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Abstract. An lOcreasing demand lor water due to population growth, industrial development and improvement of 
economic require management of water transfer and improved operation of water supply systems. This paper 
considers the application ofa controller that is approved to be robust to improve the behavior of the water network 
supply system, to maintain stable operation of the waleI' flow rale, and reduce the operational cost by manipulating 
the pump speed. The model predictive control (MPC) algorithm is olle of the most common automatic control 
system that has got a wide spread application in process industry. The results show that the MPC technique 
improved performance over the PID control technique. Moreover, the MPC structure can modified to 
the constraints applied tbe system. 

Introduction under a variable load and hence under 
conditions. The of this kind of 

Global demand for water is continuously increasing 
due to population industrial 
and improvements of economic conditions, while 
accessible sources keep in number and 
capacity. the applications involving 
manipulation of water and fluids in 

demand high power consumption. The 
optimal use of such water supply netvvorks seems to 
be the best solution for the present, and thus it is 
necessary to carefully manage water transfer 
et aI., . Eker and Kara, 2003). 

Most of the research in the field of water 
distribution has been concerned with the 

of new networks (Mousavi and 
Cunha and Sousa, J 999; Joitt and 

1982). The main 
topic of this research has been mainly focused on the 

of for pipe 
interconnected reservoirs (Mousavi and 
Ramamurthy, 2000) or concentrated on the 

of pumps (Cunha and 1999; Joitt 
992). However, the 

will be sacrificed when the pumps operate 

119 

system usually results in a control 
determination for the active elements from 

the so that some 
performance target IS 

pressure limitation to avoid 
researchers have developed 

optimization of 
et al, Eker and 

2000). The 

for the 

contribution in a water supply nenvork 
,,","',m such as the system using powerful control 

model control (MPC) The 
model predictive control 
to the conventional PID 

controller, which is on 
the error between a measured process variable and a 
desired by calculating and then outputting a 
corrective action that can the process 

and rapidly, to the error minimal, 
and other advance control algorithm such as the 
control algorithm used by Eker and Kara (2003) for 
its and robustness. 
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The idea of the MPC emerged in 1965, where 
Dawkins and Briggs in 1965 used weighting function 
as a system description for use in optimal control. 
However, it was rarely used as a controller in control 
engineering until the advent of digital computers. 
There are different MPC algorithms that could be 
suitable for single and multivariable systems and are 
successfully applied to real life processes including 
dynamic matrix control (DMC) developed by Cutler 
and Ramaker in 1978, and generalized predictive 
control (OPC) (Clarke and Mohtadi , 1987). More 
review on these algorithms is given by Mackay et al. 
(1994) . All of these classes of MPC have certain 
features in common, implementation of receding 
horizon to solve a finite horizon optimization 
problem, with differences occurring in the sequence 
of control implementation and in the underlying 
formulation of the models and constraints. Some of 
these MPC methods use non-parametric weighting 
function models forms during the prediction process, 
and others use parametric models . Parametric 
predictive controllers allowed for a more efficient 
algorithm and making the incorporation of adaptive 
techniques more feasible, whereas non-parametric 
predictive controllers are very robust when compared 
to parametric models, at the cost of computation 
power. DMC uses non-parametric step response 
models to generate both the free and forced 
responses . However, OPC uses the impulse response 
to generate the forced response, parametric controlled 
auto-regressive and integrated moving average 
(CARIMA) model to generate the free response. A 
different number of extensions to the original DMC 
have been incorporated to deal with constraints, 
multi-variable interactions and nonlinear systems 
(Shridhar and Cooper, 1997; Oupta, 1998; Mackay el 
al., 1994, 1996; Ali and Zafirio, 1993; Abdulrahman 
el aI. , 2002), and a review on the recent advances on 
MPC algorithm is given by Henson (1998). The idea 
of the predictive control structure is based on a very 
natural manner of interpreting feedback control, as 
illustrated in Fig. I , where the process model is in 
parallel to the plant. It can be said that the MPC 
scheme is based on the explicit use of a process 
model and process measurements to generate values 
for process input as a solution of an online (real-time) 
optimization problem to predict the future process 
behavior. The process measurements provide the 
feedback (and optionally, feed-forward) element in 
the MPC structure. 

y, + 

Fig. 1. Predictive control structure. 

