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Abstract. A reduced-order collocation method (using Jacobi or Hahn polynomials) is used for the simula­
tion of distillation columns. A new solution strategy which uses the overall balances and equilibrium rela­
tions to eliminate the need to include the vapour flows approximating profiles from the solution algorithm 
is presented. Furthermore the material balance equations are included in the enthalpy balance equations 
to improve convergence. The proposed strategy is compared against a formerly published basic strategy 
and is shown to offer a considerable saving in computer time. 
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Nomenclature 

Coefficients ofliquid enthalpy collocation (see equation (8)) in 
units of Btu, BtufOF and Btu/("F)2 respectively. 
Coefficient of vapor enthalpy correlation (see equation (9)) in 
units of Btu, Btul"F and Btu/("F)' respectively. 
Number of components, dimensionless. 
Distillate molar flow rate of component j and of total flow 
respectively,lb.mollhr. 
Murphree plate efficiency at collocation points 
Vapour enthalpy of a component at collocation point s;, 
Btullb.mole. 
Liquid enthalpy of a component at collocation point Sj' 

Btullb.mole. 
Equilibrium constant of a component at collocation point Sj. 

dimensionless. 
Liquid molar flow rate of a component at collocation point Sj' 

lb.mollhr. 
Total liquid molar flow rate.lb.mol/hr. 
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N 
Pj(x) and Qj(x) 
Sj 
T, 
Ts,j 

Vs,j 

Vs,j 

x 
fj 
Xs,j 

Ys,j 
* y ~,j 
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Plates number in a rectifying or stripping section. 
Polynomials in x. 
Collocation point j. 
Temperature at stage s, of. 
Temperature at collocation point Sj' of. 
Vapour molar flow rate of component j, lb .mollhr. 
Total vapour molar flow rate at collocation point 5j , Ih.mollhr. 
Independent co-ordinate, e.g. dimensionless distance. 
Computed liquid flow rate of component j, lb.mollhr. 
Liquid mole fraction of component j at stage s, dimensionless. 
Vapour mole fraction of component j at stage s, dimensionless. 
Equilibrium vapour mole fraction of component j at stage s, 
dimensionless. 
Dependent variable, e.g. molar flow rate, lb.mollhr. 
Exact liquid flow rate of component j, lb. mollhr. 
Parameters in the weighting functions required for the 
orthogonality of Jacobi and Hahn polynomials. 
Coefficients of equilibrium constant correlation. 

Introductiou 

The present study involves a reduced-order approach to the simulation of distillation 
columns. Full order simulation of multi-stage separation schemes usually lead to 
large systems of nonlinear algebraic or stiff differential equations [1). The design, 
control and optimization studies for such problems would be greatly facilitated if the 
system of equations for such problems can be reduced to a simpler form. Further­
more, the reduction of the dimensionality of staged separation processes models is a 
necessity if the real time dynamic simulation of such complex processes is to be 
realized [2). Thus a real-time simulator (used for control room operators training for 
example) can be made to simulate abnormal working conditions. The orthogonal 
collocation method is a mathematical technique which can be used for this purpose. 

Earlier collocation methods presented in the literature used collocation points 
based on Jacobi polynomials to describe plate columns [3,4). Such a choice of collo­
cation points is unsuited to the discrete nature of plate column models [1). Stewart, 
et at. [1) gave a reduced-order collocation method suitable for plate columns, and 
Swartz and Stewart [5) adapted the method to optimal column design. 

In this work, the authors propose the comparison of the model reduction proce­
dure on the basis of two different solution strategies. The two strategies are applied 
to a specific example and their accuracies compared. The effect of the choice of the 
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number of collocation points, the approximating polynomial and the weighting func­
tion on the solution efficiency are examined. 

Problem Statement 

Figure 1 shows a distillation column consisting of a rectifying section, a stripping 
section, a reboiler, a condenser (which can be a total or an equilibrium partial con­
denser) and a single feed stream. The following assumptions are made: 

1. Good mixing of each phase on each stage. 
2. Thermal equilibrium between the liquid and vapour effluents from each stage. 
3. Each stripping or rectifying stage is adiabatic. 

