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Abstract.  This paper addresses the problem of modeling and control of linear continuous-time systems with 
unacceptable zeros in a sense that they are on the right-half plane of the S-domain (non-minimum phase) or 
cause the controller to have undesired behavior. The unified approximation of output tracking control using 
output redefinition will result in approximate output tracking, yet insuring stable internal dynamics of the 
system. Four different types of output redefinition are presented in a unified way and shown to satisfy different 
forms of control objectives through a simulation example of small-signal model of boost converter. 
 

Introduction 
 
In many practical applications, the control objective consists of output tracking with 
internal stability. A natural way to design such controllers is to use the pole-zero 
cancellation. To be able to meet this objective, one must assume that the system is 
minimum phase, that is all zeros of the transfer function are stable. It is obvious that the 
closed loop poles must be stable too. Even if all the zeros are located in the left half 
plane, some zeros, e.g. those on the real axis and close to ∞− , may cause the control 
signal to be highly oscillatory. To control such a system, it is not practical to try to 
perfectly track a desired output trajectory. Instead, one should be satisfied with 
approximate output tracking objective while insuring the stability of internal dynamics. 
 

In this paper, the control problem of non-minimum phase systems will be 
considered. The output redefinition method for modeling and control will be discussed. 
The preliminary results of this paper were published in [1]. Four different versions of 
this technique will be presented in a unified way. They can be used to satisfy different 
control objectives. The first is the simplest and is known to introduce both magnitude 
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and phase errors at all frequencies except dc [2]. The second was introduced for digital 
control in [3] and is known to introduce only magnitude error at all frequencies except 
dc. Another output redefinition method is derived and used to cancel the magnitude error 
at all frequencies. The second method can be modified in such a way that both the 
magnitude and phase errors at a given desired frequency is zero, provided that the 
desired output trajectory is a pure sinusoidal with zero dc component. Frequency-
dependent version of this method is derived and shown to exhibit no phase error and no 
magnitude error if the output frequency is known in advance and the controller is 
designed accordingly. The main contribution of this paper is in the introduction of the 
zero magnitude error tracking controller and the modification of the zero phase error 
tracking controller to perfectly track an output with certain requirements. Another 
contribution is in presenting these output redefinition methods and corresponding 
controllers in a unified way that is easy and clear to understand and use. The controller 
design is presented in Section 3 followed by a simulation example in Section 4. 
 

Output Redefinition 
 

  The paper considers the linear time-invariant system of the following form: 
 
 ( ) = ( ) ( )

( ) = ( )
x t Ax t Bu t
y t Cx t

+&
 

(1)

  
The (scalar) transfer function for the original small-signal model can be written as: 
 
 1 ( ) ( )

( ) = ( ) :=
( )

a uN s N s
H s C sI A B

D s
−−  

(2)

 
where ( )aN s  polynomial includes the acceptable zeros and ( )uN s  polynomial includes 
all unacceptable zeros. Note that ( )uN s  must contain all zeros located on the right-half 
plane of the S-domain. Also, suppose that the relative degree of the system is r  and the 
polynomial ( )uN s  is of order m , i.e. there are m  unacceptable zeros. In the case where 

( )uN s  is not unity, any controller based on direct inversion will not be practical since it 
generates unbounded or highly oscillatory internal dynamics. In this paper, a method 
based on output redefinition is introduced as a solution to this problem. More than one 
alternative for output redefinition are considered here to satisfy different control 
objectives. 
 