The MPC structure can be summarized by the 
following steps: 
• At each control interval I, the process output 

response is predicted p-steps ahead into the 
future Y(I+l), where I = 1, .... , p. The prediction 
value y(t+l) depends on the past actuation and 
the planned m-step ahead actuation (tJu(l+j), ) = 

1, ... , m-1, m < pl. 
• The planned moves (tJu(I+)) , ) = /, ... . ,m-1} are 

calculated from minimizing a quadratic cost 
function. The cost function index incorporates 
the errors (the difference between the future 
reference trajectory and the predicted process 
output) and actuation moves. Although the 
vector of future control moves is calculated, 
only u(l) is applied to the process. 

• The prediction is corrected at each stage by 
comparing the current measured values and its 
predicted values through a filter. 
The above steps are repeated at each control 

interval, and this is referred to as receding horizon 
strategy as shown in Fig. 2. 

From the viewpoint of practical industrial 
applications, the method has some important 
advantages over other control techniques: 

• Applicable to processes with unusual and 
difficult dynamic behavior. 

• Can handle in a straightforward way 
multi variable interactive control problems. 

• Has inherent dead-time compensation. 
• Introduces feed-forward control in a natural way 

(for compensating measured disturbances). 
• Conceptually simple to extend to constrained 

control problems. 
• Intuitive in nature and robust in approach . 

The general mathematical formulation for the 
DMC algorithm as a MPC structure mentioned above 
is composed of two distinct steps: 
1. The output prediction must be constructed based 

on the model and other information available, 
such as plant measurements. 
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Fig. 2. The receding horizon strategy. 

2. Having the prediction output, a set of future 
manipulated variable moves must be computed. 
At the beginning, at t = 0, the process should be 

at steady state. The current state for the model and the 
plant should be the same as the measured value of the 
plant, increment the discrete time variable t and; 
I. Predict the output model using the value of the 

actuation to the model prediction the same as the 
actual value implemented on the plant 

Y (I + 1 / I ) = lvl shift y' ( I 1 I) + S " /), U (I) 
(I) 

where 
M shlfl is the shift matrix for the output to include 
the ' predicted information and keep the 
prediction horizon vector constant. The last 
value is simply repeated, as p is assumed to 
equal the settling time n of the plant response; S" 
is the step response coefficient and LJ U(t-I) = 
[LJu(t-l) LJu(t) LJu(t+I) ... ... LJu(t+m-l)f. Where, 
m is the number of allowable moves to be 
computed over the horizon p. The control 
horizon m should be less than or equal to the 
prediction horizon p. If m < p, then the step 
response matrix S" is of reduced order. This has 
the effect of reducing the computational time 
and increasing the robustness of the controller in 
the presence of plant and model mismatch. 

2. The predicted output in Eg . I is corrected by the 
plant prediction error, which could be the result 
of instrument/process noise, process di sturbance 
or modeling errors, and then the corrected 
prediction output becomes; 

yo + I I I) = M shifl y(t + I I I) + k r(ymeas (I) - ; (1 + 1 /1)) (2) 

where, kf is the filter that eliminates high 
frequencies in the feedback loop. The inclusion 
of the filter term in any instance would preserve 
the dynamics of the system, by removing the 
assumption that the error of the current sample 
would be consistent for future samples. In this 
work, the filter term is not taken into account 
and is assumed to be I. 

3. Compute the future changes in input that 
minimize the errors between the actual output 
response and the desired output response, with 
the addition of penalizing the movement of the 
actuation for smother control, the following 
optimizing quadratic cost function is used. 

where, r is the diagonal output weight matrix 
consisting of 1', and r' is the diagonal output 
weight matrix consisting of 1', E"(t+ lit) is the 
future predicted error; 

