. To this end, the following variables
should be first introduced
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v =(ow.x)"* f(.8) ©)
T-T.
SO=7 7 7

The dimensionless independent variables 1 and E are defined as

x )_(Mj]/zl
M=) X (8)

!
=(2m-n+1) %
Cx? Pe, 9)

( = — 5
&(x) (oB)2 (Pey )2

where Pe, and Pe are the local Peclet number and the modified local Peclet number

(uy),x (V) x

defined by Pe, = andPe} = ——— , respectively. It follows from
a

equation (9) that £ > 0 for V> 0and E <0for V< 0. Note that § = () corresponds
to the case of impermeable surface considered by Abu Romman [3].

Substituting equations (6)-(9) into equations (1), (2), (4) and (5) yields:

o , 1 , (n‘"])
7= +£Q [6°cos ¢p— C
¢ (Pex)]/2 n B )
| oL¢) .
+5(2m—n+1)§£+ke] sin ¢ (10)

6” -0 r"+( “;’ ! )fe' -

I ., 08 of
—C2m-n+DE[f' —-0"—
5 &l 3 agl (11)
with boundary conditions given by:
~ —2§ of
at =0 ,6(0,&)=1 ,1(0,&)= 1+(2m-— 1)— 12
S S)=plit@m n+hael (12)

asn— » . 0(x.8) =0, (=) =1 (13)
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where ¢” denoting 3/3n, Gr, = g(T,, — T..), Pkx/v? is the modified Grashof number
atx, Re = (u,), x/v is the local Reynolds number and Q = (Gr/Re), = gABk/VBx* "
is the mixed convection parameter at x. This parameter is a measure of the relative
importance of free to forced convection; ¢ is the inclination from vertical; A is the
exponent in equation (4); n is the exponent in equation (5); m is the exponent in equ-
ation (4); f is the stream function and 0 is the dimensionless temperature. The pre-
sence of € and its derivatives shows that the problem is non-similar. However, it is
noted that for the special case of m = (n — 1)/2, all of the terms involving the partial
differention of & in equations (10) and (11) drop out. Furthermore, the injection

parameter & as given by (9) becomes constant and independent of x. In order to

P . Gr .
obtain similarity solution, the parameters (E—e)X and Pe must also be independent of

X, and this happens when A = n = — 1. Butat n = — 1, the boundary condition for f
becomes infinity. hence, similarity doesn’t exist.

Similarity exists, as a special case, in the case of vertical wall when the normal
buoyancy force (the third term of the RHS of equation (10)) vanishes when
m = (n — 1)/2 and A = n. This is also the case for inclined walls when the normal
buoyancy is neglected. Another case where similarity exists is the horizontal plate in
which similarity is obtained when m = (n — 1)/2 and A = (3n + 1)/2 which is the case
considered by Lai and Kulacki [4]. For impermeable plate (i.e. & = 0) similarity exists
when A = n = — 1 which is the result obtained by Abu Romman [3].

[t is also noted that for constant surface velocity (i.e. m = 0), similarity does not
exist.

First Level of Truncation

The method of local non-similarity is well documented in the literature and a full
description of the numerical scheme is given by Minkowycz and Sparrow [6]

To obtain the set of equations and boundary conditions for the first level of trun-

. . .o, .
cation, delete all the termsinvolving G_E in equations (10)-(13), and write the resulting

ordinary differential equations in a standard form. Then the equations for the first
level of truncation are:

f'=0Q, (14)

07+ Pigb" = Q4 (15)
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where
Qif =2Q[6cosd— 1/2 (7&9+—1‘]9 )sin ] (16)
Pl = 1;“ f (17)
Q,y = MOt (18)

The first subscript appended to P and Q denotes the level of truncation. and the
second subscript identifies the dependent variable of the differential equation to
which P and Q belong.

