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Abstract. This paper presents a model which predicts, with a high degree of accuracy, the dynamic
response of induction machines. The model is simple, fast, accurate and numerically stable. Using the
complex form of the induction machine equations along with trapezoidal integration and the fact that
mechanical transients are much slower than electrical transients, the differential equations that describe
the dynamic behavior of the symmetrical induction machine were transformed into algebraic equations
which could be easily solved. The performance of the proposed model was evaluated using several induc-
tion machines with different horse power ratings ranging from 3 hp to 2400 hp. In ali simulated cases, the
proposed model was very accurate and duplicated faithfully the detailed d/q model results with a compu-
tation time as little as 25% of that required by the full-order model. Moreover, because of the numerical
stability of the proposed model, computation time can be drastically reduced by using a larger time step
in the simulation while maintaining reasonable accuracy.

List of Symbols
R,R, = Stator and rotor phase resistances
XX, = Stator and rotor leakage phase reactances
X = Magnetizing reactance
zZ, = Base impedance
H = Inertia constant
Wy Was = d/qstator windings flux linkages
Wyr» Wr = d/qrotor windings flux linkages
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Vgsr Vas = d/qstator windings terminal voltages
L = d/qstator windings currents
L = d/qrotor windings currents
W, W, ,0, = Synchronous (Reference Frame), rotor and base speeds
T, T, = Electromagnetic and load torques
X = X+ X,
X, = X, +X,
D = XX, —X2
Introduction

Accurate prediction of the dynamic behavior of three-phase induction machines is of
prime importance in some power system studies such as power system stability
studies, power system switching transients and relaying coordination. The well-
established detailed fifth-order (d/q) model predicts quite accurately the dynamic
response of induction machines [1-3]. This model, however, requires a large amount
of computation time. Therefore, various reduced order models to predict the
dynamic response of induction machines have been developed and investigated
[3-15].

A traditional method of reducing the order of induction machine dynamic equ-
ations neglects the time rate of change of the stator flux linkages [4]. This approach
is based on the fact that, changes in the stator flux linkages are much faster than those
in the rotor flux linkages. The reduced order equations are then linearized using the
small displacement approach. Such a model is investigated in [S] where some
guidelines were suggested to determine when this model would be accurate. Various
modifications of this method were developed in [3-7]. An investigation and compari-
son of three of these methods are given in [7].

A different approach that deals with load torque or voltage disturbance is
reported in [9-12]. Such a model represents the dynamic behavior of an induction
machine by a non-linear second order differential equation similar to the swing equ-
ation of a synchronous machine. The reduction in this model is based on the induc-
tion machine load angle and its simplified steady state equivalent circuit.

Two models have been reported in [13;14]. The model of [13] partially
decoupled the detailed full-order model using linear transformation. Using the fact
that mechanical transients are much slower than electrical transients, a piece-wise-
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linear model is derived in [14]. Both models, however. failed to accurately predict
the machine dynamics right after start-up from stall. To circumvent this problem, the
detailed model was initially used until the rotor speed reached a certain value, which
depends on the machine ratings. after which the two models could then be used.

The machine equations can be expressed in either real or complex variable
form. Despite the early introduction of complex variable analysis [16;17]. the trend
in the U.S.A. has been directed toward real variables except for a few isolated
instances [18-20]. However, the complex variable method is extensively used outside
the U.S.A. [21-23]. The complex variable analysis greatly simplified the mathemati-
cal representation of induction machines dynamics.

A fast and accurate dynamic model is reported in [15]. This model is based on
the complex time variable analysis, recursive convolution and the fact that electrical
transients are much faster than mechanical transients.

This paper presents an alternative simple model to predict the induction
machine dynamics. Like the detailed representation, the proposed method considers
electrical transients in both stator and rotor windings as well as mechanical trans-
ients. The new model was obtained using complex time variables [18], trapezoidal
integration and the fact that mechanical transients are much slower than electrical
transients. Trapezoidal integration is used widely in electromagnetic transients [24]
and power system stability studies [25]. It is simple, self-starting, and numerically
stable.