EU(I+I/I)=R(I+l) - lvJ hiji Y(I+I / I)-Su6,U(r) (4) 
S I I 

R(t+l) = [r(l+l) r(t+2) ............... r(t+p)] is the 
reference trajectory. To find the optimum input 
vector LJ U(t) over the control horizon, the cost 
function J should be minimized with respect to 
LJU(t). By differentiat ing the cost function lEq. 3 
with respect to LJU(t) and equating the resu lt to 
zero, this will give us the optimum control vector: 
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t,U(t) K iHPC EO (! + III) (5) 

the error 
control action (11 U(t) = 0) is 

The constant 
off-line as 

no future 

can be calculated 

An important characteristic of control problems 
is the presence of constraints on and output 
variables. Input and output constraints are usually 
associated with operational limitations. The presence 
of such constraints results in online optimization that 

a nonlinear controller, even when the plant 
and model are assumed linear. It is 

to note that the input constraints are hard 
in the sense that they must be satisfied; 

output constraints can be viewed as soft constraints 
because their violation may be necessary to obtain a 
feasible optimization For the model 
predictive control to deal with constraints the 

cost function 3) should be fonnulated 
in a way that can be solved by the quadratic 
programming (QP) method. A standard problem 
can be stated as follows: 

Sub;ec/o Ax:O:b 

where, H is the Hessian g is the gradient 
vector, A is the inequality constraint equation 
and b is the inequality constraint equation vector. 

and expansion of 3, the cost function 
can be reduced in form of 

(9) 

which, is in the same form as the QP problem, where, 

H r S" ruT r u and 

g r Y EO (t + 111) . It can be noticed that the 

Hessian matrix H is constant and it can be calculated 
and that the vector is a function of 

the error trajectory which is 
each control interval. The cost function 

to constraints 

AllU(t) sb (10) 

where A is the [II 
matrix, I 

inequality 
... UiJigh (t+m-

1-1 SI 

is a minimization of a 
cost function over the decision vector 

subject to the linear inequality This 
encompasses both requirements for the constraint 
variables to lie in the feasible and for to 
minimize the quadratic cost function. As the number 
of constraint the number of QP increases 
and may exceed the maximum time allowed to 

the calculation within the control interval. 
In the horizon strategy, the algorithm is 
solved at each control interval after a new 
vector becomes available. For the QP in 
Hessian matrix H is constant, but the gradient vector 
0' and vector b need to be updated at each control C> 

interval because of the of a new error 
vector at each control interval. A number of 
numerical iterative exist to solve the 
resulting problem. The method which is used for 
solving this QP problem is the active set method 

method) in the MatLab 
software package due to its fast convergence. 

Water Supply Systems 

Water supply systems are Iy composed of 
a number of interconnected pipes, 
pumps, valves, and other hydraulic elements which 
carry water from retention to demand areas (Biscos et 

2003; Eker and 2003; Cembrano et aI, 
The elements in a system may 

be classified into two active and 
The active elements are those which can be to 
alter the flow rate of water in specific parts of the 
system, such as pumps and valves. The and 
reservoirs are insofar as receive 
the effects of the active elements. These elements in 
the supply play important roles in dynamic 
behavior of the water systems. Simulations of 
the water supply systems have been an 
work to understand their behavior to produce a feasible 
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control solution as well as modeling. The simulations 
can thus be used to generate ideas in order to develop 
flexible management and design schemes. 
Consequently, this process may facilitate a better 
exchange of ideas among representatives of different 
professions. It also combines technical and financial 
viewpoints. The first step in simulation and control is 
to establish a mathematical model for the plant to be 
controlled. Furthermore, an adequate model is an 
important step in determining the behavior of the 
system and producing well tuning parameters of the 
PlD control algorithm. 

Hydrau li c systems generally require comp lex 
models . Derivation of control strategies on the basis 
of the complex models is difficult. For these reasons , 
the plant model should be chosen to be simple with a 
minimum number of dominant variables , which, 
nevertheless, adequately reflect the dynamics of the 
plant. The plant can be described by the parameters 
that characterize its functioning such as the pumps 
discharges, water heads in the reservoirs , and flow 
rates through the system. Thus, the simulation of the 
model that represents a water supply system may 
prove an efficient measure to contribute to the correct 
transfer of water and to reduce operat ional cost, as 
well as to improve the operation. The active and 
passive elements are represented by dominant system 
variables. The main objectives are to ensure the 
proper operation of a water supply system and to 
regulate the water flow rates and heads by 
manipulating the water pumps. By assuming that the 
water is incompressible and the individual system 
components are stationary the hydraulic mode.! of the 
supply system is composed of the fo llowing models 
for every component of the supply system. 

