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Abstract. In some industries such as electronic industries, a dynamic manufacturing environment is adopted. In 
these systems, manufacturing processes and machines selection is based upon the released orders over specific 
time periods. Therefore, each order is characterized by a part mix that may need to be revised based on machine 
availability or other economical factors. However, it is necessary to consider the costs of acquiring new machines 
and revising manufacturing process and to evaluate the benefits derived after such changes of this dynamic system. 
Chen (1999) considered this problem and suggested a heuristic algorithm based on a decomposition method as a 
solution procedure. This paper presents the optimal solutions to the machine and process selection problem and 
suggests a Genetic Algorithm (GA) to solve such problems. The obtained results are evaluated and compared 
against the existing methods using numerical examples. 

 
 

1. Introduction 
 
The main characteristic features of today’s dynamic 
manufacturing environments are apparent and they 
can be listed as follows: stochastic demand, variable 
but smaller production batch size, frequent and 
unpredictable changes in product mix, highly variable 
processing and set-up times, variable production 
sequences, very high volume of information and a 
strong competition (Saad, 2003). Researchers have 
considered a number of technological and operational 
problems for designing and setting up the dynamic 
manufacturing systems. These problems include 
machine selection, part selection, resource allocation, 
loading problems, planning and scheduling. In this 
paper, a dynamic manufacturing system is 
considered. In such systems, more frequent system 
changes are possible based upon several factors 
including machine availability, required part mix, 
capacities, etc.  

 Esawi and Ashby (1998) discussed two steps that 
involved in manufacturing process selection. The first 
step involves the screening of all available processes 

to determine whether they are technically capable of 
manufacturing the design; the second involves the 
ranking of those which are successful using economic 
criteria. The ranking step requires the techniques of 
cost estimation. In seeking to achieve this, two 
problems are encountered. First, design is still in an 
early stage at which little information is available; 
and second, conventional cost estimation techniques 
require detailed information and cannot easily be 
applied to widely diverse processes. Yu et al. (1992) 
proposed a methodology for process selection that 
can be applied to early stages of product design. They 
focused on net-shape manufacturing processes and 
identified the major factors that affect the selection of 
an appropriate process. Chen (1999) developed an 
integer programming model considering the 
equipment selection problem with multiple 
manufacturing process alternatives and multiple time 
periods. Operations of the parts considered in this 
model can be processed by more than one machine 
due to machine flexibility. The objective of the model 
is to minimize the overall manufacturing process 
costs for acquiring and installing machine tools with 
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various production demands in several periods. He 
solved this model using a heuristic algorithm. Chen et 
al. (1995) developed a 0-1 integer programming 
model to formulate the part selection problem in 
FMS. They developed two heuristic algorithms and 
three prioritizing strategies to solve the part selection 
problem efficiently as well as effectively. 
Performances of all the heuristic solution methods 
were evaluated based on the profits generated from 
producing the set of parts selected.  

 Lee et al. (1997) developed three iterative 
algorithms, called the forward algorithm (FWA), the 
backward algorithm (BWA) and capacity 
approximation algorithm (CAA) that solve the part 
selection and loading problems iteratively for each 
period. FWA solves the part selection and loading 
problems iteratively from the first period of the 
planning horizon to the last, one by one, while BWA 
solves them in the reverse direction. On the other 
hand, CAA first selects parts for each period up to the 
capacities considering subcontracting the costs of the 
parts. Liang and Taboun (1992) developed a model 
which can concurrently handle part selection and part 
(operation) assignment problems. The uniqueness of 
their model lies in that it captures the cellular layout 
feature of many existing FMSs when dealing with 
part selection problem and simultaneously solves part 
selection and part assignment problems. The model 
was solved using LINDO package. Kusiak and Finke 
(1988) considered the selection of process plans in 
automated manufacturing systems by formulating a 
model with the objective of minimizing cost and 
usage of the number of tools and auxiliary devices. 
Al-Ahmari (2002) developed two mathematical 
models for the selection of machines and part types in 
cellular manufacturing systems. The first model 
identifies machine groups, cutting speeds, number of 
machine types required and a process plan for each 
part assuming the part families are known. The 
second model is used to determine the part families, 
machine groups, number of machines, plan for each 
part, and the cutting speed for each operation 
selected. The second model identifies these variables 
simultaneously. Tiwari and Vidyarthi (1998) 
considered the plan selection problem in an 
automated manufacturing system, taking into account 
the similarity measures among the process plans of 
the parts. Four algorithms have been developed to 
integrate several segments of the process plan 
selection problem. Lee and Kim (2000) considered a 
loading problem for the partial grouping 

