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Abstract. A challenging problem in radar signal processing is to achieve reliabk target detection in the presence
of interferences. In this paper, we propose a novel algorithm for automatic censoring of radar interfering targets in
log-normal clutter. The proposed algorithm, med the backward automatic censored cell averaging detector (B-
ACCAD), consists of two steps: removing the corrupted reference cells (censaring) and the actual detection. Both
steps are performed dymamically by using a suitable set of ranked cells to estimate the unknown background level
and set the adaptive thresholds accordingly. The B-ACCAD algorithm does not require any prior information
about the clutter parameters nor does it require the number of interfering targets. The effectiveness of the B-
ACCAD algorithm is assessed by computing, using Monte Carlo simulations, the probability of censaring and the
probability of detection in different background environments.

1. Introduction

Log-normal clutter model has been, and still is, used
to regulate false alarm rate in high resolution radars.
Around 35 years ago, experimental sea clutter data
presented in Cote (1973) has indicated that the
clutter, taken with high resolution short-pulse
(<0.2ps) surface-search radars, can be closely
modeled using log-normal statistics. Motivated by
this fact and the results obtained in Schleher (1975),
Billingsley (1999), and Shnidman (1999), research
effort to develop adaptive threshold techniques to
maintain constant false alarm rate (CFAR) in log-
normal clutter with unknown distributional parameters
has been conducted in the literature. In particular, the
detection performance of harbor surveillance radars
has been considered in Curtis (1977). In Goldstein
(1973), an automatic detection procedure, termed “ log-
t” detector, is presented which maintains a CFAR inan
extended-clutter environment wherein the clutter cross
section is log-normally distributed. In Guida (1993), a
biparametric CFAR procedure for log-normal clutter
has been introduced and assessed. Its operation
amounts to transforming the clutter probability density
function (PDF) into a location-scale one through a
logarithmic transformation, and to jointly estimating
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the location and scale parameters by the best unbiased
estimators (BLUEs). In Weber (1985), a biparametric
CFAR procedure has been proposed which produces
an estimate of the detection threshold by processing
two ordered statistics from the reference window.
Analysis of this detector with numerical results
showing its performance has been presented in Al-
Hussaini (1988) under the assumption that the clutter
echoes can be modeled as log-normal distribution. In
Conte (1997), a hybrid technique has been proposed
for false alarm regulation in the presence of a non-
Gaussian clutter.

Note that the CFAR detectors aforementioned
above perform well under the assumption of
homogeneous environments. In practice, the
environment is usually non-homogeneous due to the
presence of multiple targets and/or clutter edges in
the reference window. In such situations, order
statistics (OS)-detectors (Guida, 1993; Weber, 1985;
Al-Hussaini, 1988; Conte, 1997) have been known to
yield good performance as long as the
nonhomogeneous background and outlying returns
are properly discarded. However, most of the work in
the literature considers some type of censoring based
on a priori knowledge or a judicial guess.

Some approaches (Himonas, 1992; Srinivasan,



94 M.N. Almarshad, et al.: A Backward Automatic Censored Cell Averaging Detector for ...

2000; Smith, 2000; Farrouki, 2005) based on
automatic censoring of unwanted cells have been
proposed in the literature for Rayleigh clutter. In this
work, we consider the problem of automatic
censoring of unknown number of interfering targets
in log-normal clutter. The main motivations behind
the development of such an automatic censoring
algorithm are due to the Pllowing: (i) the automatic
censoring algorithms developed for Rayleigh clutter
may not straightforwardly be extended to the case
where clutter samples are drawn from log-normal
distribution. For example, the ordered data variability
index based on which the detector ofFarrouki (2005)
has been developed may be difficult to use for
automatic censoring in log-normal clutter because
this index is highly dependent on the shape parameter
of clutter distribution, a parameter difficult to
estimate reliably in practice; (ii) the adaptive
threshold of OS-CFAR processors is formally defined
in terms of ranked samples of reference cells. To
reduce the CFAR loss and improve the detection
probability of log-normal OS-CFAR processors, the
largest sample of ranked cells, involved in the
computation of detection threshold, can be properly
selected when the exact number of interfering targets
is accurately determined. Therefore, the results of this
research work has an attractive feature in that it adds
to the available log-normal CFAR detectors
(Goldstein, 1973; Guida, 1993; Weber, 1985; Al-
Hussaini, 1988) the potential to determine and censor
(efficiently) the unwanted targets samples in the
reference window, which may cause an excessive
number of false alarm or a poor probability of
detection.

2. Preliminaries

The general structure of the proposed CFAR
processor is depicted in Fig. 1. The envelope-detected
matched filer outputs Y, are passed through a

logarithmic processor and then sent serially into a
tapped delay line of length N+1. The N+1 samples
correspond to the even number N of reference cells
{X,:i=12,... N} surrounding thetest cell X,.