A traditional full order rigorous, multicomponent approach for the modelling of 
such a column would establish a set of MESH (for Material, Equilibrium, Summa­
tion and Heat) equations for each stage in the column. The ensuing set of simultane­
ous non-linear equations would then be solved by one computational method or 
another [6]. 

In the collocation method approach the number of such equations is vastly 
reduced by assuming that the vapour and liquid component flows as well as enthal­
pies (or temperatures) inside each section of the column can be approximated by 
polynomials. The resulting number of equations is determined by the user and is 
independent of the actual numbers of plates in the column sections. The user is thus 
free to choose the number of collocation points in each section (where each colloca­
tion point corresponds to a hypothetical plate on which the MESH relationships 
apply) and the type of polynomial to use to approximate the system profiles inside 
the column. The number of collocation points chosen, however, can never exceed 
the actual number of stages in the given region. The accuracy of the model thus 
obtained will largely depend on the number of collocation points and the type of 
approximating polynomial used. Furthermore, as outlined later in this paper, the 
manner in which the material, energy and equilibrium relationships are combined 
and presented can also affect the accuracy as well as speed of computations. 

With reference to Fig. 1, the fresh feed can be a single or two-phase feed. Enter­
ing collocation stages in the rectifying section can be interstage liquid from colloca­
tion stage (s-l) above of molal flow rates I,.j,j and enthalpy h,.j,j and temperature 
T(,.l)" The subscript j refers to component j. Similarly, from stage (s+l) below 
interstage vapour of molal flow rates v s+ l,j enthalpy Hs+ 1,j and temperature Ts+ I can 
enter stages. Leaving stage s is vapour of molal flow rates v,.j and temperature 
T, and this stream constitutes an interstage stream to be sent to stage (s-l) above. 
Also a liquid stream of molal flow rates I',j and temperature T, leaves stage s to enter 
stage (s+ 1) below. Note that streams V, and L, are in thermal equilibrium. Compo-
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nent flow rates have been used instead of the cumbersome combination of total flow 
rates and mole fractions. A similar arrangement is used in the stripping section. The 
feed plate is considered as an equilibrium stage where the fresh feed (whether one or 
two-phase feed) is mixed with the liquid from the bottom plate of the rectifying sec­
tion and the vapour from the top plate in the stripping section. A vapour stream 
leaves the feed plate and enters the bottom plate of the rectifying stream while liquid 
stream leaves the feed plate and enters the top plate of the stripping section. 
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section 

Fresh feed 

Stnpping 
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(Total or partial) 
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L-t---------.~ 
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For the system described, the MESH equations are given by, 
Material Balance Equations: 

Stage Efficiency Relations: 

Ys,j - Ys+l,j = eMV [Y;,j - Ys+I,j1 , 
where 

Summation Equations: 

Enth~py Balance Equations: 

c c 

y*. = k . x . 
S ,j S,) S,) 

v . 
'.j 

y.=-­
S,j 

Vs 

IS,j 
x .=--­

S,j 

Is 

c 
L= 

S L Is,j 
j=1 

c 
V= 

S L Vs,j 
j=1 

c c 
L Is_1,j hs_1,j + 
j=l 

L vs+ 1,j Hs+1,j = L Is,j hS,j + 
j=1 

L vH. 
S,l S,j 

j=i j=l 
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(1) 

(2) 

(3) 

(4) 

(5) 

Few modifications are needed in these equations for a condenser, reboiler and feed 
plate, For an equilibrium condenser remove variables corresponding to a liquid 
stream above the condenser and include condenser heat duty in the enthalpy balance 
equations. For a reboiler remove vapour stream below the reboiler and include 
reboiler heat duty in the enthalpy balance equations, For a feed plate indude feed 
flow rate and its enthalpy in the corresponding material and heat balance equations, 
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Approximating Polynomials 

The orthogonal collocation method is suitable for the solution of two point non­
linear boundary value problems. To solve such a system (described by either diffe­
rential or algebraic equations), this technique assumes that the dependent variables 
(component flow rates, concentrations or temperatures inside a distillation column 
for example) can be approximated by polynomial functions of the independent vari­
ables, so that the equations describing the system are satisfied at certain points of the 
interval being studied. Such points are called collocation points. In the present study 
two intervals are considered: The first between the feed plate and condenser and the 
second between the feed plate and reboiler. 