configuration in flexible manufacturing systems with 
the objective of minimizing the maximum workload 
of the machines. Several heuristic algorithms were 
suggested for the loading problem. They compared 
the suggested algorithms against an existing one 
using computational experiments which were done on 
randomly generated test problems. In addition, they 
used simulation experiments to investigate the effects 
of grouping methods and loading algorithms on 
system performance. Jang et al. (1996) developed an 
integrated decision for FMS planning and scheduling 
problems (FMSDS) that can solve the sub-problem 
such as the routing problems, the part type selection 
problem, the tool allocation and order adjusting 
problems, and scheduling problems. Almutawa  et al. 
(2005) presented an approach for optimizing the 
number of machines acquired for batch processing in 
a multistage manufacturing system with different 
processing capabilities. They examined four cases of 
overlap in machine capabilities to find the optimum 
number of machines of each type to be purchased for 
each stage, as well as the optimum time delay 
between the stages when the system cost is 
minimized. They simulated the resulting multistage 
line under specified conditions to observe its behavior 
over time and to assess the viability of the developed 
model. Liang and Dutta (1992) investigated the 
combined part selection (PS), loading sharing (LS), 
and machine loading (ML) problems in hybrid 
manufacturing system (HMS). Their objective is to 
obtain consistent solutions to the related decisions by 
concurrently considering the three problems and to 
improve the overall system performance by 
coordinately utilizing the production resources of 
flexible manufacturing system (FMS) and 
conventional manufacturing system (CMS). In 
another paper, Liang and Dutta (1993) proposed a 
sequential-bicriteria approach to solving concurrently 
part selection, machine-loading and tool-
configuration problems in a class of flexible 
manufacturing systems. Associated models were 
developed with example to illustrate their application. 
The model can be applied only when enough copies 
of each type of tool are available. They have also 
suggested a solution method for larger problems. 
Many others have considered process and part 
selections in static manufacturing systems. Recently, 
Sujono and Lashkari (2007) proposed a method for 
simultaneously determining the operation allocation 
and material handling system selection in a flexible 
manufacturing system environment with multiple 
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performance objectives. They developed an integer 
programming model to select machines, assign 
operations of part types to the selected machines, and 
assign material handling equipment to transport the 
parts from machine to machine, as well as to handle 
the part at a given machine. The selection is based on 
the compatibility between the material handling 
equipment and the parts. Very few papers considered 
such problems in the dynamic manufacturing systems 
such as Chen (1999).  
    In this paper, the optimal solution of machine and 
process selection problem model is obtained. A GA is 
also developed to solve the presented problem. The 
obtained optimal results are used to compare and 
evaluate the results of the suggested GA and Chen’s 
(1999) results. The rest of this paper is organized as 
follows: Section 2 presents the problem description 
and model development; Section 3 provides the 
numerical example and the optimal solution; Section 
4 describes the details of the suggested GA; Section 5 
presents more computational results; and finally, 
Section 6 concludes the paper and gives guidelines 
for future research. 

 
2. Problem Description and Model Development 

 
 In a dynamic manufacturing system, part mix and 
system configuration is changed over the different 
planning periods. Chen (1999) described the problem 
of machine and process selection in manufacturing 
systems over a number of time periods. The system 
consists of a number of different machines which are 
used to process a number of different parts in batches 
with a certain number of operations. Each operation 
may be processed by one machine or other available 
machines in the considered system taking into 
account the cost and capacity required for an 
operation corresponding to the machine used to 
perform the operation. Chen (1999) suggested an 
integer programming model to minimize the 
processing cost and the costs for installing and 
operating the machines for the entire planning time 
horizon, subject to part production processes and 
requirements. The notation and the model suggested 
by Chen (1999) are given below: 
Ak   cost to remove one type k machine from the 

system. 
Ak   cost to install one type k machine in the 

system. 
Bk    maximum number of type k machines for time 

period t. 

cijk(t) cost to process operation j of part i using 
machine k at time t. 