Output redefinition relies on the fact that the approximate transfer function ˆ ( )H s  
may be written in the form: 
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 ˆ ( )ˆ ( ) =
( )

C adj sI A BH s
det sI A

−
−

 
(3)

By defining 1, , na aK  as the characteristic polynomial coefficients of the n n×  matrix 
A: 
 
 1

1( ) = n n
ndet sI A s a s a−− + + +L  (4)

  
it is possible to establish an explicit expression for the adjoint matrix of AsI − , 
namely: 
 
 1 2 1 2

1 1 1( ) = ( ) ( ) ( )n n n n
nadj sI A I s A a I s A a A a I− − − −
−− + + + + + + +L  (5)

  
Hence, it follows that the triple ( ˆA,B,C ) will generate the approximate transfer 

function Ĥ(s)  provided that Ĉ  is computed according to: 
 
 

1
1

2

1 2
1 1

( )

(( ) )
ˆ =

(( ) )

T

T

n n T
n n

B

A a I B
C

A a A a I B

β
β

β
− −

−

⎡ ⎤
⎢ ⎥ ⎡ ⎤
⎢ ⎥+ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥+ + +⎢ ⎥ ⎣ ⎦
⎢ ⎥⎣ ⎦

M M
 

(6)

 
where the new polynomial 1

1 2
n n

ns sβ β β−+ + +L  is user defined and can be anything. 
This result makes use of the fact that two polynomials are identical if and only if their 
orderd coefficients are equal. It will prove useful later to define the two vectors 1Ĉ  and 

2Ĉ  as follows: 
 
 

1

2

ˆ ( ) := ( ) (0)
ˆ ( ) := ( ) ( )

a u

a u

C adj sI A B N s N

C adj sI A B N s N s

−

− −
 

(7)

 
A general description of the unified linear approximate dynamic model is given 

by the following: 
 
 ( ) = ( ) ( )

ˆ( ) = ( )
a a a a

a a

x t A x t B d t
y t C x t

+&
 

(8)
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where the constant matrices ( a a aA , B ,C ) and the new state vector ( ax ) are defined in 
different ways depending on the output redefinition method being used. This is the 
subject of the next section. 

ZDCETC Output Redefinition 
 

 An intuitive way to solve the problem of unacceptable zeros is to replace ( )uN s  
by its dc value, (0)uN  and to assume that )(ˆ ty  is a good approximation of )(ty . This 
approximate model will exhibit both magnitude and phase errors at all frequencies other 
than dc, hence the name  Zero DC Error Tracking Controller (ZDCETC). The transfer 
function of such approximation is given by: 
 
 1

1
( ) (0) ˆˆ ( ) = := ( )

( )
a u

a a a
N s N

H s C sI A B
D s

−−  
(9)

  
where 
 
 

1

:=
:=

ˆ:=
:=

a

a

a

a

A A
B B

C C
x x

 

(10)

 
Note that the relative degree of this approximate model is =ar r m+  since ( )uN s  is a 
non-zero polynomial of order m . 

 
ZPETC Output Redefinition 

 
 If the control objective can not tolerate any phase error in the tracking process, 

another output redefinition method called  Zero Phase Error Tracking Controller 
(ZPETC) Error! Reference source not found is to be used. This approximate model 
will have zero phase error at all frequencies. On the other hand, it will exhibit magnitude 
error at all frequencies other than dc. The transfer function for such approximation is 
given by: 
 
 2

1
2

( ) (0)ˆ ( ) = := ( )
( ) ( )
a u

a a a
u

N s N
H s C sI A B

D s N s
−−

−
 

(11)

  
where 
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1 1

0 0 1
1

1

1

1 1

1

2

0
:= 0

ˆ

:=
0

0
:= 1

0

:=

n m

a m n m m

m

m m m

a
m

n

a

m

n

na

n m

A
A M

k k k
C

k k k

B
B

C

x
x
xx

x

×

− × − ×

−

×

×

− ×

+

+

+

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− −⎢ ⎥⎣ ⎦
⎡ ⎤
⎢ ⎥
⎣ ⎦
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

K

M

 

(12)

 
and  
 
 1

1 1 0( ) = m m
u m mN s k s k s k s k−

−− + + + +K  (13)

 
 

1
1 = 1

( , ) =
0m m

j i
M i j

otherwise− ×
+⎧

⎨
⎩

 (14)

 
By construction, )(sH  and )(ˆ sH  are identical at zero frequency. Moreover, 

they have the same phase for all other frequencies. The relative degree of this 
approximate model is mrra 2= + . 