The flows of material and enthalpy in each interval were approximated by 
Lagrange polynomials, whose nodal values were determined by orthogonal colloca­
tion at the zeros of a Hahn polynomial [1] or a Jacobi polynomial [1,4]. The basicfea­
tures of the collocation method are outlined here and for full details the reader is 
referred to [1] or [5]. 

Each state is expressed as a trial function (Y) which is taken as an expansion of 
orthogonal polynomials. 

The Jacobi polynomials P; satisfy the continuous orthogonality condition: 

f 1 x~ (I_x)" P; (x) P
j 
(x) dx = 0 

o 

i =0,1, ... ,M 
j=O,I, ... ,M 
i :j: j 
a, i3 > -I 
O:s;; x ~ 1 

The Hahn polynomials 0; satisfy the discrete orthogonality condition 

f (a + I) (M-y) (13 + I)y 

y=O y! (M-y)! 
0; (xM) OJ (xM) = (' 

(6) 

(7) 
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where (a), = a (a+ I) ... (a + k-I) 
=1 

y 
;x=~ i=O,l •.... ,M 

i =0,1, .... , M 
i*i 
(l, 13 >-1 
O~ X ~ 1 

ifk > 0 
ifk=O 

where (a) refers to «(l + 1) or (13+ 1) and k refers to (M-y) or y. 
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The software package supplied in Villadsen and Michelsen [7] contains the sub­
routines JCOBI and INTRP. Subroutine JCOBI is used in this study for the compu­
tation of the JACOBI polynomials zeros. 

As an illustration, let Y( s) represent a trial function of the approximate solution 
for an n point collocation scheme. Then 

n n (s - s;) 
Y(s) = L [J Y(Sj) (8) 

j=l i=l (Sj - s;) 
i*i 

Subroutine INTRP computes the coefficients of the solution polynomial as a vector 
XINTP. Thus the output vector for any specified value of sis: 

n (s-s;) 
XINTP(i) = [J 

i=! 

i*i 
(Sj - s;) 

the approximate solution Y(s) is then computed from: 

" 
Y(s) = L XINTPUl * Y(Sj) 

j=1 

where Y(Sj) is the exact value of the polynomial at collocation point s, 

Example problem 

(9) 

(10) 

Figure 2 shows the specifications and overall results of a fractionator [8J. It is 
required to determine the liquid composition profiles of the five components inside 
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Partial 
Vapor distillate 14.4°F 

condenser Ibmolelhr 
Fractionator C, 160.00 

C2 365.39 

2 C, 4.61 

Reflux: saturated C, 0.00 

liquid, Cs 0.00 

Feed: slightly 
1000lbmole/hr 

su~e-rheated vapor, 530.00 

105"F, 400 Dsia 7 400 psi a 
I throughout 

Ibmole/hr column 

C, 1600 

C2 370.0 

C, 240.0 12 

C, 25.0 

Cs 5.0 
~--+1:rJ13 

800.0 
Liqu'ld Bottoms 161.6°F 

Ibmole/hr 

C, 0.00 

C2 4.61 

C, 235.39 

C, 25.00 

Cs 5.00 
---

270.00 

Fig. 2. Column specifications of the illustrative example [8] 

the column. Equilibrium stages are assumed such that EMV = 1. The problem has 
5 

been solved [R] using one of the full-length traditional computational methods (the 
computer program of Johansen and Seader based on the Wang-Henke procedure [6] 
was used for this problem). The full-length computations involved making initial 
assumptions for the distillate and bottoms temperatures and then go through a 
number of iterative solutions until a specified convergence criterion is met [6]. 