The proposed model is simple. numerically stable. very accurate and very fast as
compared to the detailed model. Computation time was as little as 25% of that
required by the detailed model. The proposed model and that of [15] have almost the
same characteristics in terms of accuracy and computation time when using time
steps smaller than or equal to 1 ms, however, the proposed model has better numeri
cal stability and accuracy with time steps greater than 1 ms. Thus, the new model
allows turther reduction in computation time by selecting larger time steps in the
simulations while maintaining reasonable accuracy. The numerical stability and the
considerable saving in computation time of the new model are attributed to the
trapezoidal integration which is employed in the proposed model.

Results, obtained by the proposed and the full-order models, are given for the
simulations of voltage, frequency and load torque disturbances as well as accelera-
tion from stall for small, medium and large three-phase induction machines.
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Accurate prediction of induction machine transients can be obtained using the
well-established detailed d/q formulation. The full order model of induction
machines may be written in terms of either currents or flux linkages as state variables.
In this study, flux linkages were selected as state variables because they tend to vary
more slowly than currents providing more numerical stability. Using real variable
analysis, the per unit equations of a symmetrical induction machine with no neutral
connection may be expressed in a synchronously rotating frame of reference by [3]:

a,=RX, /D , a;=RXy /D
a3=R,X,, /D , as=R,Xy/D

d\|1ds
dt
dygs _
dt
d\Vdr
dt
v,
dt
where
and

[O)]
= Op(-a;Yys +(-D£"Vqs +aYgr +Vgs)
b
We
wb(_al\Vqs ———VWgs tar¥g t qu)
Wy
= Op(azWes —agWqgr + s \Vqr)

= wb(a3qu_a4\Vqr + 8 W)

s=(We — W)/ Wy,

Vs = Xgsigs + Xmigr

<
3
|

= XssiqS + Xmiqr

Vo = Xmiss + Xelar

\vqr = Xmiqs + Xn_lqr

(1

2

3)

4

®)

(6)

™
®)
©

(10)



Induction Machine Transient Model Using Complex Variables ... 293

The mechanical equation is given by:

1
Ao 1o oy (11)
Oy, dt 2H

with

X
Te =ﬁ(‘l’qs“’dr _\Vds\l’qr) (12)
The d/q stator currents can be obtained from the flux linkages as follows:

) 1
lds :‘B(er\uds - XnVar) (13)

1 .
igs =B(X”qu_xqur)’ (14)

Detailed Complex Variables Model

The machine equations can also be expressed in complex variables form. The
complex variables analysis greatly simplifies the mathematical representation of
induction machines dynamics. To obtain time domain complex equations for the
induction machine, define the following variables [18]:

F\ = Fd.\ + qus

(15)
Fr - Fdr + qur

where F denotes current, voltage or flux linkage. Applying these definitions to (1-4),
the four real equations can be reduced to the following two complex equations:

dyg (16)
— = pf
dt b's
dy, (17)
—L = opf
dt b'r
where
OR
fo=—(aj+j—=)¥s+ary, +v (18)
Wp

fl. =a3\us—(a4+js)\ur (19)
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Applying relations of (15) to (7-10), the complex flux linkages can be related to
the complex currents by:

P+ X i (20)

SS°s m'r

V= Xipls + Xiplp

Y, =X
(21)

The stator complex current and the developed electromagnetic torque are respec-
tively related to the complex flux linkages by:

is = (XpWs = XpW,)/ D (22)

T, =X?”‘S(wsw:) (23)

where * and 3 denotes complex conjugate and imaginary part respectively.
Moreover, (11) still represents the mechanical dynamics.