 
ZMETC Output Redefinition 

 
 If the control objective can not tolerate any magnitude error in the tracking 

process, another output redefinition method called  Zero Magnitude Error Tracking 
Controller (ZMETC) is introduced. It relies on the fact that )(sNu  and )( sNu −  have 
the same magnitude at all frequencies. The transfer function for such approximation is 
given by: 
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 1
3

( ) ( )ˆ ( ) = := ( )
( )

a u
a a a

N s N s
H s C sI A B

D s
−−

−  
(15)

  
where 
 

2

:=
:=

ˆ:=
:=

a

a

a

a

A A
B B

C C
x x

 

(16)

 
This approximate model will have zero magnitude error at all frequencies. On the 

other hand, it will exhibit phase error at all frequencies other than dc. The relative degree 
of this approximate model is rr =3 . 

 
FDZPETC Output Redefinition 

 
 If the desired output trajectory is a sinusoidal signal with zero dc component, 

then the ZPETC method can be modified to achieve perfect tracking control with 
internal stability and hence the name  Frequency Dependent ZPETC (FDZPETC). 
Suppose the frequency of the desired output is dw . The controller is designed to cancel 
both frequency and magnitude errors with internal stability. The redefined equation is 
given as: 
 
 1

1
( ) ( ) ( )ˆ ( ) =

(0)
a u d u d

new u

N s N jw N jw
C adj SI A B

N
− −

−  
(17)

 

1
ˆ

new
C  should replace 1Ĉ  in the definition of aA . Moreover, 1

ˆ
new

C  can be easily 

calculated from 1Ĉ  using: 
 
 

1 12
( ) ( )ˆ ˆ=  

(0)
u d u d

new
u

N jw N jw
C C

N
−

 
(18)

 
Control 

 
If the desired output trajectory ( )dy t  is given, two possible controllers based on 

exact or approximate models can be designed. 
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Perfect Tracking Control 
 

 This controller, which is based on direct inversion of the original system, would 
result in perfect tracking control with internal stability only if the zeros of the transfer 
function are all acceptable. If at least one zero is unacceptable, then this kind of 
controller is not practical. The linear inverse control is: 
 
 

1

1 ( ) ( )( )

=0

( ) ( )( ) =

( ) = ( ( ) ( )) ( )

r

r

r j rj
j d d

j

v t CA x tu t
CA B

v t K y t y t y t

−

−

−

− − +∑
 

(19)

  
or simply  
 
 0 ( ( ) ( )) ( ) ( )

( ) = d dK Cx t y t y t CAx t
u t

CB
− − + −&

 
(20)

 
if the relative degree r  is one, where ( ) ( )i

dy t  denotes the thi  derivative of dy (t). It 
should be mentioned that the above controller assumes that the required output 
derivatives are calculated from the states using the mathematical model of the system. 

 
Approximate Tracking Control 

 
 Even though approximate by construction, this controller will provide stable 

internal dynamics as well as good approximate output tracking. The linear control based 
on output redefinition method is: 
 
 

( )( )( )

=0

( ) ( )
( ) = 1

1
ˆ( ) = ( ( ) ( )) ( )

ra
a a a a

ra
a a a

ra rjj a
a j d d

j

v t C A x t
u t

C A B

v t K y t y t y t

−
−

−
− − +∑

 
(21)

  
or simply  
 
 (2) 2

0 1( ( ) ( )) ( ( ) ( )) ( ) ( )
( ) = a a d a a a d a a ad

a a a

K C x t y t K C A x t y t y t C A x t
u t

C A B
− − − − + −&

 (22)

 
if the relative degree ar is two. 
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This controller can be used for all of the above methods discussed in Output 
Redefinition Section with appropriate definitions of , , , ,a a a aA B C x  and ar . 