In this study the collocation approach is applied using two different solution 
strategies A and B. Each strategy involves a different combination of material, 
energy and equilibrium relationships. The two solution strategies and their computa­
tional efficiencies are as follows: 
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Solution strategy" A" 

This strategy is suggested by Stewart et al. [1], in each section of the fractionation 
tower the following equations were developed: 

A component material balance round collocation stage s gives: 

I+v ,=1 I'+v I' s.) S,) s- ,) s+ ,) 

An enthalpy balance round collocation stage s gives: 

5 

L Is,j hs,j + 
j=o1 

5 

L Vs,j Hs,j = 
j=! 

5 

L Is-I,j hs-1,j + 
j=I 

5 

L VS+ 1,j H s+ 1,j 
j=l 

(ll) 

(12) 

Where H", and h", refer to the component specific enthalpies of the vapour and 
liquid phases respectively and are expressed as functions of the temperature T, on 
stage s as follows [6]: 

(13) 

(14) 

Since the liquid and vapour phases are assumed to be in equilibrium, we obtain 
for stage s the following equilibrium relationship: 

v I~.j ',j 

=K, ( (15) 
'" 5 5 

L VS,j L I ' 
~.J 

j=1 j=1 

The equilibrium constant K", is a function of the temperature T, at stage s as fol­
lows [6]: 

Y T' J , + OT' J , (16) 

Additional component material balances atid equilibrium relationships are 
established round the condenser, feed plate and reboiler. An enthalpy balance round 
the feed plate is also made, 

In this strategy, the compo'ocnt flow rates and enthalpies are approximated by 
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n 

I(s) = L: W, (s)l, O:::Ss~ N (17) 
j=O 

, , 

n+' 

yes) = L: W,. (s)v,. l";;s,,;;N+l (18) 
j=1 

, , 

n 

his) = L: W,(s) h, 0,,;; s,,;; N (19) 
j=O 

, , 

n+' 

H(s) = L: W, (si) H, l";;s,,;;N+l (20) 
j=1 ' , 

where 

n (s - Sk) 
W, (s) = [] j = 0, ... , n , 

k=O (si - Sk) 
k~j 

n+' (s - Sk) 
W, (s) = L: j=I, ... ,n+1 , 

k=i (si - Sk) 
k *' j 

At a collocation point si we have 

I(s, -I) + v(si + I) = I(si) + v(si) (21) 

v(si) I(si) 
--=K(si)--

Vis,) L(s,) 
(22) 

5 5 5 5 

L: I (Si - 1) h(si - 1) + L: v(si + 1) H(si + 1) = L: I (si) h(si) + L: v(si) H(si) (23) 
j=1 j=1 j==1 j=1 

where the summation is over the number of components. 
Number of equations = 11 n equations in rectifying section 

+ II n equations in stripping section 
+ 10 equations for the condenser 
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+ 10 equations for reboiler 
+ 11 equations for feed plate 
+ I equation for distillate specification 
+ I equation for reflux specification 

27 

+ 1 equation for temperature equivalence for vapour and liq­
uid leaving feed plate. 

Total = 22 n + 34. 

In this case the interior collocation points are obtained from the formula. 

Sj = 1+ xj(N-I) 

where x ,s are the roots of Jacobi polynomials or Hahn polynomials for M = N-I , and 
N is thi number of plates in a particular section of the column. In addition to these 
interior collocation points, the boundary point So = 0 is included for the liquid state 
and sn+ I = N + 1 for the vapour state. 

For solution strategy "A" the total number of algebraic equations to be solved 
are 56, 78 and 100 equations for I, 2 and 3 collocation points in each section respec­
tively. 

Solution strategy "B" 

The following strategy is suggested in this work to reduce the number of equa­
tions to be solved. 

In this strategy overall material and heat balances equations are used in addition 
to those at collocation points. In adition, the overall balance is used to express the 
vapour component flow rates entering and leaving stage s as a function of the relevant 
liquid component flow rates, the distillate component flow rates and the equilibrium 
constants. 

Figure 3 shows a section of the rectifying section over which an overall compo­
nent balance is established. 

Overall component balances give: 

5 5 5 

L vs+ 1,j = L 1 + 
',j L dj (24) 

j~l j~l j=l 

5 5 5 

L v·= 
'.j L lH' + ,j L dj (25) 

j=l j=l j=l 
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Eo.uilibrium relationships give: 

5 

L Vs+l,j 
j=1 

5 

L Is+1,j 
j=1 

,------------------------

Stage 
(s-1) 

, 
, 
, 
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I 

VS,J lS-I ,I 
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( 'I I 
I 

I I , I 1-._------ ------------
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(s) 

, 
, 
, 
, VH1.) 

