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Abstract. In this work we present a new numerical scheme based on orthogonal collocation method to solve a 
reacting flow problem. The method is based on recasting the problem to become a larger set of first order 
differential equations and we show by numerical computation that the application of the method of orthogonal 
collocation to this new set of equations leads to a more efficient numerical scheme. Numerical simulation is 
carried out for steady state case. 

 
1. Introduction 

 
A variety of numerical methods have been presented 
for the numerical solution of partial differential 
equations which involve steep spatial gradients of 
species moving with time (Finlayson, 1980). The 
problems of transient heat conduction or material 
diffusion in simple and complicated geometries, 
convection-diffusion-reaction problems in chemical 
reactors are examples of such problem. Finlayson  
(1980) presents some of the numerical methods used 
for solving the transient diffusion problems including 
finite difference, finite element and orthogonal 
collocation. The main task of all different techniques 
is to reduce the ODEs to a lower order set. This is 
needed in order to reduce excessive demand for 
computational time required by the solutions of 
systems with high dimensionality. The reduced 
system can be a good approximation to the original 
problem only if the parameters such as grid spacing, 
node distribution, etc. of the reduction technique are 
adequately selected. 
 Within the framework of the method of weighted 
residuals, the method of orthogonal collocation has 
been used to solve unsteady transport problems. The 

orthogonal collocation method is used to transform 
the partial differential equations into a set of algebraic 
equations that are solved by an external non-linear 
solver. The collocation method approximates the 
solution to the differential equations by a linear 
combination of basis functions determined by 
requiring that the ODE be satisfied at each of a 
discrete set of mesh points, and that the boundary 
conditions be satisfied. The orthogonal collocation 
method uses series expansion based on orthogonal 
basis functions where the coefficients are determined 
by the minimization of some criteria (Villadsen and  
Michelsen, 1978; Soliman, 2004). The collocation 
methods are elegant in their simplicity and efficient in 
their application. They have several important 
advantages over the other discretization methods. It 
provides a high order of convergence, gives a 
continuous approximate solutions, and easily handles 
general boundary conditions while still being simple 
to program. Several attempts have been made to draw 
guidelines of implementing the collocation method to 
chemical engineering problems (Lefervre et al., 
2000).   
 Differential material balances over tubular 
chemical reactors are described by mathematical 
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model of the diffusion-convection types. This work is 
concerned with the numerical simulation of a reacting 
flow system described by a reaction-diffusion-
convection model: 
 

2

2
1 ( ), /d u du R u Pe D v
Pe dxdx

− = =            (1) 

 
where v is the convection velocity, D is the diffusion 
coefficient, L is the reactor length, x is the 
dimensionless distance and R is the reaction source 
term. Two different mixed boundary condition cases 
are considered.  In this work, we recast the problem 
to become a larger set of first order differential 
equations and we show by numerical computation 
that the application of the method of orthogonal 
collocation to this new set of equations leads to a 
more efficient numerical scheme. Numerical 
simulation is carried out for steady state case. 
 
Collocation method formulation 
 The describing equation for tubular reactor with 
axial dispersion can be written as:  
 

2

2
1 ( )d u du R u

Pe dxdx
− =    (1) 

 
These equations are usually solved by the method of 
orthogonal collocation with boundary points at x=0, 
and at x=1. The collocation points are usually chosen 
as the zeros of Legendre polynomials. In the 
following, we present the formulation for the new 
collocation method for two types of mixed boundary 
conditions.  
 

(a) Neumann-Robbins conditions 
 The derivative of the dependent variable is given 
as a function of the dependent variable itself at one of 
the boundary conditions while it is constant at the 
other boundary condition. 
  

0

1 (0) 1
x

du u
Pe dx =

= −                       (2) 

and 
 

1
0

x

du
dx =

=                                  (3) 

 Legendre polynomials are the most suitable 
polynomial for this purpose. The direct application of 

the orthogonal collocation method leads to: 
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+
=
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It has been indicated by Michelsen (1994) that for 
large Pe, boundary condition (3) affects the 
concentration only close to the exit (point x=1) of the 
reactor. Thus, for large Pe we can eliminate Eq. (3). 
We can obtain the exit concentration by integrating 
Eq. (1) subject to Eqs. (2) and (3) to get: 
 

1

0
(1) 1 ( )u R u dx= − ∫                          (7) 

 
We would like to present here an approach which 
would replace Eq. (3) by Eq. (7) and which is suitable 
for any Pe. 
 First, we recast Eq. (1) into two first order 
boundary value problems: 
 