Pumps 
Head developed by n variable-speed pumps 

running in parallel varies nonlinearly with their speed 
N and output water flow rate Qil) 

h (N Q ) = A N 1 + ~ N Q _ ~Q 1 (II) 
p ' " 0 n r n 1 r 

where Ao, Bo and Co are the constants for a particular 
pump depending on component characteristics (Eker 
and Kara, 2003). These constants can also be 
calculated uSing appropriate manu facturer's 
specifications. 

Pipes 
Consider a pipe section with length lp and cross­

sectional area Ap. If the head difference /}.h between 

two ends of the pipe section is considered, the 
following differential equation is obtained: 

d 0 (, 1 ~ A ( I 2) 
~ - 'T;:-['" II (/ ) - hi .. , ( ( ) ] 

where h im" (I) denotes the total head loss along the 
piping section and g denotes the acceleration of 
gravi ty. The flow rate and head loss may be given as: 

h /"" (I) = Ii ," ( I ) + 6 h (,, " (I ) ( 13) 
Q(t}=Q"+6Q(I) 

where (f denotes steady-state value and /}.h1o.<.\· (I) 
designates the variable head loss caused by the 
variable water flow rate /}.Q(/) . 

Water reservoir 
When a reservoir discharges under its own head 

without external pressure, the continuity equation 
simplifies to: 

where p, Pi and Po represent the water densities inside 
the reservoi r, water inflow, and outflow, respectively, 
and assuming P = Pi = Pu· Qi(/) and Qo(/) denote 
reservoir input and output water flow rates, 
respectively, c denotes the capacity of the reservoir 
and h(I) is the head in the reservoir. 

A single input single output linear model of a 
water supply system considered in our study has been 
developed for the Gaziantep water supply system 
shown in Fig. 3 by Eker and Kara (2003). 

The input to the system is considered to be the 
pump speed N rpm and the output of the system is the 
flow rate from the third reservoir Qo(/). The 
numerical data about the water supply system are 
given in Table J. The output water flow rate was 
measured at J-h intervals in a day, so 24 
measurements were taken using a flow meter 
installed on the real system. 

Table I. Numerical data of the water supply system 

I,; 1i69. 27 nr A, ; 1.5 94m: D ~ lAm I: " 13805,04 m h,, - 11 ] 4m 

g: 9,81 m j' ,,: 2n094,1i9 In h,:; 210,4rrr I, - 4689.04 m lid ~ 283.4 In 

.v =9t5rpm A, =475m II" = 2.79,7 m Q, = 2.83 m' f 
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Reference fine 

PST·' 
Fig. 3. Diagram of the water supply system taken from Eker and Kara (2003). 

Using the data obtained, the average water flow 
rate is about Qo = 2.83 (10190 m31h ) and it changes 
between 10175 m31h and 10 200 m3lh . The pump 
characteristics were obtained from the pump's 
manufacturer. Head developed by the pump was 
calculated around the operating point using the 
characteristic curve as 

hp(N,Qp) = 0.0001433 N' + 0,00501 NQ p - 398Q: (15) 

The linear model of the water supply system 
shown in Fig. I was obtained by linearizing the 
mentioned system using the Taylor series expansion 
method around a steady-state operating point (Nso = 
985 rpm, Qso = 2.83 m3/s). 

A detailed study on the system modeling is 
given by Eker and Kara (2003). The resulting Eqs. 
(16-23) of the system using the above data and 
operating point are as follows: 

dQI = 0.0067 N -0.0226hl - 0.4553Q, (16) 
dl 

dhl =0.00 21Q,-0.0221Q, (17) 
dl 

dQ . 
_ 2 = O.OOllhl - O.OOllh, -0.0465Q, 
dl -

(18) 

d;/ = 0.0021Q, _ 0.0021QJ (19) 

dQ , = 0.000 811 , _ 0.0008h, - 0.0398Q, 
dl 

dh . 
~= 0.0021Q, - O.002IQ , 

dQ, = 0.0032h. - O.0253Q 
dl ' • 

y = Q. 