I 
I 

IS,) 
I , 

1----------- ----------
Stage 
I(S+O 

'S+I,j 

Fig. 3. Balances over sections of the rectifying section 

5 

substituting for L v,+I,j from equation (24) we obtain: 
j=1 

ls+ I.j 5 5 

Vs+1,j = Ks+1,j ( )( L I"j + L dj ) 
5 j=1 j=1 

L I 1 S+ ,J 
;=1 

(26) 

(27) 
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Similarly we obtain a relationship for v,.j : 

is,j 5 5 

V,.j ~ K,.j( )( L i&--l,j+ L dj ) (28) 
5 j=l j=l 

L ls,j 
j=l 

Thus the vapour component flow rates entering and leaving stage s have been expres­
sed in terms of liquid component flow rates. After substitution of (27) and (28) into 
(21), the component material balance equations will no longer contain vapour flow 
rates. This procedure eliminates the need to include the vapour approximating pro­
file from the solution algorithm. 

In the stripping section the overall component balances include the bottom com­
ponent flow rates instead of the distillates. 

An additional distinction between strategies "A" and "B" is that in strategy "B" 
the material balance equations are included in the enthalpy balance equations to 
improve convergence. Thus in strategy "B", the liquid component flow rates and 
temperatures are approximated by: 

0+' 
I(s) ~ L W,(s) I(sj) O';s.;N 

j=O 
, 

0+' 

T(s) ~ L W,(s) T(sj) 
j=O 

, 

where 
(s - Sk) 0+' 

W,(s) ~ n j~O, .... , n+l , 
k=O (Sj - Sk) 

At a collocation point Sj' we have: 

I(Sj+ I) I(sj) 
I(sj-I) + K(sj+ I) ---[L(sj) + 0] ~ I(sj) + K(sj) -- [L(sj-I) + 0] 

L(sj+l) L(sj) 

I(s+ 1) 
D(sj-I) h(sj-I) + LfK(sj+l) , ] 

L(Sj+l) 
[L('j +0)] H(s,+I) ~ D, h(s,) , 

(29) 

(30) 

(31) 
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I(sj+ 1) 
+ L {[I(sj-l) + K(sj+ 1) [L(sj) + D]-I(Sj)][H(sj)]} (32) 

L(sj+1) 

Notice that the enthalpy balance as written above is obtained by the substitution of 
material balances in the enthalpy balance of the original equations. This manipula­
tion is found to improve the convergence of the resulting non-linear equation to the 
solution. 

Number of equations = 6n 
+ 6n 
+10 
+ 5 
+ 6 
+ 1 
+ 1 
+ 1 
+ 6 

+ 6 

(rectifying section) 
(stripping section) 
( condenser) 
(reboiler) 
(feed plate) 
(distillate) 
(reflux) 
(temperature equivalence) 
(equations for overall mass and heat balance 
in the rectifying section) 
(similar equations for stripping) 

Total number of equations = 12 n + 36. 

In this case the interior collocation points are calculated from 

Sj = 1 + Xj (N - 2) 

where Xj'S refer to the roots of the Jacobi polynomials or Hahn polynomials for 
M = N-l. 

The boundary points So = 0 and sn+1 = N + 1 are also included in the interpolat­
ing polynomial. 

The total number of algebraic equations to be solved are 48 and 60 equations for 
1 and 2 collocation points in each section respectively. 

Comparison of Results 

The liquid mole fractions profiles of components C 1 to C. are plotted against 
stage numbers. Component C, mole fractions are negligible throughout the column. 
Figs 4, 5 and 6 show the liquid component mole fractions according to solution 
strategy A for 1, 2 and 3 collocations in each section respectively. Figs 7 and 8 are the 
corresponding figures for one and two collocations points respectively according to 
strategy B. 
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Fig. 6. Liquid mole fraction profiles (strategy A, three collocation points, Jacobi, a = 0, p, = 0) 
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The exact solutions as computed by the traditional full order methods is given in 
Henley and Seader [8] and are shown in Fig. 9. Fig. 10 shows the exact solutions as 
computed by the orthogonal collocation method (a Hahn polynomial for strategy B 
is used) when using a number of collocation points equal to the actual number of 
plates in each distillation column section (5 in this case). 