We assume that, if clutter alone is present ( H,
hypothesis), then Y, are IID random variables drawn
from log-normal probability density function (PDF)
with scale parameter 4 and shape parameter o. Hence,
the trans formed variats X, are of location-scale type,

and precisely have the Gaussian distribution PDF;
that is:

T | Logarithmic Xp X, Xy iom X,
Input Processor —"‘l | ] l l ] |
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v youard Cells I
| 0. X)) |
L
T .| Comparator
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Fig. 1. Blockdiagram of the proposed CFAR processor.
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With exact knowledge of clutter parameters, the
threshold ensuring a given probability of false alarm
(P, ) is given by:

S(x,m,0)=

T=pu+yo )

where y is the (1- P, )-quantile ofthe standard clutter
distribution. However, lacking prior knowledge ofthe

distributional clutter parameters, the adaptive
threshold can be adjusted to take the form:
T=/[+76 (3)

where £ and & represent equivalent estimators of
location and scale parameters, and y 1is a suitable
coefficient to be set according to thedesigned P, .

3. Estimation of Location and Scale Parameters

There are several ways (David, 2003) to obtain
equivalent estimators of p and o, including maximum
likelihood estimators (MLEs) and linear estimators
such as best linear unbiased (BLU) and best linear
invariant (BLI) estimators. Here, we focus on a
simple linear approach which avoids solving
nonlinear equations as in MLEs or the need for
covariance matrix computations as in BLU and BLI
estimators. Let,

X(1) £ XQ2) < ... <X(N) 6]
be ordered samples of all reference window range
cells. Linear estimators of # and ¢ based on (possibly)
N-j censored samples from the upper end are defined
as:
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where a, and b, are suitable coefficients chosen to
satisfy:
J
Za[ =1 @)
i=l
J
Zb, =0 @®)
i=1
which are necessary constraints ©r 4, and &, to be

equivalent estimators. Define:

S(1) < SQ) < ... < S()) ©)

to be ordered variates from a Gaussian PDF which
has zero mean and unit variance. Following the
approach ofGupta (1952), the coefficients a, and b,

are determined as follows:

1 (g -a)

= —— e———— 10
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b = (o, —a) (11)
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where & is the average value of {«,:i=12,..j}

and
a,= E{S()}

= j‘xfl.(x)dx (12)

—0

where E{-} is the expectation operation and f(x) is
the PDF of the variates S(i). Denoting by F(x) the

cumulative  distribution  function (CDF) of
the standard Gaussian PDF f{x,0,1) of (1), the
values of «, can be computed as fllows (Barkat,

2005):
a, = z[]lv] J.x [1- F(x)]" " [F ) ] f(x,0,1) dx (13)

The expectations «, are the only estimates needed in

the linear estimation method outlined above, and
must be computed once and for all according to (13).

Also, the resulting coefficients «, and 5, given by

(10) and (11) satisfy the conditions imposed by (7)
and (8), respectively. Hence, 4, and &, are

equivalent estimators.

For detection in homogeneous environments, it is
appropriate to set j=N. However, when there are k
interfering targets in the reference window, the value
of j is best selected such that j=N-k. Therefore, our
objective in this work is to develop a new censoring
algorithm that has the task of determining the best
value of &. Once the number of interfering targets is
determined automatically, the output ofthe cell under
test X, is then compared with the adaptive threshold

T according to:

X, T (14)

AN VE

~
]

0

where the adaptive threshold 7 (or equivalently the
parameter 7 ) is selected so that the design P, is

achieved. H, denotes the presence of a target in the
test cell, while hypothesis H, is the null hypothesis,

i.e., no target is present.
4. The Proposed Censoring Algorithm

In this section, we propose a novel detector for
automatic censoring of possible interfering targets
that may lie in the reference window ofthe cell under
test. The censoring procedure first ranks the outputs
of all reference range cells in ascending order
according to their magnitudes to yield:

X1)SXQ) < ... XP)< ... <X(N) (15)

The proposed algorithm is termed, according to the
sequence through which the censoring is performed,
the backward automatic censored cell averaging
detector (B-ACCAD). The basic idea of the B-
ACCAD algorithm is to consider that the p lowest
cells represent the initial estimation of the
background level. The parameter p has to be carefully
selected to yield a robust performance in
both homogeneous background and
non-ideal environment. Values of p>N/2, as in
Farrouki (2005), have been found to yield a
reasonable performance.