The boundary conditions are:

at =0 ,6(0,E)=1,£(0,§)= 25 (19)

as —»n=x 0(2E=0.f(*xE)=1 (20)
Second Level of Truncation

At the second level of truncation, equations (10)-(13) are retained without
approximation. After taking the partial differential of these equations with respect to

E, deleting all the terms involving a_f and 98 , and substituting for Z—; = G and
L @, we obtain
o€
f” = Q:f (21)
67+ Py 0" = Qy (22)
G"=Qy (23)

D" + Py @' = Qs (24)
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where

Qyf = £Q[B'cos ¢

1 1 n-1__, .
_W(XG+E(4m—n+1)E)¢)+-Tn6 )sin 0]

I+n

f

Pag =%(2m—n+1)§G+
Qo = %(2m—n+1)§f’<b+7»9f’

Qrc =2Q[d’cos D ———1——7,—(7»<I)+-1—(2m -n+1)o
Pe)/” 2

nz_lnqa') sin @]

+

Prg =P

1 ’ ’ ’
Q,q =5 (2m=n+1(@C'+'®-6'G)
—1—;59'G+x(eo'+f'q>)

The boundary conditions are:

_ _ =5
8(0.5)=1, £(0.5)=—==

-1
®(0,6)=0, G(0,§)= Y

and
8(.8) =0 A (28) =1

P(».8)=0 .G (= E)=0
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Third Level of Truncation

To obtain the equations for the third level of truncation, first, introduce new
functions H and X

_0G _d 9® 9%

R

Equations (10)-(13) are retained without approximation, as are auxiliary equations
deduced by taking 35 of the above equations. Additional auxiliary equations are

=) . . . . . P
generated by taking the second derivative of equations (10)-(13) with respect to £ and

N3 g 23
deleting any terms containing ot and o0 . The following six equations are
. JE3 og?

obtained: i
= Q, (35)
0"+ P,0" = Qy (36)
G"=Qy, (37)
D" + p‘-‘q) b = Q_}q, (38)
H" = Qs (39)
X"+ Py X' = Qyy (40)

where
Q, = Qy (41)
Py, = Py (42)
Q39 = Qy (43)
sin ¢ 44
Q36 =Q26 — +Q (2m n+1)£_,XP 73 (44)
X

Py =Py (45)

Q39 = Qa9 +%(2m_n+1)§[flx_el H] (46)
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Q3H = iQ[X'COS ([)

1 . n-—1
——=sind(AX+(2m-n+1)X+—nX’
Pe)l(/3 q)( ( ) 2 n )]

+1 .
n* g

P, :%(2m -n+DEG+

Qi = {-;—(Zm—n+l)[§(2XG'+CI)H'—2H(D')+2f’X +

20G’—20'H —2G<D’]—HT+](2<D’G+6'H)

+AMO'H +2G’ D + ' X)

The boundary conditions are:

C1 08 = 5
6(0,8)=1, (0,&) = —
-1

= 0 = —
®(0,£)=0, G(0,8) 1

X(0.8) =0 _H(0.E) =0
and
B(°,8) =0 A(8) =1
D(>.8) =0 .G'(%.5)=0

X(»,8)=0 H'(2.E)=0

Results and Discussion
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(47)

(48)

(49)

Numerical solutions of the equations for the first-, second-, and third level of

truncation at selected values of ﬂ ,A,m,n,Pe,¢ and & for aiding and opposing flows