A qualitative assessment of these figures shows that three collocation points 
according to strategy A and two according to strategy B per column section are 
needed to give a very close simulation of the exact results. However in order to give 
a quantitative assessment we use the mean root square difference for this purpose. If 
fj and Fj represent the component computed and exact values of the liquid flow rates 
on any plate then the expression: 

j 

L (fj -F/15 
j=l 

is used as a measure of the deviation of the approximate solution from the exact sol­
ution on each plate. As a measure of speed of computations the number of iterations 
until convergence is obtained is also evaluated. The number of iterations is defined 
as the number of times the subroutine ZSPOW IMSL calls the functions subroutine. 
The ZSPOW IMSL subroutine is based on a Newton-Raphson method in which the 
Jacobian is evaluated numerically. Thus the number of iterations as defined here 
does not only include the function evaluations required by a Newton-Raphson step 
but also include the function for Jacobian estimation. Table 1 gives the results of 
these computations. It is clear from this table that solution strategy A (with n=3) is 
slightly closer to the exact solution than solution strategy B (with n = 2). However sol­
ution strategy B converges to its final solution much faster. Taking the sum of the 
mean square error for all stages as a numerical indicator of accuracy, it is clear from 
Tab];:s 1 and 2 that the best results are obtained using strategy A (a=O, 13=0, Hahn) 
then strategy A (a=O, 13=1, Hahn) and strategy B (a=O, 13=0, Hahn). 

Figures 11, 12 and 13 show the temperature profile inside the column according 
to the exact solution, strategy (A) and strategy (B) respectively. 

Polynomial and a and 13 parameters testing 

Solution strategies A (with N=3) and B (with N=2) are compared for accuracy 
and speed of computation for different combinations of a and 13 values for both Jacobi 
and Hahn polynomials. The results of these computations are shown in Table 2. 
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Fig. 12. 

K.M. WagiaUa and M.A. Soliman 

1, 
1 

21 , 
3 j 

" ; 
4: 
5, 

Q; 
.0 6! E 
~ 
c 

" <D 

'" ro 
ii5 8, 

~ 

9' 
10J 

1 
, 1~ 

122 
1 

13 -
00 500 1000 1500 200 0 

Temperature, OF 

Temperature profile (strategy A, a = 0, II = 0, Hahn polynomial) 

" ~ 6~ 

~ 7~ 
~ 81 

1:] 
"j 
12j 

13.~=~~=~=~~,-.-J.-........" 
00 500 100.0 1500 2000 

Temperature. ~F 

Fig. 13. Temperature prome (strategy B. (l = 0, P = O. Hahn polynomial) 



Table 1. Assessment of deviation from exact solution (a=O, P=O Jacobi polynomial) 

, j 

L (fj - F/IS 
j=1 

Strategy (A) 

Number of collocation points n=i n=2 

Total no. ofsimultaneous 
equations to be solved 56 78 

Number of iterations 64 93 

Plate Number: 
13 1.24083 0.26685 
12 12.88810 2.51800 
11 5.38902 4.65382 
10 3.04718 7.09136 
9 4.71113 8.34420 
8 9.52009 8.03287 
7 15.86429 4.79387 
6 32.74671 10.08578 
5 11.26999 10.48259 
4 3.10336 16.90112 
3 6.74697 26.22004 
2 9.09902 26.28052 
1 13.19402 2.09706 

Total 128.82072 127.76808 

n=3 

!(X) 

213 

0.12001 
0.77640 
1.24987 
1.18881 
1.39061 
1.59199 
1.82183 
4.23199 
2.93856 
0.82818 
0.78490 
3.21909 
0.98551 