 Decision variables to be used in the model are: 
fi(t)  units of part i to be produced in time t. 
Hk   cost of having one type k machine in the 

system for time period t. 
i   part index, i 1,. . . , I. 
j   index of operations of part i, j 1,. . . , Ji. 
k   machine index, k 1,. . . , K. 
Mk(t) number of type k machines to be installed in 

the system during time period t. 
Ps  population size. 
Qijk(t) capacity requirement for type k machine (in 

terms of one unit of type k machine) by 
operation j of part i at time t. 

t   time index, t 1,. . . , T. 
xijk(t) 1, if operation j of part i will be processed by 

machine k during time t; 0, otherwise, 
yk t  number of type k machines removed from the 

system at the end of time t. 
yk t   number of type k machines added to the 

system at the end of time t. 
 
The objective function of the model is expressed as: 
Min Z( x (t),M(t))= 
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    As shown in Eq. (1), the objective function 
consists of three terms. The first term is used to 
calculate the processing costs, the second term is to 
calculate the cost of having the machine in the system 
for a specific time period, and the third term is to 
calculate the installation/removal costs of machines 
into/from the system. Constraint (2) is to ensure that 
operation j of part i will be processed by only one 
type of machine in the system. Constraints (3) and (4) 
are to make sure that there is enough machine 
capacity to process the parts. Constraint (5) defines 
the number of machines installed in the next period. 
Constraints (6) and (7) are for binary and non-
negativity.  
 Chen (1999) solved the above model using a 
decomposition-based heuristic method, but he did not 
get the optimal solution. In this paper, we coded the 
model using LINDO software and the optimal 
solution is obtained. Solving such a model became 
possible with the advent of high-speed computers and 
highly sophisticated optimization software. Also, we 
developed a GA to solve the process and machine 
selections, as discussed later in this paper. 
 

3. Numerical Example  
 
 This example is taken form Chen (1999). In this 
example, there are three different types of machines 
to process 12 types of parts in 3 time periods (t= 1, 2, 
3). Four part types are processed in each time period 
with 2 to 4 operations. An operation may be 
processed by machine 1, machine 2 or machine 3 
taking into account machine capacities and operation 
costs. These example data for the 3 time periods are 
shown in Tables 1, 2 and 3. As shown in Table 1, in 
period 1, part 1 has 2 operations and operation 1 
requires 1.0 unit of machine 1 with processing cost 
being $8.0. This operation of part 1 can also be 
processed by machine 2, requiring 1.3 units to 
complete with a cost of $9.0. Table 4 illustrates the 
maximum number of machines, unit machine holding 
costs, and machine installation/removal costs for the 
three types of machines over the three time periods.  
 Based on the given data, the LINDO model is 

developed and solved. The optimal solutions are 
obtained for the three time periods, as illustrated in 
Tables 5-7. The optimal results of machines and costs 
are shown in Table 8. Since the problem is NP-hard 
and has large number of integer variables, we tried to 
reduce the computation time by developing an 
efficient GA procedure. 
 

4. Genetic Algorithm  
 
 Genetic Algorithm (GA) theory and procedures 
are addressed in several books (e.g., (Goldberg, 1989; 
Holland, 1975)). Michalewicz (1992) stated that 
genetic algorithm for a particular problem must have 
the following five components:  
1. A genetic representation of potential solutions to 

the problem. 
2. A way to create an initial population of potential 

solutions. 
3. An “Evaluation Function” rating in terms of its 

“Fitness”. 
4. Genetic operators. 
5. Values of various “Parameters” (population size, 

and the probabilities of applying each operator). 
 In the selection problem of machines and 
operations, the representation of the model parameter 
set as a binary form (binary string {0,1}) of arbitrary 
length as illustrated in Fig. 1. 
 In our example, the chromosome is of a length 
equal to 16 bits. A gene in this case can be 0 or 1 and 
the binary string of length n can represent the 
multiplication of the number of intervals, number of 
produced parts, number of required operations, and 
the number of available machines, as shown in Fig. 1. 
The size of string length, in this figure, is 16 bits, 
which is based on the double of each element. A bit 
“1” means the machine is assigned to perform an 
operation on part type at that period of time. A bit “0” 
represents that machine is not selected. 
 A population consists of a number of individuals 
being tested (search space). The population is 
initialized with randomly valued individuals. The size 
of population may be fixed or changeable and is set 
by the user to suit the requirements of the particular 
model. In the considered example, the size of the 
population is set changeable based on 10% of the 
multiplication of number of intervals, number of 
produced parts, number of required operations, and 
the number of available machines. The initialization 
process involves the creation of a population of 
chromosome. All the bits for each chromosome are 
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Table 4. Machine limits, holding and other costs of the example 
Machine 

Type 
t=1 t=2 t=3 

 M.L. H.C. I.C. R.C. M.L. H.C. I.C. R.C. M.L. H.C. 
1 4 12 3 2 6 14 4 3 3 16 
2 5 15 3 2 6 18 4 3 6 20 
3 6 10 3 2 6 12 4 3 4 15 

M.L.: Machine limit. 
H.C.: Machine holding cost. 
I.C.: Machine holding cost. 
R.C.: Machine removing cost. 