Re

were carried out using the integral method described by Minkowycz and Sparrow [6].
The numerical method used in the solution of the problem is a combination of for-
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ward integration scheme (Runge - Kutta) and shooting method. Convergence of the
solution is easily attainable for first and second level truncation. However, for the
third level truncation, convergence becomes more difficult to obtain and needs
larger number of iterations. Results for§ = — 1.8 to S are obtained (not all presented
here) with very little difficulty. Divergence, if ever occurred, is overcome by select-
ing a proper relaxing parameter used in the solution. The results presented here are
based on the third level of truncation. The results of greatest practical interest in
geothermal applications are the thermal boundary layer thickness and the heat trans-
fer rate. Figures 2 and 3 show the effect of lateral mass flux on dimensionless temper-
ature profiles. Itis shown in Fig. 2 that the fluid injection (§ > 0) reduces the temper-
ature gradients at the wall (heat transfer rates), while fluid withdrawal (§ <0)
increases the temperature gradients. It is shown that an isothermal layer of fluid (at
T, ) adjacent to the wall exist for large positive § (i.e. at large injection rate). This is
because thermal diffusion in this layer, which is made up of fluid that has been
injected. is negligible. Because of this layer, the heat transfer rate (temperature gra-
dient at the wall) approaches zero. This layer is more pronounced for the case of
forced convection (i.e. Gr/Re = 0) over an isothermal wall with high inclination
angle [see Fig. 2(a)]. due to the reduction in buoyancy force and the tangential com-
ponent of buoyancy. A similar layer exists for opposing flows at relatively high Gr/
Re.

The effect of Gr/Re is shown in Fig. 2(a-c). It is shown that increaing Gr/Re
increases the temperature gradient at the wall due to the increase in buoyancy force.
An opposite effect is seen for opposing flows [see Fig. 3(a-c)]. Increasing ¢ decreases
the temperature gradient at the wall due to the reduction in the tangential compo-
nent of buoyancy force, [see Fg. 2(a,d)]. An opposite etfect is shown for opposing
flows. If the edge of the thermal boundary layer thickness (n;)is defined as the value
of  when 8 has a value of 0.01, it follows from equation (8) that the expression for
the boundary layer thickness is

o}

T _
X

_nr (56)
(Pe)l/2

Selected values of —0' (0.£), '(0,£) and 1 at selected values of Gr/Re A,m,n.Pe.¢
and € are shown in Tables 1 and 2. Itis shown that the injection of fluid increases dp,
while withdrawal reduces it.

The local surface heat flux is given by:

172
4y, (0,8) = —k(ﬂj = —K(T, - T., >e'(o,§)(“;°°) (57)
dy y ox

=0
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Table 1. Values of —8'(0,%), f'(0,5) and v, for k. = 1, m = 0, n = 1/3and ¢ = 45

E=-1.8 £=0 =18
Sy ro - —0'0)  F(0) . —0'0)  f(0) Ny
Re

0 2387 1.0 1651 1170 1.0 2610 0.5180 1.0 3.810
I 2573 1743 1590 1436 1775 2371 07888 1828 3310
3002899 3220 1481 1847 3291 2002 1190 3388 2751
53183 4695 1370 2176 4784 1872 1.509 4904 2.412
8 3355 6.891 1271 2588 7001 1661 1.909 7138 2.101
10 3778 8351 L1199 2828 8469 1562 2142 8615 1.899
S0 6.652 3721 0.75 578 37.38 0850  5.054  37.577  0.985

Table 2. Values of —8(0,£), f'(0,5) and v, for A =1, m = 1,n = 1/3and ¢ = 45

E=-1.8 =18

Gr —0'(0) £(0) - —0'(0) £(0) nT
Re

0 2271 1.0 1.81 0.570 10 3.010
| 2.436 1.736 1.760 0.852 1.831 2.750
3 2.749 3.209 1.620 1.263 3.391 2.380
5 3.031 4.678 1.501 1.587 4.906 2.120
8 3.404 6.873 1.401 1.991 7.141 1.870
10 3.628 8.332 1.330 2.227 8618 1.745
50 6.5187 37.194 0.799 5.152 37.584 0.931

where 6’ (0,§) is the dimensionless temperature gradient at the wall. The effect of the
surface mass flux on the surface heat transfer can be shown by the heat flux ratio:

9y (0,8) 67(0,8)

4w (0.0)  67(0,0) (58)

where q,, (0,0) and 0’ (0,0) are the surface heat flux and dimensionless temperature
gradient without mass flux, i.e. § = 0 which is the case considered by Abu Romman
[3]. Equation (58) is plotted as a function of the mass flux parameter £ in Fig. 4. Itis
shown that the surface mass transfer increases the surface heat flux for the case of
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fluid withdrawal (§ < 0) while opposite etfect is observed for the case of fluid injec-
tion (& > 0).