(20) 

(21 ) 

(22) 

(23) 

This system can be represented in state space 
matrix fonn such that the reservoir heads and flow 
rates can be considered as states. The canonical state 
space form of the above Eqs. (16-23) (Eker and Kara 
2003) is as follows: 

x(t) = AX(I) + Bu(t) 

y( l) = CX(I) 
(24) 

where x(l) is the state matrix, A, Band C are the 
constant system matrices, u(t) is the system input, and 
y(t) is the system output. The state matrix x(/), input 
u(t), and calculated constant matrices A, Band Care 
as follows: 

x(l) = [Qo h3 Q3 h2 Q2 hi QdT
, u(l) = N, 

B = [0 0 0 0 0 0 0.0067f, C = [1 0 0 0 0 0 0), and 

- 0.0253 0.0032 0 0 0 

- 0.0021 0 0.0021 0 0 0 

0 -0.0008 -0.0398 0.0008 0 0 0 

A= 0 0 -0.0021 0 0.0021 0 0 

0 0 0 ·0 .0011 -0.0465 0.00 11 0 

0 0 0 0 -0.0021 0 0.0021 

0 0 0 -0.0226 -0.4553 

The response of the open loop system without 
compensation to ± t 0% step response from the 
nominal value of985 rpm is shown in Fig. 4. 

2.85 

2 .84 

~ 2.83 
G: 

2.82 

2.81 

10 15 20 25 30 35 40 
Time (hour) 

Fig. 4. Output now rate Q.(I) m'/s for N = 985±]O% rpm 
square wave speed variation. 
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Control of the Supply 
System Using MPC Algorithm 

The proposed MPC algorithm is applied to 
control the water supply network system to provide 
stable operation, improve performance costs, and 
reduce the cost of operation and save electricity in the 
event of having many pumps operating 
simultaneously, by manipulating the speed of one of 
the pumps and letting the rest to operate at the 
minimal speed. For the closed-loop simulation, the 
control algorithm was set up with the linearized 
model described earlier in Eq . (24), and step response 
of the model is obtained. The new set points were 
introduced. The tuning parameters were chosen so 
that the integrated square error (ISE) between the 
simulated output and set point is minimized, as 
follows: p = 25, m = 2, [" = 0.95 and P = I. The 
pump operation was constrained between a maximum 
value of 1000 rpm and a minimum value of 700 rpm. 
The tuning parameters of the PID controller were 
obtained using Ziegler-Nichols method as Kp = 
271.215, Kt = 13217.11, and KD = 3132.11. 

Figures 5 and 6 illustrate the closed-loop 
response of the output flow rate of the system to a 
desired steady state values. It can be noticed that all 
the controllers takes the system response to the new 
values, but their performance are comparable. 
However, the rising time of the closed-loop response 
is faster in the case of unconstrained MPC comparing 
to the constrained MPC and PID controller. The 
constrained MPC has a good settling time slower than 
the settling time for non-constrained MPC and faster 
than the settling time for the PID controller. 
Moreover, the constraints are kept within their 
interval which makes MPC a successful control 
technique for controlling this water supply network 
system. In general, it can be said that the MPC 
algorithm adapts quickly to the changing conditions 
of the water supply network system. The MPC 
structure can be modified to meet possible 
requirements concerning energy consumption and to 
handle the constraints applied to the system. 

Conclusion 

It is clear that the robust MPC technique with a 
moving optimization horizon offers an effective 
means of dealing with the problem of water transfer 
operation to achieve goals such as flow rate 
regulation and cost minimization. This concept has 
the intrinsic ability to compensate for changes in 
water disturbance that may occur at any point of the 
water supply system. 

l :::~// >_c __ ,. • I 
2 8) O~~S --I 0:---1"':'5--:':20:----:2"':'5 -:":)0---:35:-----'40 
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Fig. 5. Closed-loop system response to a desired steady state 
output flow rate of 2.86 m3/s due to the effect of non­
constrained MPC (solid), constrained MPC dash­
dolled and PID controller (dashed). 

l ::h;>-: ___ : : : : I 
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Fig. 6. Closed-loop system response to a desired steady state 
output flow rate of 2.81 m3/s due to the effect of non­
constrained MPC (solid), constrained MPC dash­
dolled and PID controller (dashed). 
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