4.1. The B-ACCAD algorithm
This algorithm proceeds as follows. Sample X(N) is

compared with the adaptive threshold 7, defined as:
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T, =f,+ 2,0 (16)
where z, is a threshold coefficient chosen to achieve
the desired probability of false censoring, P,. If
XN)<r,, the X(N)
corresponds to a clutter sample without interference

and it terminates. If, on the other hand, X(N)> fo , the

algorithm decides that the sample X(N) is a return
echo from an interfering target. In this case, X(N) is
censored and the algorithm proceeds to compare the
sample X(N-1) with the threshold:

algorithm decides that

T,=f,+z6 a17)

to determine whether it corresponds to an interfering
target or a clutter sample without interference. At the

(k+1)" step, the sample X(N-k) is compared with
threshold 7, and a decision is made according to the
test:

AN VE
>

X(N-k) T, (18)

B

where T, = u,+z,0,. Hypothesis H, represents the

case where X(N-k) and consequently X(N-k+1), X(N-
k+2), ..., X(N) correspond to clutter samples with
interference, while H denotes the case where X(N-k)

is a clutter sample  without interference. The
successive tests are repeated while the hypothesis H,

is true. The algorithm stops when the cell under
investigation is declared homogeneous (i.e. clutter
sample) or, in the extreme case, when all the N-p
highest cells are tested; that is, &=N-p. Figure 2 shows
the block diagram ofthe B-ACCAD algorithm.

4.2. Selection of detection thresholds
The B-ACCAD algorithm requires knowledge of
the threshold coefficients 7, (or equivalently 7, .,

where j=N, N-1, ..., p). Table 1 gives the values of
7y, for different values of N and p. These

coeflicients are selected such that P, is maintained
constant in a homogeneous environments. That is,

design P, =Prob{X, >T/H, } (19)

Because an analytical expression for the PDF of T is
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Fig. 2. Blockdiagram of the B-ACCAD algorithm.

not available, the results of Table 1 have been
obtained using Monte Carlo simulations with 500,000
independent runs. Note that as the wvalue of p
increases, the threshold coefficients 7, , decreases.
This is intuitively not surprising because increasing
the value of p increases the accuracy of estimating the
clutter parameters x and o.

Table 1. Threshold coefficients 7,_; for different values of N

Np) T

¥ 1 ; v v v
To i ¥, ¥ V.

I8! /3 I 1] I3 h
(1612)| 45 | 425 | 41 3.9 38 - - -
(32,4)] 37 | 366 | 356 | 355 | 346 | 345 | 343 | 34

The B-ACCAD algorithm requires the values o f
the thresholds z,. These thresholds are determined

such that a low probability of hypothesis test error e,
is achieved. For the B-ACCAD algorithm, e, is

defined, at each value ofk, as follows:
¢, = Prob{X(N —k)> 7, /11, | 20)

Monte Carlo simulations have been used to determine
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the values ofthreshold coefficient z, by setting:
e,= ¢=...=¢, = design P, (21

and the result are displayed in Table 2. It is of interest
to note that the thresholds z, form an ordered

sequence with respect to £.

Table 2. Threshold parameters z, in a homogeneous back
ground with log-normal PDF

“k

~p) P B - - . B - _ B
0 -1 o -3 4 %5 <6 47

107 | 435 ] 300 | 234 | 175
sei0” | 485 [ 341 ] 260 194
10° | 595 423|320 | 240

(16,12)

B =1-Prob(X, < X,) (22)

il—

where X, represents the smallest interfering target

sample affer the samples ranked in order, i.e.,
X, <X,<...<X, and X, denotes the p” sample

P
of the order statistics X, <X, <..<X_ <. <X .,
where X, (=1, 2,

samples only.

The probabilities f obtained for different values of
ICR and m are presented in Table 3. We observe that,
when ICR increases, f remains close to 1 even when
several interferences are present.

..., N-m), contains the clutter

Table 3. Probabilities g that initial population is homogeneous
in multiple target situations

107 | 407|300 | 260 | 224 | 1.96 | 170 | 1485 | 1.28 ICR
G4 [ 5,003 235 [ 333 {275 | 240 | 209 | 182 | 199 | 137 (N.p) m 10dB | 20dB | 30dB | 40dB
07 | 506 ] 383 (320 [ 276 | 241 | 200 182 | 157 1 0.9494 | 0.9948 | 0.9995 | 0.9999
(16,12) 2 0.8743 | 0.9862 | 0.9986 | 0.9998
. 4 0.5431 | 0.9335 | 0.9929 | 0.9993
5. Performance Evaluation y 08420 1 09820 1 0.9982 [ 00098
In this section, we evaluate the performance ofthe (36,24) s 0'3?3? 0.9432 1 0.9941 0'99?4
proposed B-ACCAD algorithm using different values 12 0.1197 ] 0.7619 ] 0.9721 ] 0.9970

of N and p and at different interference-to-clutter
ratios (ICR). The complex envelop of the received
signal has been considered to have Rayleigh
distributed amplitude and uniform phase. As far as
one is concemed with single-hit detection, this
corresponds to both Swerling I and Swerling 1I
fluctuating models. We assume in our evaluation that
the reference window contains m unknown targets,
where 0 < m < N-p and m=0 corresponds to the
homogeneous case.