1 , (1) (1) 0du u v u v
Pe dx

− = + =          (8) 

 

( ), (0) 1o
dv R u v v
dx

= = = −                     (9) 

 
To apply the method of orthogonal collocation, we 
notice that Eq. (8) has a boundary point at x=1, 
whereas Eq. (9) has a boundary point at x=0. Let A  
be the matrix of first derivatives for the boundary 
point at x=1, and  A′  be the matrix of first derivative 
for a boundary point at x=0. Thus, we have: 
 

1

1

1 1,2,.....,
N

ij j i i
j

A u u v i N
Pe

+

=
− = =∑      (10) 

where  

1 (1)Nu u+ =  
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1 1 0
1

( ) 1,2,.....,
N

ij j i i
j

A v A v R u i N+
=

′ ′+ = =∑    (11) 

 
Notice also that: 
 

 1 1 , 1ij N i N jA A+ + − + −′ = −                    (12) 
 
Using Eq. (12) in Eq. (11) and substituting Eq. (10) 
into Eq. (11), we obtain: 
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where 
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Also, we can discretize Eq. (7) to: 
 

1
1

1
(1) 1

N
N i i

i
u u w R

+

+
=
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where wi are the weights of the integral.  Equations 
(13-15) are N+ 1 non-linear equation in N+ 1 
unknown.  
 

(b) Dirichlet-Neumann condition 
 For this case the value of the dependent variable is 
given at on the boundary condition, x=0.  
 

(0) 1u =                                    (16) 
 
Then we can recast the problem in the following 
form: 
 

(0) 1o
du v u u
dx

= = =                  (17) 

 

1
1 ( ) (1) 0N

dv v R u v v
Pe dx +− = = =            (18) 

 
Now Eq. (17) has a boundary condition at x=0, while 
Eq. (18) has a boundary  condition at x=1 so the 

application of the collocation method leads to: 
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or 
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and 
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Combining Eqs. (20) and (21), we obtain: 
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Thus, we need to solve Eq. (22) subject to the 
boundary condition Eq. (17).  
 The case when we have boundary conditions of 
given values for u(0) and u(1) was treated in 
references (Soliman, 1992; 2004) by spline 
collocation method. In the spline method, the domain 
is divided into two zones with each zone carrying one 
boundary condition. The criteria to determine the 
points of the division of the two zones and junction 
conditions were developed.    
 

Discussion and Conclusions 
 
 The two-point collocation method in our new 
scheme should be compared with the one collocation 
point in the classical scheme because both of them 
represent a polynomial of second order. On the other 
hand, the classical collocation requires the solution of 
one non-linear equation and two linear equations and 
thus can be combined in one single non-linear 
equation. 
 The new scheme requires the solution of two non-
linear equations. The third equation gives the exit 
concentration explicitly in terms of two interior 
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concentrations. Before presenting the results of 
implementation of the collocation schemes on  
our problem, we will discuss the main differences 
between the new method and the classical one.  
For one point standard collocation scheme the  
matrix A and B will be based on both boundary 
points and they will be given at the collocation point 
x=0.5 by: 
  

A=[-1 0 1], B=[4 -8 4] 
 
whereas for new formulation A and AA will be based 
on one boundary point only. For one collocation point 
x=0.5, these matrices are given by: 
 

A=[-2 2], AA=[4 -4] 
 
The discretized form derived by the standard method 
(Eq. (4)) becomes: 
 

1 2 2 1
1 (4 8 4 ) ( ) ( )o ou u u u u R u

Pe
− + − − =  

 
 One can notice in this formulation that in  
the convection term u1 does not appear and this 
causes the profile for u to oscillate because  
the corresponding coefficient matrix will not be 
diagonally dominant. This problem has been 
 treated by investigators for convection dominant 
problems using upwinding approach (Finlayson, 
1992). This approach means that the upstream 
coefficient (in our case uo) is larger than the 
downstream one (u2). We see that Eq. (13) of the 
new method can be written as  
 