21.12775 

Strategy (B) 

n=i n=2 

48 60 

57 67 

1.35820 0.37230 
6.53522 2.04492 
7.83360 1.31318 

10.59228 1.74887 
lIl.76649 1.89069 
7.68014 1.27440 
5.69138 1.97264 

14.32099 6.52520 
17.91449 3.72001 
14.67507 4.75323 
16.37281 6.66295 
23.98929 8.22625 
12.04120 3.26106 

149.77116 43.76568 
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Table 2. Polynomial and parameter testing 

, 
L: (f,-F/IS 
J=I 

./ 
Strategy (A) 

Polynomial Jacobi Jacobi Jacobi Jacobi 

a 0 I I 0 

P I 0 I 2 

Total no. of 
simultaneous 100 100 100 100 
equations to 
be solved 

Numberof 219 313 315 329 
iterations 

Plate No. 
13 omoll 0.35060 0.18192 0.14561 
12 0.95137 1.81595 1.09796 0.67401 
II 1.21665 0.99444 1.45301 1.38597 
10 0.79618 1.55288 1.46900 2.39755 
9 1.05782 2.50459 1.77523 3.49133 
8 1.80610 3.09574 2.14442 4.34842 
7 0.60301 3.88984 2.69452 3.25087 
6 0.38817 11.13613 6.34422 6.20716 
5 5.63412 6.59133 4.05735 13.58660 
4 6.91177 8.28282 4.27697 21.40129 
3 10.22003 7.81365 5.00874 29.46690 
2 11.64670 7.28865 6.47455 27.50720 
I 0.39709 2.96558 1.50808 I. 73821 

Total 41.63912 58.28218 38.48597 115.60112 

Hahn Hahn 

0 0 

0 I 

J(X) 100 

121 223 

0.01892 0.06713 
0.21344 0.46180 
0.81951 0.75356 
0.53153 0.54826 
0.61496 0.87986 
0.56380 0.69244 
0.36651 0.82803 
0.82203 2.77229 
2.99184 4.65232 
1.31057 1.34002 
2.20216 1.05796 
1.11951 1.48143 
0.13847 0.52759 

11.71327 16.06267 

Strategy (B) 

Hahn Hahn 

0 0 

0 1 

60 60 

66 66 

0.04652 0.02478 
0.26479 0.56697 
0.75993 0.91218 
0.27989 0.52955 
0.73970 0.87885 
1.08233 0.49003 
1.13990 0.55477 
2.58361 2.45932 
5.47969 6.40719 
0.17755 2.57384 
2.55301 1.15549 
0.78662 0.65422 
0.39890 , 0.13715 

16.29244 I 17.34434 
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The tests of strategy A revealed that the Hahn polynomial gives better results 
than the Jacobi polynomial (for the same combination of a and ~) in terms of both 
accuracy and speed of computation. The best overall results for this strategy are 
obtained for a combination of a=O, ~=O using the Hahn polynomial. Using the Hahn 
polynomial, strategy B (with a=O, ~=O) proved to be almost as accurate as strategy 
A (with a=O, ~=O using Hahn polynomial) but at a much enhanced speed of compu­
tation. It should be pointed out however that speed of computation is not directly 
comparable from the number of iterations indicated in Table 2 because the two solu­
tion strategies have different number of dependent variables and thus each solution 
strategy computations were initialized with a different set of initial guesses. 

Conclusions 

The computational effort involved in distillation column design and simulation 
can be greatly reduced by using the collocation technique rather than a full-order 
traditional approach. The number of simultaneous algebraic equations used in the 
collocation approach is independent of the actual number of plates and is far less than 
the corresponding number of equations to be solved in the traditional approach. In 
the demonstration problem used the number of equations [which was 144 equations 
by the full order method] is reduced to 100 equations by strategy A (n=3) which rep­
resents a 30.5% reduction and 60 equations by strategy B (n=2) which represents a 
58.3% reduction. The Hahn polynomial proved to be better suited for this type of dis­
cretized staged process equipment. The best overall results are obtained using strat­
egy B with a=O, ~=O. 

Future work will be concerned with improving the strategy for the solution of the 
set of non-linear algebraic equations and for treating the cases of steep profiles using 
spline collocation methods. 
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