5.1. Effect of initial population

The B-ACCAD algorithm has been developed
under the assumption that the cell averaging samples,
which define the thresholds 7, , are clutter samples
without interference. Note that the behavior of the
algorithm may change according to whether the
initial population is homogeneous or non-
homogeneous.

Let S be the probability that the initial population,
defined by if, at least, the smallest cell containing an
interference plus clutter is less than or equal to the
p" sample containing clutter only. When there is no
interfering targets, f=1. In the presence of m
interfering targets, the initial population cells X(1),
X(?2), ..., X(p) may contain interference plus clutter
samples. Therefore, f can be defined as follows:

5.2. Probability of censoring

Figure 3 shows the probability of censoring for
N=36, p=24, 0=0.355, and m=8 interferences with
different ICR. P, has been fixed at 10. Note that

the B-ACCAD algorithm has the capability to
determine the exact number of interferences with
probability of 52.2% at ICR=25dB, 54.4% at
ICR=30dB, and 55.5% at ICR=35dB. The algorithm
is also characterized by a lower probability ofunder-
censoring ( P,) compared to that of over-censoring

(P) at higher values of ICR. In practice, under-

censoring may degrade the performance of the
censoring algorithm, whereas over-censoring is a
desirable property when the number of interferences
is unknown (Farrouki, 2005).

Figure 4 shows the effect ofthe shape parameter o
on the performance of the B-ACCAD algorithm in
the presence of m=6 interfering targets. Note that, as
o increases, probability of under-censoring ( £,) also

increases.
The effect of P,

proposed B-ACCAD algorithm has been also
examined. Figure 5 shows the probability of
censoring of B-ACCAD algorithm computed in the

on the performance of the
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presence of two interferences. We have set N=16,
p=12, 0=0.355, and ICR=25dB. The P, has been

given the values 107,5x10” and 107 . As the figure
shows, increasing P, results in higher probability of

determining the exact number of interferences.

5.3. Probability of detection

In this section, the detection performance of the
B-ACCAD algorithm in log-normal clutter is
evaluated. Single pulse detection is considered and a
Rayleigh fading model is assumed for the fluctuating
targets. Unless otherwise stated, the ICR has been set
equal to signal-to-clutter ratio (SCR). That is, the
outlying targets are assumed to have the same radar
cross-section as the primary target. In Fig. 6, the
detection performance of the B-ACCAD algorithm
for (N,p)=(36,24) and (N,p)=(16,12) configurations in
a homogeneous background is presented. The results
are compared with that of the ideal processor whose
detection threshold is adjusted according to (2). As
the figure shows, the curve of the B-ACCAD
algorithm closely matches that of the ideal detector
when (N,p)=(36,24). However, there is a slight
degradation in algorithm’s performance when
(N,py=(16,12), which is expected and may be
attributed to the small number of reference window
samples exploited in estimating the unknown clutter
distributional parameters.

-ided detector ..
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osf- -N=36
A
5
2 aef-
L
@
o
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2 a4}
E Homogeneaus Enéirormm!
8 P =10
a _ 52

P =10
a2t c=03%5
0 M i . 2 . 2 N e
0 5 10 15 20 25 30 *H 40

SCR(@B)

Fig. 6. P, against SCR of B-ACCAD detector in homogeneous
environments.

In Fig. 7, the detection performance of the B-
ACCAD algorithm in the presence of m interfering
targets is presented. We note that as the number of
interfering targets present in the reference window
increases, the detection probability decreases.
However, this degradation in probability ofdetection
is more pronounced at higher values of o.
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6. Summary and Conclusion

In this paper, we have considered the problem o f
automatic censoring of unknown number of
interfering targets in log-normal clutter. A novel
technique has been proposed; namely, the B-ACCAD
algorithm. This algorithm uses pre-computed
thresholds to discriminate between homogeneous and
non-homogeneous populations in log-normal clutter.
The effectiveness of the proposed B-ACCAD
algorithm has been assessed by computing the
probability of censoring and probability of detection
for different numbers of interfering targets and at
different values of ICR. Simulation results show that
the proposed B-ACCAD algorithm performs robustly
in the presence of high and moderate levels of
interferences. The B-ACCAD algorithm is also
characterized at moderate and high levels of ICR by
having small probability of under-censoring and is
capable to maintain good performance even at
relatively high values of shape parameter o.
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