1 2 1 1
1 ( 4 4 ) 2( 1) ( )u u u R u

Pe
− + − − =  

 
 For the new approach, the coefficient of the 
downstream term u2 in the convection term is zero. 
For large n the coefficients of the downstream terms 
will be smaller than the coefficients of the upstream 
terms, and the corresponding coefficient matrix will 
be diagonally dominant. Thus, the new scheme has 
the upwinding scheme feature which gives smooth 
profiles. 
 We can look at the new formulation in another 
way based on perturbation techniques (Nayfeh, 
1971). Equations (9) and (17) can be considered as 
the regular perturbation part of the problem, whereas 
Eqs. (8) and (18) can be considered as the singular 

perturbation part of the problem. In other words, we 
are combining the regular solution with the singular 
solution. This is another reason for the power of the 
new scheme. In the standard formulation, Eq. (3) is 
imposed accurately. For large Pe and from the 
perturbation theory, we know that it only affects a 
very small boundary layer which enlarges as Pe is 
reduced, so trying to satisfy Eq. (3) which only 
affects small boundary layer causes the profile 
oscillation. In the new formulation and for n=1, Eq. 
(3) is not satisfied at all. For large n, Eq. (3) is only 
satisfied approximately 
 In the following, we apply the proposed technique 
on Eq. (1) for three different reaction rate 
expressions. The number of collocation points in the 
figures will be denoted with N for the classical 
method and NN for the new method. In the following 
cases, we assume that convection dominates the flow 
and large Pe can be used. Pe is fixed in all cases to be 
1000. First we consider the Neumann-Robbins 
boundary conditions case with different source terms.  
Figure 1 shows the results for the first-order reaction 
source term defined by: 
 

( )R u ku=  
 
where k is the rate constant and its value is fixed to be 
2. As we can notice from the simulation runs shown 
in Fig. 1 that when using two collocation points in the 
new scheme for this case, we find that the solution is 
very close to the exact solution compared with the 
traditional method with N=1. If we use more points, 
one can notice that there is no much difference in the 
results because the profile has a curvature near the 
end of the reactor that is very close to the exit no flux 
condition.  
 The results for the proposed and classical schemes 
for non-linear source term defined as a second-order 
reaction rate expression are shown in Fig. 2. The 
source term is defined as: 
  

2( )R u ku=  
 
Again the new scheme performance is much better 
for the lower number of collocation points. When 
using four collocation points or higher, we obtain 
similar results for both schemes. 
 Figure 3 shows the simulation results for the zero 
order reaction scheme, where the profile is almost 
linear.   
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Fig. 1. Concentration profiles for the first-order reaction with 

k=2, Pe=1000 for (a)N=1, NN=2, (b)N=2, NN=4,(c)N=4, 
NN=8. 
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Fig. 2. Concentration profiles for the second-order reaction 

with k=2, Pe=1000 for (a)N=1, NN=2, (b)N=2, NN=4, 
(c)N=4, NN=8. 
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Fig. 3. Concentration profiles for the zero-order reaction with 

k=1, Pe=1000 for (a)N=1, NN=2, (b)N=2, NN=4, (c)N=4, 
NN=8. 

 
 
 

( )R u k=  
 
It is clear that the presented method outperforms the 
classical method. The one point new scheme is better 
than the four-point classical scheme which oscillates 
about the exact solution. 

Figures 4-6 show the results for Dirichlet-
Neumann boundary condition. The same parameters 
as cases 1-3 are used. It is found that highly accurate 
solutions are obtainable by simply increasing the 
number of internal collocation points. All results 
show that the new scheme is superior to the classical 
collocation method and can predict the exact 
solutions more accurately with lower number of 
collocation points.  
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Fig. 4. Concentration profiles for the second order reaction 

with k=2, Pe=1000 for (a)N=1, NN=2, (b)N=2, NN=4. 
 

Figure 7 shows the results for the zero-order 
reaction case with lower Pe (Pe=10). In this case, the 
inlet condition u(0) will be far from one. It can be 
seen clearly that the classical scheme with one 
collocation point is not able to predict u(0) 
accurately, while the new scheme gives accurate 
prediction.  
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Fig. 5. Concentration profiles for first-order reaction with k=2, 

Pe=1000 for (a)N=1, NN=2, (b)N=2, NN=4. 
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Fig. 6. Concentration profiles for zero-order reaction with k=2, 

Pe=1000 for (a)N=1, NN=2, (b)N=2, NN=4. 
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Fig. 7. Concentration profiles for zero-order reaction with  

k=1, Pe=10 for (a)N=1, NN=2, (b)N=2, NN=4. 
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  الانتشارطريقة تنظيم ذات كفاءة عالية لمسائل : ٧المتعامد دراسات على طريقة التنظيم 
  والحمل في وجود تفاعل كيميائي

  
  براهيم الحميزيإخالد و ،مصطفى علي سليمان
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