Proposed Model

Equations (16 and 17) can be integrated over one time step from t — At to tas
follows:

W (1) t

j dyg(1) = wbj f (1) dt {24)
W (t—At) t—At

Y t

J. dy. (1) = (an. f (1) dt (25)
Yy (t=Ab) t—-At

Applying the trapezoidal rule of integration to the right hand side of (24) and
(25) yields:

At .
W (1) =W (1= Al (x)b?{rs(t)ﬂs(t—m)} (26)

At .
v (- (t=AD) = wh%{tr(t)ﬂr(t—m)} (27)

Substituting respectively, for f_and f from (18) and (19) for tand t — At. collect-
ing terms and rearranging give:
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2 .
(@ +——"+ Jw—Z)Ws(t)—az\Vr(t) = Yg (28)
_a3Ws(t)+{a4+mbAt+j5(t)}\ur([) = V¥ (29)
where
.
Ve =_(a1_mbAt+Jm—e)ws(t—At)+a2wr(t—At)+ Ve (t+ At + vg(t) (30)

b

Vi = a3ys(t-A)—{ag - +js(t— A}y (t - At) (31)

Cl)bAt

It is important to note that ¢y, and ¢, are known quantities at time t from past
history terms at (t — At) and a known term at t (v (t)).

The two differential equations, (16) and (17), have been transformed into two
-simple algebraic equations, (28) and (29). Equation (28) is linear while (29) is non-
linear because of s(t) = {w, — w (t)}/w,. Since mechanical transients are slower than
electrical transients, w (t — At) can be substituted for w (t) into the expression of s(t).
With this substitution, (28) and (29) can be easily solved for y (t) and 1y (t) i.e.

2 .
Y (t) = Ha4 + wat+Js(t)}\ySh +a=_>\|frh:’/DC (32)

_ 2 LW
y() = {33Wsh +[a1 +M+Jzof)\l’rh}/])c (33)

where v, and , are respectively given by (30) and (31) and,

s() = {@e —o,(t—AD}/ @y (34)

2 O] 2
D. =|a; + +i]—== + ; -
¢ ( ! WpAt J(ob j {a4 WpHAL +Js(t)} 283 (35)

Moreover, the rotor speed can be updated using the following equation which
was obtained by applying the trapezoidal rule of integration to (11)
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1 1 1
w—bwr(t)=ZO—;cor(t—At)+E{Te(t)—TL(t)+Te(t—At)—TL(t—At)} (36)

with T (t) evaluated from (23).
Simulation Results

To test the accuracy of the proposed model. several induction machines ranging
in size from 3 to 2400 hp were used in the simulation. The results obtained by the
proposed model were compared to those obtained by the detailed d/q model. In all
cases, the trapezoidal model was very accurate and it was almost impossible to distin-
guish between the curves obtained by the proposed model and those obtained by the
full-order model. Results are presented for voltage, frequency and load-torque dis-
turbances as well as free acceleration from stall for three induction machines (3, 820
and 2400 hp). The simulations were carried out using a At of 1 ms. The three
machines, the parameters of which are given in Table 1, have their stator windings
connected in star. It is important to note that the voltages which are given in the
Table 1 are line voltages.

Table 1. Machines parameters

Parameters Small m/c Medium m/c Large m/c
hp 3 820 2400
t(Hz) 60) 50 50
# of poles 4 10 2
rpm 1725 597 2990
Voltage (V) 220 3300 11000
Z,(9) 21.627 17.802 67.583
R_(Q) 0.435 0.0900 0.2479
R, (€2) 0.816 0.0893 0.2038
X (Q) 0.750 1.4572 S.A548
X, (L) 0.750 0.9526 2.7491
X, (Q) 26.130 25.857 1644

5 5
J (kg-m?) 0.089 250.63 62.53
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Figures 1-3 respectively show the torques, stator current magnitudes and rotor
speed responses of the three machines during and after a short circuit at the stator
terminals. The fault occurred at t = 0.04 s for the three machines and cleared at
t = 0.08 s for the small machine, t = 0.14 s for the medium machine and t = 0.15 s
for the large machine. Figures 1-3, show the responses of the small, medium and
large machines respectively. In order to further test the accuracy of the proposed
model, a 5% drop in the supply frequency for the small and medium machines and a
5% increase in the frequency for the large machine were simulated. Figure 4 (a-c)
respectively show the torques and rotor speeds responses of the small, medium and
large machines for the frequency disturbance. The disturbance was at t = 0.
Moreover, load torque disturbance was also investigated for the three machines. The
load torque disturbance was simulated by removing the full load torque from the
machines at t = 0.04 s and returning them back to their respective machines at t =
(.08 s for the small machine and t = 0.24 s for both the medium and large machines.
Figure S (a-c) respectively show the torque and rotor speeds responses of the small,
medium and large machines for the load torque disturbance. The torques and rotor
speeds responses of the small, medium and large machines during free acceleration
from stall are shown in Fig. 6(a-c) respectively.