 
 

Table 5. Optimal solution for t=1 

Part 1 2 3 4 

Operation 1 2 1 2 3 1 2 3 4 1 2 3 

Machine 1 2 3 1 3 1 2 2 2 3 3 3 

Processing Cost 8.0 7.0 3.0 4.0 1.0 8.5 4.3 4.0 2.8 4.8 3.9 5.2 

Required Capacity 1.0 0.4 0.7 0.7 0.4 1.2 0.7 1.0 0.8 1.8 1.1 1.0 
 
 

Table 6. Optimal solution for t=2 

Part 1 2 3 4 

Operation 1 2 3 1 2 1 2 1 2 3 4 

Machine 2 2 3 2 3 3 2 1 3 1 3 

Processing Cost 6.0 5.0 5.0 5.5 3.0 5.2 3.3 3.5 3.5 5.7 2.7 

Required Capacity 1.3 0.4 0.7 0.5 0.4 1.4 0.7 1.4 0.5 1.5 1.0 
 
 

Table 7. Optimal solution for t=3 
 

Part 1 2 3 4 

Operation 1 2 1 2 3 1 2 1 2 3 

Machine 1 1 1 2 2 3 3 2 3 2 

Processing Cost 8.0 7.5 5.0 9.0 2.0 7.2 3.1 4.0 3.5 6.0 

Required Capacity 1.5 0.5 0.8 0.7 0.6 1.6 1.4 1.2 0.8 1.4 
 
 

Table 8. The optimal results on machines and costs 

Time t = 1 t = 2 t = 3 Total 

Machine 1 3 3 3 8 

Machine 2 3 3 4 9 

Machine 3 5 4 4 12 

Machine Cost 131 144 188 463 

Processing Cost 56.5 48.4 55.3 160.2 

System Change Cost 2 4 n/a 6 

Total Cost 189.5 196.4 243.3 629.2 
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initialized randomly. In addition, all chromosomes 
are tested against the maximum availability of each 
type of machines.  
 The evaluation function is the objective function 
that measures the fitness of the chromosome, which is 
the value of the objective function for its phenotype. 
Therefore, to calculate the fitness, the chromosome 
must firstly decode into its phenotype to be tested 
against the evaluation function. For each individual 
chromosome Xi (i = 1, 2, . . . , Ps), the locally 
minimized total costs (e.g., including processing, 
installation, removing, and holding cost) is obtained.  

Among the population, the candidate is 
characterized by the fitness, which is used as the 
probability of choosing that individual as a parent. 
The next generation, children are obtained from the 
parents of the current generation by choosing one of 
the genetic operators. The selection of a new 
population with respect to the probability distribution 
is based on fitness value. A roulette wheel selection 
method is used as follows: 

a. Calculate the fitness value, FIT(ci), for each 
chromosome Ci ( i = 1, 2, …..,Ps).  

 

)FIT(c C i

P

i
T

s

∑
=

=
1

                            (8)
 

b. Find the total fitness of the population, CT. 
c. Calculate the probability of selection, Pi, for 

each chromosome Ci (i = 1, 2, …, Ps):  

T

i
i C

)FIT(c
  P =                                (9)

 
d. Calculate the cumulative probability, CPi, for 

each chromosome Ci (i = 1, 2,…….., Ps): 

∑
=

=
i

1j
ji P CP

                             
(10)

 
e. Spinning the roulette wheel pop-size times. 

Each time a single chromosome is selected for 
a new population as follows: 

f. Generate a random float number R from the 
range (0, 1). 

g. If R < CP1 then select the first chromosome, 
C1; otherwise select the ith chromosome, Ci 
(where 2 ≤ i ≤ Ps), such that CPi -1 ≤ R ≤ CPi. 