 
Simulation Example 

 
  As an example, two sates of the boost converter are defined by: 

 
 1 1

2 2

( ) ( ), <
( ) =

( ) ( ),
( ) = ( )

kA x t B u t kT t kT d T
x t

A x t B u t otherwise
y t Cx t

+ ≤ +⎧
⎨ +⎩

&
 (23)

  
where nx R∈  is the state vector, y R∈  is a scalar output, and U R∈  is a scalar input. 
As indicated, the circuit dynamics switch between two topologies, ( 1 1,A B ) and 
( 2 2,A B ), with switching period T  and duty ratio [0,1]kd ∈ , where k  represents the 
discrete-time index. The constant matrices of the system are: 
 
 

[ ]

1 1

2 2

0 0 1
=    =    10 0

1 10
=    =    = 0 1

1 1 0

A B L
RC

LA B CL

C RC

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−

⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦
⎡ ⎤− ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥− ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦

 

(24)

 
The circuit component values are = 10R Ω , = 2L mH, = 200C µ F and 

= 100U V. If we operate close enough to the equilibrium point corresponding to d  and 
assume infinite switching frequency, then the small signal model is a good 
approximation of the system and can be used to design the controller (a continuous duty 
ratio )(td ) (see [4]). The small signal model will also be considered as the exact model 
for the system as to apply output redefinition on a linear system. The small signal model 
at 0.5=d  can be found to be: 
 
 

[ ]
5

5

0 250 1 10
=    =    = 0 1

2500 500 2 10
A B C

⎡ ⎤− ×⎡ ⎤
⎢ ⎥⎢ ⎥− ⎢ ⎥⎣ ⎦ − ×⎣ ⎦

 (25)

  
The transfer function of this linear system is: 
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 5

2
( ) ( )2 10 ( 1250)( ) = :=

( )500 625000
a uN s N ssH s

D ss s
− × −

+ +
 (26)

  
where  
 
 5

2

( ) = 2 10
( ) = 1250

( ) = 500 625000

a

u

N s
N s s

D s s s

− ×

−

+ +

 
(27)

 
The relative degree is one and the number of unacceptable zeros is also one. 

Using the output redefinition method, the vectors 1Ĉ  and 2Ĉ  are easily calculated to be: 
 
 

[ ] [ ]1 2
1 1ˆ ˆ= 10 5    = 20 1
9 9

C C  (28)

  
The two types of controllers were used to track the desired output trajectory 

( ) = 200 30sin(200 )dy t tπ− . The simulation results for perfect tracking control are 
shown in Fig. 1 and the results of using approximate output tracking controls are shown 
for three versions of output redefinition approximation in Figs. 2, 3 and 4. 
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Fig. 1. Perfect output tracking for boost converter. 
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Fig. 2. ZDCETC for boost converter. 
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Fig. 3. ZPETC for boost converter. 
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Fig. 4. ZMETC for boost converter. 
 

If the desired output trajectory was ( ) = 30sin(200 )dy t tπ−  and the controller was 

designed to cancel the tracking error at the frequency of ( )dy t , then 1
ˆ

new
C  becomes: 

 

 
[ ]

2 2

1 2
(200 ) 1250 1ˆ =   10 5

91250new
C π +  

(29)

  
and the simulation results are shown in Fig. 5.  
 

Conclusion 
 

The modeling and control of linear systems with unacceptable zeros is problematic 
since it causes the internal dynamics of the system to blow up or to behave in an 
undesired manner. To solve this problem, three or four different methods based on 
output redefinition approximation are presented and shown to outperform the perfect 
tracking controller in the presence of unacceptable zeros. Simulation results show that 
the idea of output redefinition, although approximate, ensures the boundedness of 
internal dynamics. The knowledge of the desired output frequency allows the use of the 
FDZPETC method to cancel the error between the desired and actual output signals 
provided that the desired trajectory is a sinusoidal function with zero DC value. A 
further investigation of the effect of model uncertainty and output feedback instead of 
state feedback would be a good extension to this work.  
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Fig. 5. ZMETC for boost converter. 
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  تحكم تتابعي تقريبي موحد للأنظمة الخطية في وجود أصفار غير مقبولة
 
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