The horizontal velocity slip at the wall is given by:

u(0.8) =u_ ' (0,§) (59)

Selected values of t' (0,8) are shown in Tables 1 and 2. Thus, the effect of lateral mass
transfer on the velocity slip at the wall can be shown by the ratio:

U(O’E.r) - f'(O,&) (60)
u(0,0) £7(0,0)

where u(0,0) and {'(0,0) are the values for the case without mass transfer, i.e. & = 0.
Equation (60) is plotted as a function of the mass flux parameter & in Fig. 5. It is
shown that tluid injection increases the velocity slip while fluid withdrawal decreases
the velocity slip.

In order to establish the criteria for pure free or mixed convection we have

172
qw(0,8) =—k(T,, - T, )6’(0,!‘,)(%’1] =h(T,, - T.) (61)
X
rearranging:
Nu ,
(Pe, )2 ==07(0.8)n.c. (62)

and from Dweik er al. [5] we have:

Nu

(Ra )1/3 =_9,(0*§)n£. (63)

where Nu = hx/k, the subscripts (m.c.) and (n.c.) refer to mixed convection and nat-
ural convection respectively and h is the heat transfer coefficient. By noting that

Gr _ Ra
m = W , We have
Nu Gr\’? 1
——= =008 | —| —=
(Pey )2 0.8, (Re) (Pe)/® (64)
The definition of £ for free convection as given by Dweik ez al. [5] is
Pey (65)

? T (Ra, )1/3
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and then

172
E.vn.c. — (PeX)l/? (66)
im.c. (Ray)™"

Equation (66) provides the corresponding value for g . if§_ ., Pe, and Gr/Re

are given. The values of 6'(0,§) for the forced convection case are found at % =0.

Equation (64) is plotted in Fig. 6 as a function of § | . and g—;. The limiting cases of

free and forced convection are also shown as asymptotes in the same figure. From
this figure, we see that the withdrawal of fluid makes free convection occurs at rela
Gr
Re

makes the free convection occurs at relatively high values ofT:: .

tively small values of as compared with impermeable surface; while injection

10.0

Nu/Pe'”?

= === [ree convection asymptote

--------- Forced convection asymptote

01 L
1.0 10.0 100.0

Gr/Re

Fig. 6. Free and forced convection asymptotes for aiding flows at A = 1, m = 0, and Pe = 70
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Table 3 shows a comparison between the work by Lai and Kulacki [4] for
selected values of Ra/(Pe)¥2,n,m,\ on a horizontal plate. The injection parameter
28

1+n

usedis f, =

Table 3. Values of —6'(0,£) on a horizontal plate at . = 0.5,n = 0,and m = — 0.5

Ra
f,=—1 £,=0 f,=1

PJ/Z

0 0.6337(0.6337) 0.8862 (0.8862) 1.2008 (1.2009)

0.6 0.8036 (0.8037) 1.0279 (1.0281) 1.3120(1.3123)
| 0.8860 (0.8862) 1.1018 (1.1020) 1.3741(1.3745)
2 1.0449 (1.0450) 1.2493 (1.2495) 1.5037 (1.5041)
S 1.3573 (1.3575) 1.5501 (1.5503) 1.7821 (1.7825)
8 1.5721(1.5724) 1.7607 (1.7610) 1.9831 (1.9836)
15 1.9288 (1.9290) 2.1134(2.1137) 2.3255(2.3261)

The values in brackets are those obtained by Lai and Kulacki [4].
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