 Genetic operators are the hearts of genetic 
algorithm in that they are considered the exploration 
tools that search the alternative space for hunting 
better quality solutions. By means of these genetic 
operators, some members (chromosomes) of the 
population undergo transformation (alteration) to 
form new solutions (offspring). After some number of 
generations, it is hoped that the best individual 
represents a near optimum reasonable solution. Three 
genetic operators, that are most common, are 
implemented. These operators are “crossover”, 
“mutation” and “reproduction”. 
 Crossover operator is implemented in two steps. 
First, the members of the newly reproduced strings in 
the population are mated at random. An expected 
number, equal to the probability of crossover, PC, 
multiplied by pop-size, are selected to undergo 
crossover operation:  

a) Generate a random float number R from the 
range (0, 1); and  

b) If R < PC, select a given chromosome for 
crossover; otherwise a next chromosome is 
considered and return to step a. 

 Second, each pair of strings (parents) undergoes 
crossing over as follows: two integer positions, 
between one and the string length multiply by the 
number of machines, and along the string, are 
selected uniformly at random. These positions divide 
the parents into three segments. Two new strings 
(children or offspring) are created by exchanging 
some group of characters within the produced 
segments in some way depending upon the crossover 
technique. For instance, suppose that we have mated 
parents in a binary form, string 1 and string 2. For 
double crossing position (two site splices), the 
crossover operator may be accomplished as illustrated 
in Fig. 2. 
 The function of the mutation operator is to 
introduce some variability, at random, that disturbing 

 
                                          Period 1                                                    Period 2…… 
                       Part 1                                          Part 2 
    Operation 1     Operation 2       Operation 1        Operation 2  …………….. 
 M/C1    M/C2    M/C1    M/C2    M/C1    M/C2    M/C1    M/C2  ……............ 
     1          0            0           1             1            0            0            0      ……............ 

 
Fig. 1. One of the chromosome representations. 
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genetic information to emulate what is happening in 
the natural genetic process. Mutation is performed on 
a bit-by-bit basis, in that it alters one or more genes 
(positions) in chromosome, with a probability equal 
to the mutation rate, PM. This probability (PM), 
which is one of the genetic algorithm parameters, is 
set by the user and usually to a quite small value 
about “0.01”. The mutation probability gives us the 
expected number of bits (genes) undergoing mutation 
per generation, which is equal to PM multiplied by 
the population size (Ps) and the string length (n). In 
this problem, for example, we have a binary 
chromosome that has a last bit (e.g., a machine) 
selected randomly to undergo mutation, as shown in 
Fig. 3. An expected number, equal to the probability 
of mutation P multiplied by string length by the 
population size, are selected to undergo mutation 
operation. The mutation performed on a bit of 
machines basis: 

a) Generate a random float number R from the 
range (0, 1). 

b) If R < PM, mutate the bit; otherwise select the 
next bit and return to step a.  

 Reproduction is a process in which individual 
strings are copied according to a selection method 

based on their objective function values (fitness 
function). Copying strings according to their fitness 
values mean that the string with higher value has a 
higher probability of contributing one or more 
offspring in the next generation. This operator is of 
course an artificial version of natural selection, a 
survival of the fittest among string creatures 
(organisms). Here, the objective function is the final 
step of the string creature’s life or death. 
 The reproduction operator may be implemented in 
an algorithmic form and in number of ways. One of 
the traditional genetic algorithm techniques is the 
roulette wheel selection method, which is the easiest 
way to create a biased operation toward the fittest 
chromosomes. Every current string in the population 
has a roulette wheel slot size in proportion to its 
fitness. In this process, the fitness over all strings is 
summed to obtain the grand total value. Then, the 
percentage of the population total fitness is calculated 
for each string to represent the probability of each 
one to be selected to the next generation. The roulette 
wheel is spun population size times. Thus, the 
selection of the new population is dependant upon the 
probability distribution based on fitness value in that 
each time spinning roulette wheel, a single 

 
1 0 0 1 1 0 0 1 0  0  1  01 0  

0 1 1 0 0 1 0 1 0  0  0  0  1 1  

0 1 1 0 1 0 0 1 0  0  1  01 0  

1 0 0 1 0 1 0 1 0  0  0  0  1 1  

Parent 1 

Parent 2

Offspring 1

Offspring 2
 

 
Fig. 2. Double position crossover. 