It is important to note that, although the stator current magnitudes are not
shown for the frequency and load-torque disturbances as well as free acceleration,
their predictions by the proposed model are also in excellent agreement with those
obtained by the full-order model.

It is very clear that the curves obtained by the trapezoidal integration model fol-
low very closely those of the detailed model. In fact they are hardly distinguishable.
The proposed model faithfully duplicates the detailed model results regardless of the
horse power rating of the induction machine and the type of disturbance. It was also
observed that the computation time required by the trapezoidal model is as little as
25% of that required by the full-order model. The computation time of the proposed
model can be reduced further by selecting a larger time step for the simulations. It is
worth mentioning that the proposed model gave fairly good results with a time step
of 10 ms for the simulation of voltage, frequency and load torque disturbances as well
as free acceleration as clearly indicated in Figs 7 and 8. The results of Figs 7 and 8
were carried out with At = 1 ms and 10 ms for the detailed and proposed models
respectively. In this case, the computation time required by the trapezoidal model
was reduced to less than 3% of that required by the detailed model.
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Conclusions

A simple, fast, accurate and numerically stable dynamic model has been pre-

sented in this paper. The model is based on complex variable analysis, trapezoidal
integration and the fact that mechanical transients are slower than electrical trans-
ients. The proposed model predicts the dynamic response of a three-phase induction
machine with excellent accuracy regardless of the machine horse power rating and
type of disturbance.

(1]
(2]

(3]
(4]

151

7l

References

Krause, P.C. and Thomas, T.H. “Simulation of Symmetrical Induction Machinery.” IEEE Trans.
PAS-84, No. 11 (1965), 1038-1053.

Cathey. J.J.: Cavin 111, R.K. and Ayoub, A.K. “Transient Load Model of an Induction Motor.™
IEEE Trans. PAS-92, No. 4 (1973), 1399-1406.

Krause, P.C. Analysis of Electric Machinery, London: McGraw-Hill, 1987.

Krause, P.C.; Nozari, F.; Skvarennia, T.L. and Olive, D.W. “The Theory of Neglecting Stator
Transients.” I[EEE Trans. PAS-98, No. 1 (1979), 141-148.

Skvarenina, T.L. and Krause, P.C. “Accuracy of Reduced Order Models of Induction Machines in
Dynamic Stability Studies.” JEEE Trans. PAS-98, No. 4 (1979), 1192-1197.

Gunaratnam, N. and Novotny, D.W. “The Effect of Neglecting Stator Transients in Induction
Machine Modeling.” IEEE Trans, PAS-99. No. 6 (1980). 2050-2059.

Wasynczuk, O.; Duao, Yi-min and Krause, P.C. “Theory and Comparison of Reduced Order Mod-



306 A.H. Al-Bahrani

els of Induction Machines.” IEEE Trans, PAS-104, No. 3 (1985), 598-606.

[8] Rodrigues, F.D. and Wasynezuk, O. “A Refined Method of Deriving Reduced Models of Induction
Machines.” IEEFE Trans, EC-2, No. 1 (1987). 31-37.

[9] Mohamadein, A.L. “Generalized Chart, Load Angle and Stability Limit in Induction Motors.™ Elec-
tric Machines and Electromechanics. 3, No 1 (1978), 65-74.

[10] Mohamadein, A.L. and El-Sulaiman, A.A. “Stability of Large Induction Motors as Influenced by
Voltage Disturbances.” Electric Machines and Electromechanics, 7, (1982), 1-8.

[11] Al-Bahrani, A.H. A Close Form Solution for the Dynamic Response of Induction Machines.™ The
Arabian Journal for Science and Engineering. 14, No. 3 (1989), 403-411.

[12] Al-Bahrani, A.H.; Mohamadein, A.L. and Al-Ohaly, A.A. “Dynamic Response of a Group of
Induction Motors Operating in Parallel.™ Electric Machines and Powers Svs. 15, (1988). 269-281.

[13] Ertem, S. and Baghzouz, Y. " A Fast Recursive Solution for Induction Motor Transients.” IEEE
Trans, 1A-24, No. 5 (1988), 758-764.

“Simulation of Induction Machinery for Power System Studies.” IEEE Trans, EC-4, No. 1
(1989), 88-94.

[15] Al-Bahrani, A.H. ~A Fast and Accurate Induction Machine Dynamic Model Using Complex Time
Variables and Recursive Convolution.” To be published in the /EEE Transaction on Energy Conver-
sion. Paper No. 94 WM 107-3 EC.

[16] Ku, Y.H. “Transient Analysis of Rotating Machines and Stationary Networks by Means of Rotating
Reference Frames.” AIEE Trans, Pt-170, (1951), 943-957.

[17] Lyon, W.V. Transient Analysis of Alternating Current Machinery. Cambridge, U.S.A.: The
Technology Press of M.LLT. and Wiley & Sons Inc., 1954,

[18] Novotny, D.W. and Wouterse, J.H. “Induction Machine Transfer Functions and Dynamic Response
by Means of Complex Time Variables.” [EEE Trans, PAS-95, No. 4 (1976), 1325-1334.

[19] Sabbagh, E.M. and Sherman, W. “Characteristics of an Adjustable Speed Polyphase Induction
Machines.” IEEFE Trans, PAS-87. No. 3 (1968), 613-624.

[20] Szablya, J.G. and Bressane, J.M. “Transfer Functions of ac Machines.™ IEEE Trans, PAS-92, No.
1 (1973), 177-186.

[21] Takeuchi, T.J. Theory of SCR Circuits and Application to Motor Control. Tokyo, Japan: Tokyo
Electrical Engineering College Press, 1968.

(14]

[22] Racz, 1. “Dynamic Behavior of Inverter Controlled Induction Motors.” Proc. 3rd Congress of IFAC,
I, (1965), 4B1-4B7.

[23] Diana, G. and Harley, R.G. “Relationship between the Real and Complex Form of the Mathemat-
ical Model for Symmetric Induction Machinery.™ Electric Power Sys. Research, 9. (1985). 233-242.

[24] Dommel, H.W and Meyer, W.S. “Digital Computer Solution of Electromagnetic Transients in
Single and Multi-Phase Networks.” IEEE Trans, PAS-88, (1969), 388-399.

[25] Dommel, H.W. and Sato, N. “Transient Stability Solutions.™ IEEE Trans, PAS-91, (1972), 1643-
1650.



Induction Machine Transient Model Using Complex Variables ... 307

plasuly Ladl Sl & pladl YUY J22 3 5
O el 4k Basliy LS U ool

Gl el e dilas
Ao edpme AU dnalr (dwkid] LUS (L ¢S dukid] pud
Lopmedl Lyl iSLadl VY EVY oL
(CARRETAVARNE PSS NS LLL AR VA VRE P

cioalze By B SIS LAl ll Bl ¥l Oled 3500 Sl 1 pdy ol jasile
JI 2 S bl Vsl fpE 5 aa) Usde iy 33 s e el Ly
a3y b SIS &S 1 SVolall plasaraly U3y iy g Lol Sy £ = ¥slns
o 85 (L eSO Ledhte e e BT ZSOISC 5l VU OF 222> U] BLoYL Ol
¥ oo ol Gl il Dladl 5puall ddkes o G sae plasal, Al 3l 1l o 25
B sl e Gy (S5 SV o 3 1o Gads =8l 235001 OISy (Llam YE0 o )
s ¢ JolST1 30l) bl sl e /Y0 o LA Ll 30e G Jaadll ()5l T35
Lonj Bomys pldinialy 408 8 pos Aol e A5 Sy 6B A8l 3ganl] Doaall &1Vl

Wsaae @85 Jo blid) ank 3l 3 el Dlae § ST



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