 
 

 

1 0 0 1 1 0 0 10 0 1 0 1 0 

1 0 0 1 1 0 0 10 0 0 0 1 1 

Before Mutation 

Parent 1 

After Mutation

Offspring 1 
 

Fig. 3. Mutation operator. 
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chromosome is selected for a next generation 
providing its probability exceeds a generated random 
number. Obviously, in this way, more highly fit 
strings will have a higher number of offspring in the 
succeeding generation and therefore the best 
chromosome gets more copies, the average stay even, 
and the worst die off (Michalewicz, 1992). 
 The parameters of GAs are: population size, and 
probability of applying each operator (e.g., crossover, 
mutation and reproduction). As mentioned 
previously, the population size is set by the user to 
suit the requirements of a particular model. Running 
the algorithms with large population size can be 
expensive in terms of time, so a smaller population 
may be desirable, but if the population is too small, 
then the loss of genetic diversity may compromise the 
search. Genetic diversity in GAs is important when 
the solution space is rugged or convoluted. A small 
population would be more likely to quickly converge 
on what may be local optima. Also, with the sparse 
spread of initial points, better optima may never be 
visited before the search converges on a poor local 
optima, or even if they are visited, the point may be 
comparatively unfit, and will not be given an 
adequate opportunity to reproduce and start hill 
climbing. At the other extreme, there are problems 
concomitant with excessively large population. 
Firstly, the initialization becomes expensive. In some 
cases, the initialization of a large population is 
equivalent to a random search and produce optimal or 
near optimal solution, which makes the use of GAs 
somewhat moot. After all of these, population size 
must be selected to be adequate to the specific 
problem at hand as well as it must be based on 
experimentation. Therefore, the population size was 
set as 10% of the multiplication of the number of 
intervals, number of produced parts, number of 
required operations, and the number of available 
machines. Also, the probability of applying each 
operator is an important parameter to the algorithm. 
The probability of crossover gives us the expected 
number of individuals that undergo crossing over per 
generation. The cross over operator is an important 
search tool that explores the search space, and 

exchange notion between individuals in an attempt to 
hunt the good quality characteristic. A high 
probability of crossover maybe beneficial, but it can 
also be expensive in terms of time and can ensue in 

missed-good characteristics. Other important 
parameters of genetic algorithm are the probabilities 
of mutation and reproduction. These probabilities are 
suggested to be small, as their function is to introduce 
some variability after the crossover operator in order 
to imitate what is happening in the natural genetic 
process. However, all of these parameter values are 
set by the user according to the particular problem at 
hand and that these values should be subjected to 
experiments to identify its adequate (optimal) values. 
In this work, the probabilities of crossover, mutation 
and reproduction were set as 65%, 10% and 5%, 
respectively.  
 Following the selection, crossover, mutation and 
the processes, the new population is ready for 
evaluation. This evaluation is used to build the 
probability distribution (i.e., construction of roulette 
wheel) for the next selection process.  The whole 
process is repeated for a fixed number of iterations 
(generations) depending on the speed and resource 
criteria. In this work, for example, 100 of the 
iterations were selected.  In each generation, the best-
fit solution is selected and stored.  
 The results obtained by the developed GA are 
shown in Tables 9-11 for the three time periods. 
Table 12 illustrates the number of machines required 
in the three time periods and the different cost figures 
associated with the overall solution. 
 The results obtained from both optimal model and 
GA, are compared against Chen’s results, as 
illustrated in Table 13. In this example, GA results 
are closer to the optimal results than Chen’s results. 
 

5. More Computational Results 
 
 Other computations are conducted for large sized 
problems and solved using the optimal model and the 
suggested GA. Table 14 summarizes the obtained 
results for these examples. This table illustrates the 
number of time periods, machines, part types and 
operations. The relative errors are calculated to 
evaluate the accuracy of the developed GAs for these 
considered examples, as follows: 
 

It is clear from the above table that the suggested GA 
can generate very good quality solutions for various 
size of selection of machines and operations problems 
in manufacturing systems. The relative errors of the  

 (Objective function value of the optimal solution)-(Objective function value of the GA)Relative  error 
 (Objective function value of the optimal solution)

=  
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Table 9. GA solution for t=1 

Part 1 2 3 4 

Operation 1 2 1 2 3 1 2 3 4 1 2 3 

Machine 1 2 1 2 3 1 2 2 3 3 3 3 

Processing Cost 8.0 7.0 5.0 9.0 1.0 8.5 4.3 4.0 3.5 4.8 3.9 5.2 
Required 
Capacity 1.0 0.4 0.5 0.5 0.4 1.2 0.7 1.0 0.5 1.8 1.1 1.0 

 
Table 10. GA solution for t=2 

Part 1 2 3 4 

Operation 1 2 3 1 2 1 2 1 2 3 4 

Machine 1 2 2 2 3 1 2 2 3 1 3 

Processing Cost 7.0 5.0 6.0 5.5 3.0 4.5 3.3 4.0 3.5 5.7 2.7 

Required Capacity 1.0 0.4 0.3 0.5 0.4 1.2 0.7 1.0 0.5 1.5 1.0 
 

Table 11. GA solution for t=3 

Part 1 2 3 4 

Operation 1 2 1 2 3 1 2 1 2 3 

Machine 1 1 1 2 2 3 3 2 3 2 

Processing Cost 8.0 7.5 5.0 9.0 2.0 7.2 3.1 4.0 3.5 6.0 

Required Capacity 1.5 0.5 0.8 0.7 0.6 1.6 1.4 1.2 0.8 1.4 
 

Table 12. The GA results on machines and costs 

Time t = 1 t = 2 t = 3 Total 

Machine 1 3 3 5 11 

Machine 2 4 3 2 9 

Machine 3 3 4 4 11 

Machine Cost 131 134 188 453 

Processing Cost 55.29 39.46 59.11 153.86 

System Change Cost 9 15 0 24 

Total Cost 195.29 188.46 247.11 630.86 
 

Table 13. Comparisons the suggested models against Chen’s results 
Time t = 1 t = 2 t = 3 Total 

Solution Methods Optimal 
Results 

Chen 
(1999) 

GA 
Results 

Optimal 
Results 

Chen 
(1999) 

GA 
Results 

Optimal 
Results 

Chen 
(1999) 

GA 
Results 

Optimal 
Results 

Chen 
(1999) 

GA 
Results 

Machine 1 3 3 3 3 4 3 3 4 5 8 10 11 
Machine 2 3 3 4 3 3 3 4 4 2 9 9 9 
Machine 3 5 5 3 4 2 4 4 3 4 12 9 11 

Machine Cost 131 131 131 144 134 134 188 189 188 463 454 453 
Processing Cost 56.5 64.2 55.29 48.4 50.2 39.46 55.3 58.8 59.11 160.2 173.2 153.86 

System Change Cost 2 9 9 4 8 15 n/a n/a n/a 6 17 24 
Total Cost 189.5 204.2 195.29 196.4 192.2 188.46 243.3 247.8 247.11 629.2 644.2 630.86 
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considered examples are between 0.26% and 5.21%. 
The GA models are coded in QBASIC and run on 
IBM-PC (Pentium 4). For all the examples 
considered, the GA is able to achieve near-optimal 
solutions. This indicates the success of the GA model 
that is developed in this paper. 

 
6. Conclusions 

 
 More frequent system changes are possible in a 
dynamic manufacturing system environment which 
requires considering the problem of selecting the best 
machines operations within a multiple period time 
horizon. This paper presents the optimal solution to 
the selection problem of machines and operations in a 
dynamic manufacturing system. In addition, GA is 
developed to solve such types of problems. The 
developed models are tested and validated using 
different numerical examples. It has been found that 
the solutions provided by the suggested GA are near 
optimal solutions. There are other factors which are 
required to be included when considering this type of 
dynamic manufacturing systems such as workers 
assignment, tool selection, part type quantities, and 
other factors.  
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Table 14. More computational results for example problems 

Example No. of 
Periods 

No. of 
Machines 

Number of 
Parts 

Total No. 
of 

Operations 

Optimal 
Solution 

GA 
Solution 

Relative 
Error % 

1 3 3 12 33 629.2 630.86 0.26 
2 3 4 12 48 937.9 953.0 1.6 
3 4 5 12 57 981.7 1021.3 4.0 
4 4 5 16 77 1311.4 1368.2 4.33 
5 5 5 16 80 1532.0 1609.6 5.03 
6 5 6 20 93 1940.8 2033.3 4.77 
7 6 6 20 101 2207.6 2322.8 5.21 
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  م التصنيعأنموج أمثلية وأنموذج جيني لحل مشكلة اختيار الآلة والعملية في نظ
 

  عبدالرحمن الأحمري ومحمد رمضان
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